NDM-producing enterobacteriaceae strains among hospital in brasilia, brazil

Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) strains have spread worldwide frequently driven by clonal spread. Additionally, plasmid-borne carbapenemase genes (blaTEM and blazinc) have broadened the variability of species expressing resistance to carbapenems. This study aimed to characterize the susceptibility profile and bla genes in CRE strains recovered between 2012 and early 2014 in hospitals in Brasilia, Brazil. Eighty eight CRE strains recovered from 19 medical settings were analyzed. Klebsiella pneumoniae positive for blazinc accounted for the most of the CRE isolates (n=47; 53.4%). Seven blazinc-positive strains (including K. pneumonia, n=4; Proteus mirabilis, n=1; Escherichia coli, n=1; and Providencia rettgeri, n=1) were recovered from patients in six hospitals. The first detected blazinc-positive strain was P. rettgeri. Therefore, blazinc-positive K. pneumoniae strains showing indistinguishable Random Amplified Polymorphic DNA (RAPD) profiles were recovered in three hospitals. The susceptibility profile of blazinc-positive K. pneumoniae strains was commonly restricted to amikacin, aztreonam and ticarcycline. These data highlighted the emergence of blazinc-positive K. pneumonia strains marked by a single RAPD type among hospitals in Brasilia, Brazil.

Keywords: ndm-producing strains, carbapenemase, klebsiella pneumonia, metallo-β-lactamase

Introduction
The resistance to carbapenems has become a serious world public health issue since the early 2000’s.1 In that time, the world spread of Klebsiella pneumoniae carbapenemase (KPC)-producing strains was supported by the predominance of a well-adapted clone of K. pneumoniae (ST258) among hospitals around the world. Moreover, the blaKPC gene became easily mobilized by conjugative plasmids among Enterobacteria species.2 NDM-1 (New Delhi metallo-β-lactamase-1) is the most recently discovered molecular class B β-lactamase encoded on transferable, plasmid-borne genes (blaNDM).3 The hydrolysis mechanism of NDM relies on the interactions between β-lactam molecules and zinc ions in the enzyme’s active site. Therefore, NDM enzymes are inhibited by zinc-chelating agents such as EDTA.4 NDM can hydrolyze all β-lactam antibiotics (penicillins, cephalosporins and carbapenems), excepting monobactams.5 Additionally, most NDM-positive strains are broadly resistant to other antibiotic classes, and carry a wide diversity of resistance mechanisms against other antibiotics, such as aminoglycosides and fluoroquinolones, rendering these strains extremely resistant to the available treatments.6 NDM-1 was first described in K. pneumoniae and Escherichia coli strains isolated in Sweden in 2008 from an Indian patient who had been transferred from a hospital in New Delhi, India.7 Nowadays, NDM has also been detected in a broad variety of other Enterobacteriaceae species including K. oxytoca, Proteus mirabilis, Enterobacter cloacae, Citrobacter freundii and Providencia spp as well as in aerobic bacilli such as Pseudomonas spp. and Stenotrophomonas spp.8 This wide distribution of the blaNDM gene reflects its association with promiscuous plasmids.9 Regardless the purposes, whether medical or otherwise, international travels have played a significant role in the dissemination of NDM producers, given that, most of the first reports on NDM-positive strains were epidemiologically linked to travels to Indian and Pakistani regions.10 In Brazil, the first NDM-producing strain was isolated in 2013 in the South region state, Rio Grande do Sul.11 Beside blaNDM and blaTEM other carbapenemase genes, such as blaVIM, blaIMP and blaOXA-48 have been reported in Enterobacteria world-wide, including in Brazil. However, these carbapenemase genes have not been associated with large spreads or epidemic events.12

The aim of this study was to define the profile of carbapenemase genes in CRE strains assessing whether NDM-producing strains have reached hospitals in Brasilia, the federal capital of Brazil. Moreover, the study evaluated the role of bacterial clones in spreading of blazinc among hospital.

