

Antibacterial efficacy and phytochemical screening of *Senna siamea* leaves extracts on some pathogenic bacteria

Abstract

The study was aimed to investigate the phytochemical constituents and antibacterial activity of *Senna siamea* leaves extracts against some pathogen bacteria. Aqueous and ethanol extracts from *Senna siamea* leaves were prepared, screened for phytochemical analysis and tested for its antibacterial activity against 6 pathogenic bacteria (*Klebsiella pneumoniae*, *Salmonella typhi*, *Shigella spp*, *Escherichia coli*, and *Pseudomonas aeruginosa*) recovered from stool sample of patients attending Murtala Muhammad Specialist Hospital Kano. Phytochemical screening of the extracts showed that *Senna siamea* extract contain Alkaloid, Anthraquinone, saponin, tannin, phenol, steroid, flavonoid, terpenoid and glycosides. Statistical analysis of the result showed that highest antibacterial activity was recorded in ethanol extract with average zone of inhibition of 14.12 ± 1.51 mm among the isolates while aqueous extracts recorded an average zone of inhibition of 12.00 ± 1.06 mm. Based on the susceptibility of the organisms to the extracts, *E. coli* was found to be the highest susceptible organisms with average zone of inhibition of 14.29 ± 1.12 mm, followed *S. aureus* (13.61 ± 1.23 mm), *Salmonella typhi* (13.56 ± 1.89 mm), *Shigella* (13.22 ± 1.41 mm), *Pseudomonas* (12.36 ± 1.38 mm) while least average zone of inhibition is shown by *Klebsiella* (11.33 ± 0.80 mm). The MIC and MBC of the extracts ranges from 3.125 to 50mg/ml. There is no significant different on the susceptibility of the organisms against the extracts at $p < 0.05$. The results of the present study have supported the therapeutic potential of *Senna siamea* and its use as medicinal plant.

Keywords: antibacterial activity, pathogenic bacteria, phytochemicals, *Senna siamea*

Volume 6 Issue 3 - 2018

Nas FS,¹ Oyeyi TI,¹ Ali M²

¹Department of Biological Science, Bayero University Kano, Nigeria

²Microbiology Department, Kano University of Science and Technology, Nigeria

Correspondence: Muhammad Ali, Microbiology Department, Kano University of Science and Technology Wudil, Nigeria, Tel +2347032967252, Email alimuhd4real@gmail.com

Received: April 26, 2018 | **Published:** June 14, 2018

Introduction

Recently, there has been a lot of attention focused on producing medicines and products that are natural to complement the existing synthetic antimicrobial drugs that are gradually becoming less potent against pathogenic microorganisms. Several leaves and leaves extracts have been found to have antimicrobial activity against microorganisms. Several hundred genera of plants were utilized traditionally for medicinal purposes. The world health organization¹ reported that 80% of the world population relies chiefly on traditional medicine and a major part of the traditional therapies which involve the use of plant extract and their constituents.² The presence of phytochemical constituents in medicinal plants made them useful for healing as well as for curing of human diseases.³ Phytochemicals are naturally occurring compounds in the medicinal plants such as terpenoid, flavonoids, steroid, alkaloids and phenolic compounds. The phytochemicals have impressive pharmaceutical properties such as analgesics, aesthetic, antibiotics, antiparasitic, anti-inflammatory, oral contraceptive, hormones and ulcer therapeutic laxative.

Senna siamea Lam. belongs to the family Fabaceae. It is commonly called kassod tree or yellow cassia,⁴ or in Hausa as "Malga",⁵ was introduced to Africa from tropical Asia. It is widely grown throughout tropical Africa. Different parts of *S. siamea* can be used for various medical purposes.⁶⁻⁸ The leaves, stems, roots, flowers and seeds of *C. siamea* regardless the subspecies have been used for the treatment of several illnesses including mostly malaria, a tropical endemic disease with high morbidity and mortality.⁹ The leaves are the most used parts' the plant especially by African and Asian population in

preparation of the herbal remedies. In Burkina Faso, fresh and dried leaves decoction (boiled for 20 min in 1L of water) is drunk with lemon juice or for body bath throughout the day to treat malaria and liver disorders.¹⁰

