

Short communication

Possible solution for coronavirus diagnosis and treatment, viral integration into human genomes

Abstract

Coronavirus epidemics and economic lost in the past is huge. Pathogenic and therapeutic pathways should be promoted and cost-effective ways. A lot of different types of technology and knowledge should be studied. These Editorial addresses possible mechanisms and knowledge for human diagnosis and treatments via pathways of human genome exploration.

Keyworks: Viral infection, coronavirus, genome-wide associate study, human genome, CD4 T cells, COVID-19

Volume 12 Issue 2 - 2025

Da-Yong Lu, Ting-Ren Lu²

¹School of Life Sciences, Shanghai University, PR China ²College of Science, Shanghai University, PR China

Correspondence: Da-Yong Lu, School of Life Sciences, Shanghai University, PR China

Received: November 19, 2025 | Published: December 09, 2025

Introduction

Coronavirus epidemics and economic lost in the past is huge.¹⁻³ Pathogenic and therapeutic pathways should be promoted and cost-effective ways.⁴⁻⁶ A lot of different types of technology and knowledge should be studied. These Editorial addresses possible mechanisms and knowledge for human diagnosis and treatments via pathways of human genome exploration.

Past hypothesis

The fatal viral pathway for many deadly viruses might result from virus-integration of cell genomes.⁷ However, this hypothesis must experience test of time. Studying the coronavirus-integration of cell genomes of different animal or human cells/tissues is a modern challenge. This work proposes the possible ways to evaluate them.

Methods

The genome-wide techniques for virus-penetration undergo dramatic progress. Drafting human genomes is earliest very difficult. The cost was reduced from 3 billion US dollar for one genome in 1990-2000 to next generation sequencing (NGS) in 2010 (approximately 4000 US dollar one genome). 8-10 How, it is much cheaper by entering 2020. This dramatic technical perfection can be used to test many associated pathways. New methods should be included for coronavirus studies.

New evaluative systems

New evaluative systems can be attempted in possible pathways like;

- a. In vitro or in vivo evaluate coronavirus in different T or B lymphocytes
- Explore different coronavirus in epithelial cells of respiratory tracts or lungs
- c. Evaluate the therapeutic options for human genomic data and drug response comparisons
- d. Others

Conclusion

After genomic evaluation, the treatments for coronavirus infection can be more effective and popularized.¹¹⁻¹³

Acknowledgment

None

Disclosures

None.

Funding

No external funding was received.

References

- 1. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China. N Engl J Med. 2020;382(8):727–733.
- 2. Ciotti M, Angeletti S, Minieri M, et al. COVID-19 outbreak: An overview. Chemotherapy. 2019;64(5-6):215-223.
- Lu DY, Che JY, Lu TR, et al. Coronavirus (COVID-19), origin, infectivity, epidemics, therapeutics and global impacts. EC Pharmacology & Toxicology. 2021;9(3):100-107.
- Lu DY, Lu TR. COVID-19 study, public health and biomedical bases. Current Drug Therapy. 2024;19(4):367–375.
- Lu DY, Lu TR. Covid–19 study, diagnostic and therapeutic transition. Rec Advances in Anti–Infective Drug Discovery. 2024;19(1):21–35.
- Naqvi IA, Tazvi SNZ. The comprehensive appresal of COVID–19: its clinical panorama from virology till management and beyond. *Coronavirus*. 2020;1(1):57–72.
- Lu DY, Ding J. Sequencing the whole genome of infected human cells obtained from diseased patients—a proposed strategy for understanding and overcoming AIDS or other deadest virus—infected diseases. *Medical Hypotheses*. 2007;68:826–827.
- 8. Lander ES. Initial impact of the sequencing of the human genome. *Nature*. 2011;470:187–197.
- 9. Collins F. Has the revolution arrived. Nature. 2010;454:674-675.
- 10. Venter JC. Multiple personal genomes await. Nature. 2010;454:676-677.
- Lu DY, Lu TR. COVID-19 study: a new principal discovery. Current Drug Therapy. 2025;20(4):450-457.
- Lu DY, Lu TR. COVID–19 study, drug selection and development. EC Microbiology. 2024;20(12):1–15.
- 13. Lu DY. COVID–19 knowledge and therapeutics, past, present and future. *J Bacteriology and Mycology: Open Access*. 2025;13(2):110–114.