Materials and methods
From 2012 to 2014, a regional surveillance program was conducted by the Public Health Laboratory (LACEN-DF) in order to assess carbapenem resistance in Enterobacteriaceae isolates recovered from hospitals in Brasilia. We have identified 88 carbapenem-resistant Enterobacteriaceae (CRE) strains recovered from patients attended in nineteen medical centers. Identification and antimicrobial susceptibility tests were accomplished using the MicroScan WalkAway™ system (Dade Behring, USA) and Vitek MS system (Matrix-assisted laser desorption ionization-time of flight mass spectrometry - MALDI-TOF MS system - BioMerieux) in accordance to the manufacturer’s instructions. In order to assess the clinical susceptibility of bacterial isolates, in vitro antibiotic test results were interpreted in accordance to the breakpoints established by the Clinical and Laboratory Standards Institute (CLSI) document published in January 2014. The production of carbapenemase was tested using the modified
Hodge Test (MHT) employing ertapenem disk adsorbed with 10µg of the antibiotic as described by CLSI. Metallo-β-lactamase production was tested with carbapenem-containing disks (10µg meropenem or imipenem) adsorbed with 100mM EDTA. Control disks containing only carbapenem were used to evaluate the enlargement of inhibitory zones attributed to the EDTA effect. Specific primers were used in standard polymerase chain reactions (PCR) to detect the following carbapenemase genes: \(\text{bla}_{\text{KPC}} \) (F, 5’-TGTCACTGTATCGCCGTG and R, 5’-CTCACTGCTCATCAGAAGACC), \(\text{bla}_{\text{NDM}} \) (F, 5’-GGTTGCGGATCCTGTTTC and R, 5’-GGCCTTGCGTCTCTTGAG), \(\text{bla}_{\text{IMP}} \) (F1, CATTCCCATAGCGACAGCAC; F2, 5’-AACACGTTTGGTGTCCTT and R, 5’-GAGATCTGGAACACCCAAGCTTCA), \(\text{bla}_{\text{OXA-48}} \) (F, 5’-GATGGTGTTTGGTCGCATATC and R, 5’-GGACTTTGGCCAAGCTTCTA), and \(\text{bla}_{\text{VIM}} \) (F, 5’-GGTTTGGCGATCTGGTTTTC and R, 5’-ATCACTAGGTCACCAAGCC). The primers used for amplification of \(\text{bla}_{\text{NDM}}, \text{bla}_{\text{IMP}}, \text{bla}_{\text{OXA-48}} \) and \(\text{bla}_{\text{VIM}} \) were described in this study. PCR products were submitted to DNA sequencing (ABI 3130 Genetic Analyzer- Applied Biosystems®) in order to confirm the identity of the amplified genes. Clonal relatedness among isolates was examined by Random Amplified Polymorphic DNA (RAPD) performed with the primer OPA-2 (5’-TGCCGGACCTG) (Operon Technologies, Alameda, CA, USA). The band patterns were analyzed by visual interpretation, applying the criteria established by Belkum et al. In addition, RAPD patterns were analyzed and dendograms were built employing PyElph software system (version 2.6.5).

Results and discussion

Among *Enterobacteriaceae* strains reported to the Public Health Laboratory (LACEN-DF) in Brazil, *K. pneumonia* was the most frequently CRE detected (n=61/88; 69.3%), followed by species of *Enterobacter* (n=15/88; 17.1%).

The emergence of CRE species has increased the demand on old or outdated antibiotics. In this scenario, the increasing interest on colistin (polymyxin) as an evaluable treatment has driven the interest in the use of old or outdated antibiotics. However, these findings are worrisome once phenotypic detection of carbapenemase in MHT have been already reported for NDM-producing strains. In MHT, negative or weakly positive results for carbapenemase genes (GeneBank Number: KJ150691.1).

Additionally, two distinct bands of plasmid DNA were found in the molecular-weight plasmid (molecular weight >50 Kb). Interestingly, Carvalho-Assef et al. also recovered a NDM-producing *P. rettgeri* strain from a diabetic foot infection in early 2013, but differently the \(\text{bla}_{\text{NDM}} \) gene was chromosomally integrated.