S. siamea has been reported to be used in the management of constipation, diabetes, insomnia, hypertension, asthma, typhoid fever, and dieresis.¹¹ Leaves and bark of medicinal plants were reported to be used locally as antimalarial medications.¹² Traditionally *Senna siamea* is used for the treatment of typhoid fever, jaundice, abdominal pain, menstrual pain and is also used to reduce sugar level in the blood. Ethno medicinally *S. siamea* is used as laxative, blood cleaning agent, cure for digestive system and genitourinary disorders, herpes and rhinitis.¹³ In traditional medicine, the fruit is used to charm away intestinal worms and to prevent convulsion in children.¹⁴

C. siamea (leave) has been valued for its use in the treatment of infectious diseases. An aqueous extract of fresh or dried leaves of *S. siamea* has also been recommended for treatment of insomnia.¹⁵ Aqueous leave extract is active against various bacteria gram at 500 and 1000 μ g/mL/disc, it inhibited *Pseudomonas aeruginosa* (iz. 16mm, respectively). At 0.1mL/disc/37°C for 24 hours, it showed inhibition on *Staphylococcus aureus* (11.7mm), *Bacillus cereus* (10mm) and *Escherichia coli* (10.2mm).⁷ The ethanol leave extracts (ranged from 500-1000 μ g/disc) showed more activities than ciprofloxacin (30 μ g/disc) on *Staphylococcus aureus*.¹⁶ Preliminary qualitative phytochemical screening of the leaves and stem bark of *S. siamea* revealed the presence of anthraquinones, alkaloids, tannins, polyphenols, glycosides, saponins and flavonoids in both the leaves

and stem bark.¹⁷ The present study was aimed to determine the phytochemical constituents and antibacterial activity of *Senna siamea* leaves extract against some clinical isolate of bacteria recovered from stool samples of infected patients attending Murtala Muhammad General Hospital, Kano namely; *Klebsiella pneumoniae*, *Salmonella typhi*, *Shigella* sp, *Escherichia coli*, and *Pseudomonas aeruginosa*.

Materials and methods

Collection and authentication of plant materials

Senna siamea leaves were used in this study, which was collected from Bayero University, Kano old campus. Botanical Identification and Authentication of the plant material was done at Herbarium unit in the Department of Plant Biology, Bayero University Kano with the following Voucher specimen number: BUKHAN 0448. Voucher specimens were deposited there for future reference. The leaves were washed with water and removed dust and rinsed with distilled water, air dried for two-weeks and pulverized into powder form using sterile mortar and pestle under laboratory as described by Ali et al.¹⁷ The powder sample was bagged in a black polythene bag and stored in air tight container for further work.

Test organisms

Five(5) bacterial isolates recovered from stool sample of infected patients attending Murtala Muhammad General Hospital, Kano namely; *Klebsiella pneumoniae*, *Salmonella typhi*, *Shigella* sp, *Escherichia coli*, and *Pseudomonas aeruginosa* were obtained from Microbiology Laboratory of Kano University of Science and Technology Wudil, Kano. The bacteria were characterized to species level by using different laboratory procedures including; Gram's stain, cultural characterization and Biochemical tests include (Indole, Methyl red, Vogues Proskauer, Catalase, Citrate utilization and coagulase tests) as described by Holt et al.¹⁸ Chessbrough¹⁹ The isolates were maintained on Nutrient agar slants at 4°C.

Indole test

Tryptophan broth was inoculated with an isolate of the test organism and incubated at 37°C for 24 hours. About 0.5ml of Kovack's reagents was added to the broth culture.

Methyl red test

MR-VP broth was inoculated with an isolate of the test organism using sterile inoculating loop and incubated at 37°C for 24 hours. About 5 drops of Methyl-red reagent was added to the broth culture.

Voges proskauer

MR-VP broth was inoculated with an isolate of the test organism using sterile inoculating loop and incubated at 37°C for 24 hours. Six millilitre (6ml) of 5% alpha naphthol was added followed by 0.2ml of KOH. The tube was shaken gently and remained undisturbed for 5 minutes

Citrate utilization test

Simmon's citrate agar was streaked back and forth with inoculums of the test organism and incubated aerobically at 37°C for 24 hours.

Preparation of the leaves extracts

Aqueous and ethanol extracts of *Senna siamea* leaves were prepared separately. Fifty grams (50g) powder of the plant material was soaked in 500ml each of distilled water and ethanol respectively.

