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inflammatory respiratory disease in children. There are several distinct 
immunopathological pathways, and many immune and structural cells 
in the airways involved in the pathophysiology of asthma. The roles 
of type 2 T helper cells (Th2), innate lymphoid cells group 2 (ILC2), 
dendritic cells, mast cells, and eosinophils are well established in the 
pathogenesis of asthma. However, the part played by structural cell 
such as the epithelial “sentinel” cells is not fully understood.

Airway epithelium constitutes the first line of defense against 
allergens, bacteria, viruses, and pollutants in the atmospheric 
environment. The protective barrier of the airway epithelium in 
patients with asthma is often disrupted with loss of cell-to-cell 
connections, such as zonula occludens, zonula adherens, desimomes, 
and hemidesmosomes due to reduced expression of adhesion molecule 
E-cadherin. Airway dysfunction plays a central role in sensitization 
to allergens and pathogenesis of asthma.2 Epithelial damage occur in 
all phenotypes of asthma, and in childhood asthma, suggesting that 
epithelial dysfunction occurs early in the pathogenesis of the disease. 
Impaired epithelial barrier function renders the airway vulnerable to 
early life virus infections, which prime immature dendritic cells (DCs) 
toward directing Th2 responses, and local allergen sensitization.3 
Dysfunctional airway epithelium is susceptible to environmental 
insults, such as increased permeability to allergen proteases, viral 
infections, chemical irritants, and pollutants. It exhibits impaired repair 
responses which contribute to persistent asthma.4 Continued airway 
injury and repair lead to increase in deposition of extracellular matrix 
(ECM) proteins, such as collagens, laminin, lumican, fibronectin, 
and tenascin in the epithelial lamina reticularis. This promotes 
subepithelial fibrosis, thickening and non-compliant airway wall, and 
fixed airflow obstruction.5 Furthermore, defective epithelial repair is 
characterized by overexpression of epidermal growth factor (EGF) 
with receptor activation,6 which correlates with disease severity.7 
The extent of epithelial expression of EGF receptors correlates 
with immunoreactive CXCL8 (IL-8), a very potent chemoattractant 
for neutrophils, which is critical in the pathogenesis of neutrophilic 
asthma.8

There is clear evidence suggesting that epithelial cells play 
an active role in inducing structural changes in the airways, also 
termed as airway remodeling.8 Airway remodeling is due to complex 
interaction between the airway epithelium and the underlying 
mesenchyme, resulting from reactivation of the developmental 
epithelial-mesenchymal transition unit (EMTU), which is responsible 
for lung morphogenesis during fetal life.9-11 The structural changes 
in the airways can be detected by bronchial biopsy histopathology, 
and non-invasively by computed tomography (CT) as thickening 
of the airway wall, increase in wall area (WA), and WA%, and is 
accompanied by greater centrilobular air trapping compared with 
health controls. The lung structural changes contribute to the severity 
of asthma, and correlates with lung function abnormalities.12 

Airways remodeling is due to immune responses orchestrated by 
pro-fibrotic cytokines, such as interleukin-13 (IL-13), IL-25, IL-33, 
and TSLP secreted by Th2 cells, ILC2, eosinophils, basophils, mast 
cells, and also by epithelial cells. Epithelial injury in asthmatic patients 
promotes increased release of growth factors secreted by immune and 
structural cells, such as TGF-β1, which plays an important role in 
airway remodeling.13,14 Other growth factors which contribute to airway 
remodeling include endothelin-1 (ET-1), epidermal growth factor 
(EGF), platelet-derived growth factor (PDGF), and fibroblast growth 
factor (FGF-β), which activates fibroblasts and myofibroblasts.15-18 