Thereafter the first detection of \(\text{bla}_{\text{NDM}} \), six other \(\text{bla}_{\text{NDM}} \)-positive strains (*K. pneumonia*, n=4; *P. mirabilis*, n=1; *E. coli*, n=1) were isolated in three hospitals. All isolates were resistant to β-lactams (with exception of aztreonam and cefotetan), quinolones, nitrofurantoin and trimethoprim-sulfamethoxazole; and showed variable susceptibility profiles against aminoglycosides, tetracycline and tigecycline (Table 1). Interestingly, all NDM-producing strains showed negative results for the carbapenemase expression assay MHT. However, NDM-producing strains are positive in the EDTA test confirming the production of metallo-β-lactamases (Table 1). Negative or weakly positive results in MHT have been already reported for NDM-producing strains. However, these findings are worrisome once phenotypic detection of carbapenemase in MHT is recommended for the clinical microbiology laboratories as epidemiological screening assay for detection of CRE isolates.

Four strains of NDM-producing *K. pneumoniae* were isolated from patients treated in three hospitals; therefore, it was tested if these strains were clonally unrelated as commonly reported for \(\text{bla}_{\text{NDM}} \)-Positive strains. However, all NDM-producing *K. pneumoniae* strains tested in this study were considered as genetically indistinguishable on RAPD analyses, showing the same amplified polymorphic DNA pattern (Figure 1B & 1C). Two of these strains were isolated from two patients (patients 2 and 3) assisted in the same hospital (hospital B), warning for the possibility of cross infections (Table 1 & Figure 1). The other two clonal strains of *K. pneumoniae* were isolated from two patients (patients 5 and 6) treated in two different hospitals (hospital C and D) (Table 1 & Figure 1). Moreover, because of a prolonged colonization period (2 months and 10 days) with \(\text{bla}_{\text{NDM}} \)-Positive strains (*K. pneumoniae* and *E. coli*), the patient 6 had the opportunity of translocating two NDM-producing enterobacterial species into two different hospitals (Table 1). Additionally, the isolation of different bacterial species positive for \(\text{bla}_{\text{NDM}} \) from the patient 6 (Table 1) endorses the idea on the promiscuous nature of mobile genetic elements carrying \(\text{bla}_{\text{NDM}} \) genes. These findings reinforce the role of patient transfer in spreading NDM-producing bacteria among hospitals, and endorses the need of rapid communication that alerts about the presence of infected or colonized patients with NDM-producing strains in Brazil hospitals.

As occurs in Brasilia, Brazilian hospitals have frequently reported outbreaks involving CRE strains mainly associated with \(\text{bla}_{\text{KPC}} \)-positive *K. pneumoniae* strains belonging to the clonal complex 258 (*ST 11*). The clone ST11 of *K. pneumoniae* has been characterized for causing large outbreaks, and has been also responsible for spreading \(\text{bla}_{\text{NDM}} \) gene in Greece. Taken together, these data warn about the possibility of a worst-case scenario, in which, the epidemic clone ST11 would acquire the \(\text{bla}_{\text{NDM}} \) gene and spread among Brazilian hospital.
Table 1 NDM-producing strains isolated in Brasília hospitals

<table>
<thead>
<tr>
<th>Patient</th>
<th>Species</th>
<th>Susceptible phenotype*</th>
<th>Hospitals</th>
<th>Isolation Date</th>
<th>Assays for carbapenemase detection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phenotypic assay for carbapenemase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(MHT)</td>
</tr>
<tr>
<td>1</td>
<td>Providencia rettgeri</td>
<td>GEN, TET</td>
<td>A</td>
<td>03/06/2013</td>
<td>Negative</td>
</tr>
<tr>
<td>2</td>
<td>Klebsiella pneumoniae</td>
<td>AMI, AZT, TET, TGN</td>
<td>B</td>
<td>20/08/2013</td>
<td>Negative</td>
</tr>
<tr>
<td>3</td>
<td>Klebsiella pneumoniae</td>
<td>AMI, TGN</td>
<td>B</td>
<td>07/09/2013</td>
<td>Negative</td>
</tr>
<tr>
<td>4</td>
<td>Proteus mirabilis</td>
<td>AMI, CTE, GEN, TOB,</td>
<td>B</td>
<td>30/10/2013</td>
<td>Negative</td>
</tr>
<tr>
<td>5</td>
<td>Klebsiella pneumoniae</td>
<td>AMI, TGN</td>
<td>C</td>
<td>3/11/2013</td>
<td>Negative</td>
</tr>
<tr>
<td>6</td>
<td>Klebsiella pneumoniae</td>
<td>AMI, AZT, TET, TGN</td>
<td>D</td>
<td>11/11/2013</td>
<td>Negative</td>
</tr>
<tr>
<td>6</td>
<td>Escherichia coli</td>
<td>AMI, AZT, GEN, NIT, TGN</td>
<td>E</td>
<td>21/01/2014</td>
<td>Negative</td>
</tr>
</tbody>
</table>