The flasks were kept at room temperature for 3 days with intermittent shaking after which filtration was done using Whatman filter paper. The ethanol extracts was evaporated at 50°C using rotary evaporator while the aqueous extract was evaporated at 40°C in water bath until dried extract samples were obtained. All the dried extract samples were dissolved in 10% DMSO separately to the final concentration of 200mg/ml as a stock concentration. The extract solutions were stored at 4°C before use.¹⁷

Qualitative phytochemical screening

The phytochemical screening of the plant materials for various phytochemical constituents such as terpenoids, flavonoids, alkaloids, reducing sugars, steroid, glycoside, phenol, Anthraquinones, saponin and tannin was conducted using standard methods as described by Sofowora²⁰ & Trease.²¹

Antibacterial activity of the extracts

The sensitivity of each extracts was determined using the agar well diffusion method as described by Ahmed²² with modifications. The prepared bacterial suspension equivalent to 0.5McFarland Standard (1.5×10^6 CFU) was inoculated into sterile Mueller- Hinton agar medium in a sterile Petri-dish. A sterile 6mm diameter sterile cork borer was used to bore 5 wells into the agar medium. The wells were then filled up with approximately 0.1ml of the extract solution at a concentration of 25,50,75 and 100mg/ml taking care to prevent spillage onto the surface of the agar medium. The plates were allowed to stand on the laboratory bench for 1 hour to allow proper diffusion of the extract into the medium after which the plates were incubated at 37°C for 24hours, and thereafter the plates were observed for zones of inhibition and measured. The experiment was conducted in triplicate and the average values were recorded. Ciprofloxacin 50mg/ml (Micro Lab limited) was served as a control (positive) for the experiment.

Minimum inhibitory concentration (MIC) of the extracts

The minimum inhibitory concentration MIC of the extracts was determined using broth dilution technique. Double fold serial dilutions of the extracts were prepared by adding 2ml of 100mg/ml of the extract into a test tube containing 2ml of Nutrient broth, thus producing solution containing 50mg/ml of the extract. The process continue serially up to test tube No.5, hence producing the following concentrations; 50,25,12.5,6.25,3.125mg/ml. Test tube No. 6 do not contain extracts and serve as negative control. Exactly 0.5ml of 0.5McFarland equivalent standards of test organisms were introduced into the test tubes and incubated at 37°C for 24hours. After incubation the test tubes were observed for growth by checking for turbidity.²²

Minimum bactericidal concentration (mbc) of the extracts

From each tube that did not show visible growth in the MIC, Briefly, 0.1ml bacterial culture was pipetted from the mixture obtained in the determination of MIC tubes which did not show any growth and sub cultured onto the surface of Mueller Hilton agar plates and incubated at 37°C for 24h. After incubation the concentration at which there was no single colony of bacteria was taken as MBC.²²

Statistical analysis

The data of average zone of inhibition produced by the isolates against the extracts used were analyzed using One-Way ANOVAs from statistical program SPSS 21.0(Statistical Package for the

Social Sciences). The results were presented as the means \pm standard deviation. Significance level for the differences was set at $p<0.05$.

Result

Phytochemical constituents of the extracts

Phytochemical screening of *Senna siamea* leaves extracts in Table 1 indicates the presence of alkaloid, tannin, saponin, glycoside, steroid and anthraquinone flavonoid, terpenoid, and phenols while reducing sugar was absent.

Table 1 Phytochemical constituents of the extracts

S/N	Phytochemical	Status
1	Alkaloids	+
2	Flavonoid	+
3	Glycosides	+
4	Reducing sugar	-
5	Saponin	+
6	Steroids	+
7	Phenols	+
8	Terpenoid	+
9	Anthraquinones	+
10	Tannin	+