There is also increased release of vascular endothelial growth 
factor (VEGF), angiopoietin, and angiogenin in the airways, which 
promote neovascularization, expansion of the airway vascular bed, 
oedema, and airway narrowing.19 These changes are inevitably 
associated with thickening and shedding of the airway epithelium 
in both atopic and non-atopic asthmatic patients.20,21 Additionally, 
there is goblet cell, and submucous gland hyperplasia resulting in 
mucus hypersecretion.22 This is accompanied by hyperplasia and 
hypertrophy of ASM cells, which acquire a highly proliferative, 
secretory, and contractile phenotype.15,18,22 These structural changes 
are associated with more severe fixed airflow obstruction, which may 
be unresponsive to high dose inhaled corticosteroids (ICS), and to 
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Asthma is a significant public health problem, affecting more than 
358 million individuals globally,1 and it is the most common chronic 
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some of the interleukin antagonists, such as mepolizumab, reslizumab 
(anti-IL-5), benralizumab (anti-IL-5R), dupilumab (anti-IL-4Rα), and 
tezepelumab (anti-TSLP).23

Epithelial cells play a key role in the regulation of tissue 
homeostasis by producing and secreting numerous proteins, such 
as antioxidants, cytokines, chemokines, growth factors, and lipid 
mediators.24 Moreover, damaged and mechanically stressed epithelium 
produce large quantities of cytokines and growth factors that interact 
with the underlying mesenchymal cells, including fibroblasts and 
myofiblobasts to promote airway remodeling, and persistent airway 
obstruction.10 

Damaged allergic epithelium in response to allergens, pollutants, 
and viral respiratory infections release three cytokines cognomen 
“alarmins”, including IL-25, IL-33, and TSLP.24,25 The trio, although 
they belong to different cytosine families, play synergistic roles in 
the pathophysiology of severe asthma. They stimulate Th2 cells, 
ILCs, mast cells, basophils, and eosinophils to secret a variety of 
cytokine, chemokines, lipid mediators, and enzymes. TSLP, IL-25, 
and IL-33 are favourable targets for the development of new biologics 
for the treatment and prophylaxis of asthma, particularly asthma 
exacerbations due to respiratory viral infections. 

There are no anti-IL-25, and anti-IL-33 biologics approved 
for the treatment of severe uncontrolled asthma. Currently, only 
tezepelumab a first-in-class fully human IgGʎ2 monoclonal antibody 
(mAb) that blocks the action of TSLP is approved by the US Food 
and Drug Administration (FDA) for the treatment of severe asthma 
without an eosinophilic phenotype in patients 18 years and older.26 
Tezepelumab has been shown to significantly reduce exacerbation 
rates, and biomarkers of inflammation, such as blood eosinophil 
count, and fractional exhaled nitric oxide (FeNO). It also significantly 
reduced the levels the instigator interleukins responsible for the 
pathophysiology of eosinophilic asthma, such as IL-4, IL-5, and IL-
13. Tezepelumab is effective in most asthma phenotypes, irrespective 
of eosinophil counts, and FeNO levels, the classic biomarkers of 
eosinophilic asthma. It is safe and well tolerated by most patients with 
severe uncontrolled asthma.27 

Most recently, CSJ117 a potent neutralizing antibody fragment 
directed against TSLP, formulated as PulmoSolTM engineered powder 
in hard capsule for delivery to the lung via a dry powder inhaler, met 
the endpoints in the latest clinical trial. CSJ117 significantly attenuated 
the early and late asthmatic responses, and reduced biomarkers of 
eosinophilic asthma (blood eosinophil count, and FeNO).28 It may 
possibly be the first inhaler biologic for the add-on treatment of 
patients with severe asthma. Monoclonal antibodies targeting alarmin 
cytokines, e.g. tezepelumab are more likely to be effective in several 
phenotypes of asthma, including eosinophilic, neutrophilic, mixed 
granulocytic, and paucigramulocytic phenotypes.