*Abbreviations: AMI, amikacin; GEN, gentamicin; TOB, tobramycin; TET, tetracycline; TGN, tigecycline; AZT, aztreonam; CTE, cefotetan

Citation: Faria-Junior C, Rodrigues LDO, Carvalho JOD, et al. NDM-producing enterobacteriaceae strains among hospital in brasilia, brazil. J Microbiol Exp. 2016;3(2):38–42. DOI: 10.15406/jmen.2016.03.00083
strains has been driven by a single clone. Our findings suggest that \(\text{bla}_{\text{NDM}}\)-positive strains are been transported among hospitals by inpatient transfers and that they are spreading throughout patient cross infections. Finally, the present results call for an improved surveillance on inpatient transfers, for the molecular detection of CRE strains, and for enforcements in infection control measures.

Conflict of interest

All authors declare to have no conflict of interest.

Acknowledgement

Brasilia Study Group on Bacterial Resistance: Alessandra Peres Pinheiro Domingues, Alessandra Reis Moreira, Brenda Paula Pires-Sousa, Eli Mendes Ferreira, Leonardo Borges Ferreira, Luana A A Martins, Melissa Jordão Sacramento, Michelle Capucci Martins. This work was supported by Fundação de Apoio à Pesquisa do Distrito Federal (Grant numbers: 193.000.019/2012, 2010/00188-1, 563981/2010-5), Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant number 301156/2011-5) and Coordenação de Aperfeiçoamento de Nível Superior (Grant number 001-2009).

References

12. Yigit H, Queenan AM, Anderson GJ, et al. Novel carbapenem-
hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant

and genotype patterns of Escherichia coli, Klebsiella pneumoniae and
Pseudomonas aeruginosa isolated from urinary tract infected patients.

14. van Belkum A, Tassios PT, Dijkshoorn L, et al. Guidelines for the
validation and application of typing methods for use in bacterial

15. Pavel AB, Vasile CI. PyElph - a software tool for gel images analysis and

Against Resistant Gram-Negative Organisms: Extended-Spectrum
beta-Lactamase-Producing Enterobacteriaceae, Carbapenem-Resistant
Enterobacteriaceae, and Multidrug-Resistant Pseudomonas aeruginosa.

and infection by colistin-resistant Gram-negative bacteria in a cohort of

of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian
hospitals: report from the SENTRY Antimicrobial Surveillance Program,

lactam resistance due to NDM-1 herald the end of the antibiotic era for
treatment of infections caused by Gram-negative bacteria? J Antimicrob

new antibiotic resistance mechanism in India, Pakistan, and the UK: a
molecular, biological, and epidemiological study. Lancet Infect Dis.
2010;10(9):597–602.

22. van der Bij AK, Pitout JDD. The role of international travel in the
worldwide spread of multiresistant Enterobacteriaceae. J Antimicrob

23. Pereira PS, de Araújo CF, Seki LM, et al. Update of the molecular
epidemiology of KPC-2-producing Klebsiella pneumoniae in Brazil:
spread of clonal complex 11 (ST11, ST437 and ST340). J Antimicrob

Most Frequently Found Multilocus Sequence Type Complex in KPC-
2-Producing Klebsiella pneumoniae Isolated in Brazilian Hospitals.

identified in the epidemic extremely drug-resistant KPC-producing

producing Klebsiella pneumoniae ST11 clonal strain causing outbreaks