Key: +, presence of phytochemical; -, absent of phytochemical

Table 2 Antibacterial activity of *Senna siamea* aqueous extract

Isolates	Concentration (mg/ml)/zone of inhibition(mm)				
	25	50	75	100	Control
<i>Klebsiella pneumoniae</i>	8.00 \pm 0.00 ^a	8.84 \pm 0.00 ^a	10.56 \pm 0.11 ^a	12.17 \pm 0.13 ^a	22
<i>Salmonella typhi</i>	8.73 \pm 0.15 ^a	11.46 \pm 0.13 ^a	13.70 \pm 0.22 ^a	15.45 \pm 0.26 ^b	21
<i>Shigella sp</i>	9.40 \pm 0.17 ^a	10.28 \pm 0.20 ^a	13.82 \pm 0.09 ^b	14.71 \pm 0.31 ^b	22
<i>Pseudomonas aeruginosa</i>	9.55 \pm 0.00 ^a	10.77 \pm 0.26 ^a	12.49 \pm 0.14 ^a	12.65 \pm 0.21 ^a	20
<i>Escherichia coli</i>	10.33 \pm 0.20 ^a	12.59 \pm 0.12 ^a	14.88 \pm 0.17 ^b	18.23 \pm 0.36 ^b	22

Key:Values having different superscript on the same row are considered significantly different at $p<0.05$

Table 3 Antibacterial activity of *Senna siamea* ethanol extract

Isolates	Concentration (mg/ml)/zone of inhibition(mm)				
	25	50	75	100	Control
<i>Klebsiella pneumoniae</i>	10.28 \pm 0.20 ^a	12.64 \pm 0.12 ^a	13.62 \pm 0.17 ^a	14.54 \pm 0.17 ^b	22
<i>Salmonella typhi</i>	12.58 \pm 0.12 ^a	13.98 \pm 0.17 ^b	15.44 \pm 0.25 ^b	17.20 \pm 0.20 ^b	21
<i>Shigella sp</i>	10.76 \pm 0.32 ^a	12.85 \pm 0.25 ^a	15.10 \pm 0.32 ^b	18.87 \pm 0.37 ^b	22
<i>Pseudomonas aeruginosa</i>	11.60 \pm 0.12 ^a	12.82 \pm 0.36 ^a	14.29 \pm 0.15 ^b	15.54 \pm 0.23 ^b	20
<i>Escherichia coli</i>	12.38 \pm 0.32 ^a	13.92 \pm 0.20 ^b	15.18 \pm 0.12 ^b	16.87 \pm 0.32 ^b	22

Key:Values having different superscript on the same row are considered significantly different at $p<0.05$

Table 4 Minimum inhibitory concentration (MIC) and MBC of the extracts

Isolates	Aqueous extract		Ethanol extract	
	MIC(mg/ml)	MBC(mg/ml)	MIC (mg/ml)	MBC(mg/ml)
<i>Klebsiella pneumoniae</i>	25	50	6.25	25
<i>Salmonella typhi</i>	6.25	12.5	6.25	25
<i>Shigella sp</i>	12.5	50	6.25	50
<i>Pseudomonas aeruginosa</i>	12.5	50	12.5	25
<i>Escherichia coli</i>	6.25	25	3.125	12.5

Discussion

In the present study, the preliminary phytochemical screening of the plant material (leaves of *S. siamea*) revealed the presence of alkaloid, tannin, saponin, glycoside, steroid and anthraquinone. Flavonoid, Terpenoid, and Phenols while reducing sugar was absent (Table 1). The presence of various phytochemicals in *S. siamea* extracts has also been reported by many researchers.^{13,16,23} The result of phytochemical screening of this study was in conformity with that of Mohammad et al.,¹⁶ who reported the presence of flavonoids, tannins, polyphenols, anthraquinones, saponins, and glycosides in *S. siamea* leaves extract. On the other hand, the result of the present study was contrary to that of Bukar et al.,¹⁵ who reported the absence of flavonoids, saponins and alkaloids in ethanolic extract of *S. siamea* leaves.

These active phytochemicals are known for their medicinal activity as well as physiological actions; as such they confer the therapeutic potentials of all medicinal plants. Alkaloids, saponins, and tannins have been reported to inhibit bacterial growth and protective to plants against fungal infections.²⁴ Alkaloids comprising a large group of nitrogenous compounds are widely used as cancer chemotherapeutic agents, anaesthetics and Central Nervous Stimulants.²⁵ Alkaloids are known to play some metabolic roles and control development in living system.²⁶ Anthraquinones were reported to be used as a laxative.²⁷ Flavonoids are also present in the extracts as a potent water-soluble antioxidant and free radical scavenger, which prevent oxidative cell damage and also have strong anticancer activity. Flavonoids were reported to suppress tumour growth and prevent blood clots.²⁸ Thus, the medicinal uses reported of *S. siamea* in managing constipation, its antimicrobial and antimalarial uses may be attributed to the presence of these phytochemical constituents.