Noteworthy, airway epithelial cells express a broad array of 
protective receptors, such as pattern recognition receptors (PRRs), 
retinoic acid-inducible gene (RIG)-1-like receptors (RLRs), 
nucleotide-binding oligomerization domain (NOD)-like receptors 
(NLRs), protease activated receptors (PAR)-2, and purinergic 
receptors.29,30 These receptors detect environmental stimuli, in 
response to pathogen associated molecular patterns (PAMPs) present 
on microbes and parasites, or to danger-associated molecular patterns 
(DAMPS) released after tissue damage, cell necrosis, or cellular 
stress. Activation of PRRs on epithelial cells stimulates downstream 
signaling that promote the release of pro-inflammatory cytokines, 
such as Il-6, IL-8, IL-25, IL-33, and TSLP; chemokine, including 

CXCL8/IL-8, CCL17, and CCL20; and growth factors, namely GM-
CSF, EGF, and FGF-β.22 TSLP, IL-25, and IL-33 secreted by epithelial 
cells alert and activate the immune system of the impending threat, 
which immunopathologically results in activation of Th2 cells, ILC2, 
eosinophils, and mast cells to produce large quantities of IL-4, IL-
5, IL-13, IL-25, IL-33, and TSLP. The roles of cytokines which are 
released consequently to activation of epithelial cell dysfunction, 
are well established in the pathogenesis of Th2-driven eosinophilic 
asthma. 

Genetic and environmental factors play an important role 
in the pathogenesis of asthma.31 Environmental factors, such as 
allergens, microbacteria and viruses, irritant chemicals, pollutants, 
and environmental tobacco smoke interact with genes through 
epigenetic mechanisms that influence gene expression.32 Epigenetic 
factors are regulators of gene transcription, that do not influence 
gene sequence.33 Epigenetic mechanisms include DNA methylation, 
histone modifications, and regulation of non-coding RNA, especially 
microRNAs (miRNAs).34 The interaction between the airway 
epithelium and the underlying mesenchyme plays a central role in the 
pathophysiology of airway remodeling and pathogenesis of different 
phenotypes of asthma.35 

There are several genes associated with asthma susceptibility 
expressed in the airway epithelium and the underlying mesenchyme.36 

This indicates that responses at airway epithelial surface, and lung 
may play an important role in the pathogenesis of the disease.

Linkage designs and candidate gene associated studies, genome-
wide association studies (GWA),37 and whole genome sequencing 
(WGS)38 have shown that there are several genes in epithelial cells 
and mesenchymal cells linked to asthma susceptibility. The identified 
genes in epithelial cells include interleukin 1 receptor-like 1 (IL1RL1), 
IL-18 receptor 1 (IL18R1), HLA-DQ, HLA-G, SMAD3, IRAKM, 
ESE1 and 3, DPP10, PCDH1, CH13L1, ORM1-like 3 (ORMDL3), 
gasdermin B (GSDMB), CDHR3, CST1, OPN3, IL-33, and TSLP 
(Table 1). In the mesenchyme, they are disintegrin and metalloprotease 
(ADAM)33, KCNMB1, MYLK, and C/EBPα.31,32,34,36,37,39-41 

Table 1  Immunogenetics and epigenetics landmarks of asthma

Epithelial derived genes

HLA-DQ ORM1-like 3 (ORMDL3)

HLA-G Gasdermin B (GSDMB)

SMAD3 CDHR3

IRAKM OPN3

ESE1 and 3 IL-18 receptor 1 (IL18R1)

DPP10 Interleukin 1 receptor-like 1 (IL1RL1)

PCDH1 IL-33 

CH13L1 TSLP

Mesenchyma genes Epigenetic miRNAs

Disintegrin miR-146b

Metalloprotease (ADAM)33 miR-148a

KCNMB1 miR-52

MYLK

C/EBPα
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Dipeptidyl peptidase (DPP) 10, disintegrin and ADAM33 are 
newly identified genes strongly associated with asthma and are 
preferentially expressed in airway epithelium and mesenchyme, 
respectively.32 DPP10 is located on chromosome 2q14-32, and 
encodes dipeptidy peptidase 10 which is preferentially expressed 
in the epithelium of asthmatic patients. It is associated with airway 
hyperresponsiveness (AHR) in the Chinese population.41 ADMA33 
on chromosome 20p13 is mainly expressed in mesenchymal cells, 
and is associated with impaired lung function in infants, increased 
susceptibility to respiratory syncytial virus induced bronchiolitis, and 
a later development of AHR through epithelial-mesenchymal trophic 
unit.42,43 It is also associated with AHR and accelerated decline in lung 
function over time point, and is strongly involved in the proliferation 
of biosynthetically active fibroblasts, myofibroblasts, and smooth 
muscle cells.44,45 