The results of antibacterial activity of *S. siamea* leaves extracts In this study indicated that different extracts of *S. siamea* leaves have broad spectrum antibacterial activity with variable degree of sensitivity against the tested bacterial species. The antibacterial activity of *S. siamea* leaves extracts could be attributed to the chemical properties of *S. siamea* leaves as mentioned above. The antibacterial activity of *S. senna* has been previously reported by Abo et al.,^{29,30} while the dose-dependent antibacterial activity of *S. siamea* has been reported by Ahmed-Alizaga et al.²³ Statistical analysis of the result showed that ethanol extract demonstrated highest antibacterial activity with average zone of inhibition of 13.77 ± 2.16 mm among the isolates. This could be attributed to better solubility of the phytochemicals in ethanol when compared to water. Aqueous extracts exerted antibacterial activity against the tested isolates with average zone of inhibition of 11.67 ± 1.54 mm. The result of this study was in conformity with that of Ahmed-Alizaga et al.,²³ who found *S. siamea* leaves extracts active against certain bacteria. The result of this study also supported that of Bukar et al.,¹⁵ who reported antipseudomonal activity of *S. siamea* leaves extracts against pathogenic *Pseudomonas aeruginosa*. The result of MIC and MBC of the extracts showed that dilutions of various concentrations of aqueous and ethanol extracts of *Sienna siamea* can inhibit and/or kill the isolates. Lower MIC (3.125 mg/ml) was shown by ethanol extract than aqueous extract. MBC of the extract ranges between 12.5-50 mg/ml.

Conclusion

In conclusion, this study revealed that *S. siamea* leaves extracts possess medicinal properties and antibacterial activity that inhibit bacterial growth. The results of the present study show that *S. siamea*

leaves extracts are effective against all tested bacteria tested. The antibacterial activities of the extracts are expected perhaps due to the present of bioactive compounds like alkaloid, terpenoid, saponin, tannin, flavonoids and anthraquinones which were dissolved in the solvents. The results of present study have provided the justification for therapeutic potential of *S. siamea* leaves and also used as medicinal plant.

Acknowledgement

The authors wish to acknowledge to Technical staff of Departments of Pharmaceutical Technology and those of Science Laboratory Technology (SLT), School of Technology Kano for sample provision and use of Laboratory facilities.

Conflict of interest

The author declares no conflict of interest.

References

1. Aliyu AB, Musa AM, Ushamini JA, et al. Phytochemical analysis and mineral elements composition of some medicinal plants of Northern Nigeria. *Nigeria Journal of Pharmaceutical Science*. 2008;7(1):119–125.
2. Nostro A, Germano MP, D'angelo V, et al. Extraction method and bioautography for evaluation of medicinal plants antimicrobial activity. *Lett Appl Microbiol*. 2000;30(5): 379–384.
3. El-mahmood AM, Doughari JH. Phytochemical screening and ant bacterial evaluation of the leaf and root extracts of *Cassia alata*. *African Journal of Pharmacy and Pharmacology*. 2008;2(7):124–129.
4. Bala SA. Common ethno medicinal plants of the semi arid region of West Africa. Their description and phytochemicals. Kano, Nigeria: Triumph publishing company Ltd; 2006:21–45.
5. Fiorino DF, Treit D, Menard J, et al. Is barakol anxiolytic? *Behav Pharmacol*. 1998;9(4):375–378.
6. Subhadhirasakul S, Khumfang P. Screening of barakol from *Cassia* plants and some of its biological activities. *Songklanakarin J Sci Technol*. 2000;22:429–434.
7. Sukma M, Chaichantipyuth C, Murakami Y, et al. CNS inhibitory effects of barakol, a constituent of *Cassia siamia* Lamk. *Journal of Ethnopharmacology*. 2002;83(1-2):87–94.
8. Otimenyin SO, Kolawole JA, Nwosu M. Pharmacological basis for the continual use of the root of *Senna siamea* in traditional medicine. *International Journal of Pharma and Bio Sciences*. 2010;1(3):1–9.
9. Nadembega P, Boussim JI, Nikiema JB, et al. medicinal plants in Baskoure, Kourittenga province, Burkina Faso: An ethnobotanical study. *J Ethnopharmacol*. 2011;133(2):378–395.
10. Hill AR. Medicinal plants and traditional medicine. *Journal of Integrative Medicine*. 1992;39:42–45.
11. Lose GA, Bernard SJ, Leihner DE. Studies on agro forestry hedgerow system with *Senna siamea* rooting patterns and competition effects. *J Sci*. 2000;38:57–60.
12. Aliyu BS. West African Ethnomedicinal Plants. Kano, Nigeria: Triumph Publishing Company; 2006.
13. Alli Smith. Determination of Chemical Composition of *Senna siamea* (Cassia leaves). *Pakistan Journal of Nutrition*. 2009;8(2):119–121.
14. Thongsaard W, Deachapunya C, Pongsakorn S, et al. Barakol: a potential anxiolytic extracted from *Cassia siamea*. *Pharmacol Biochem Behav*. 1996;53(3):753–758.