PCDH1 is located on chromosome 5q31-p33 and encodes the 
protocadherin-1 protein.46 It is associated with asthma through 
epithelial structural defects leading to AHR.47,48 

HLA-G on chromosome 6p21 is expressed highly in bronchial 
epithelial cells of asthmatics and is associated with AHR.49 Three 
miRNAs; miR-148a, miR-146b, and miR-52 have been reported to 
affect HLA-G expression in epithelial cells, suggesting that miRNA 
mediated mechanisms may contribute to the impact of HLA-G on 
asthma risk.50 GPRA, also known as Neuropeptide S Receptor 1 is 
located on chromosome p15-p14, it plays an important role in the 
pathogenesis of asthma.52,53 ORMDL3 and GSDMB at chromosome 
17q21, are associated with childhood asthma.53 SMAD3 located on 
chromosome 15, is another susceptibility gene for asthma.31 SMAD3 
is critical for TGF-β signaling which is elevated in airway epithelial 
cells, and plays an important role in airway remodeling in asthma.54

Notably, a few epithelial genes are shared among asthmatics, such 
as IL-33, and TSLP,41,55 indicating that alarmin cytokines play a central 
role in the pathogenesis of asthma. Furthermore, the expression of 
IL33 and TSLP are both elevated in the airways of patients with severe 
refractory asthma.56 ILRL1 (also known as T1, ST2, DER4) is located 
on chromosome 2,31 belongs to the IL-1 superfamily, and is a receptor 
for the alarmin cytokine IL33.7 IL-33 is located on chromosome 9, 
and is associated with atopic asthma.31,57,58

The human TSLP gene is located on chromosome 5q22.1, next 
to other IL-2 family member’s clusters, including IL-4, IL-5, IL-7, 
and IL-13.59 Several genome-wide associated studies have shown 
association between asthma and single-nucleotide polymorphisms 
(SNPs) in the TSLP gene.59-61 The likely causal polymorphism for 
allergy, asthma, and nasal allergy is rs1837253, which also directly 
regulates TSLP secretion. TSLP gene polymorphism is associated 
with the development of AHR, different phenotypes of asthma, aspirin 
exacerbated respiratory disease (AERD), and allergic rhinitis.40

Several genes and genetic loci in the airway epithelial cells and 
mesenchymal cells are associated with susceptibility to different 
phenotypes of severe asthma. The airway epithelium is the first 
cell layer of contact with environmental insults, such as allergens, 
microbes, viruses, chemical irritants, and pollutants. Dysfunctional 
airway epithelium orchestrate the inflammatory responses, and 
remodeling in patient with asthma. The epithelium is a suitable 
therapeutic target for discovery and development of new biologics, 
and therapeutic interventions for the treatment of severe uncontrolled 
asthma. Furthermore, injured and dysfunctional airway epithelial 
secrete alarmin cytokines, such as IL-25, IL-33, and TSLP. TSLP and 

its fragments seem to be attractive to target because they are involved 
in the pathophysiology of most phenotypes of asthma. Tezepelumab 
is an efficacious, safe and well tolerated biologic, which is available 
as add-on treatment for patients 18 years and above with severe 
uncontrolled eosinophilic, and non-eosinophilic phenotypes.62,63 The 
usual dosages which have been used in clinical trials are 70 mg every 
4 weeks (Q4W), 210 mg Q4W, and 280 mg Q4W subcutaneously or 
intravenously, but the 210 mg Q4W dosage is preferable in routine 
clinical practice.
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