15. Bukar A, Mukhtar MD, Hassan AS. Phytochemical screening and antibacterial activity of leaf extracts of *Senna siamea* (Lam) on *Pseudomonas aeruginosa*. *Bayero Journal of Pure and Applied Sciences*. 2009;2(1):139–142.
16. Mohammed A, Liman ML, Atiku MK. Chemical composition of the methanolic leaf and stem bark extracts of *Senna siamea* Lam. *Journal of Pharmacognosy and Phytotherapy*. 2013;5(5):98–100.
17. Ali M, Yahaya A, Zage AU, et al. *In-vitro* Antibacterial Activity and Phytochemical Screening of *Psidium guajava* on Some enteric bacterial isolates of public health importance. *Journal of Advances in Medical and Pharmaceutical Sciences* 2017;12(3):1–7.
18. Holt JG, Krieg NR, Sneath PA, et al. *Bergey's manual of systematic bacteriology*. 9th ed. Baltimore, Maryland: Williams & Wilkins Co; 1994:786.
19. Chessbrough M. *District laboratory practice in tropical countries*. 2nd ed. London: Cambridge university press; 2006.
20. Sofowora A. *Medicinal Plants and Traditional Medicine in Africa*. 2nd ed. Nigeria: Spectrum Books Ltd Ibadan; 1993:289.
21. Trease MT, Evans SE. The phytochemical analysis and antibacterial screening of extracts of *Tetracarpentum conophorum*. *J Chem Soc Nig*. 1978;26:57–58.
22. Ahmed I, Beg AZ. Antimicrobial and phytochemical studies on 45 Indian Medicinal plants against multi-drug resistance human pathogens. *J Ethnopharmacol*. 2001;74(2):113–123.
23. Ahmad - Alizaga SL, Olayanju S. Phytochemical screening of the leaf extracts of *Senna siamea* Lam (Pop corn) and its antibacterial activity. *Biological and Environmental Sciences Journal for the Tropics*. 2007;4(2):193–195.
24. Doughari JH, Okafor NB. Antibacterial activity of *Senna siamea* leaf extracts on *Salmonella typhi*. *African Journal of Microbiology Research*. 2008;2:42–46.
25. Madziga HA, Sanni S, Sandabe UK. Phytochemical and Elemental Analysis of *Acalypha wilkesiana* Leaf. *Journal of American Science*. 2010;6(11):510–514.
26. Edeoga HO, Omobuna G, Uche LC. Chemical composition of *Hyotisss aveoleus* and *Ocimum gratissimum* hybrids from Nigeria. *African Journal of Biotechnology*. 2006;5(910):892–895.
27. Amadi BA, Ibegbulen CO, Egbeku AC. Assessment of the effect of pawpaw (*Asimina triloba*) root on organ weights and liver functions of albino rats. *Int J Nat App Sci*. 2006;2:79–81.
28. Seyfulla RD, Borisora IG. Problems of antioxidants. *J Pharmacol*. 1990;53(6):3–10.
29. Abo KA, Lasaki SW, Adeyemi AA. Laxative and antimicrobial properties of *Cassia* species growing in Ibanadan. *Nigeria Nig. J. Nat Prod. And Med*. 1999;3:1–12.
30. Ayfer AD, Ozlem TE. Antimicrobial activity of various medicinal and commercial plant extracts. *Turk J Biol*. 2003;27:157–162.