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Abbreviations: ACE2, angiotensin converting enzyme 2; 
ACP, antigen presenting cell; AKI, acute kidney injury; ARDS, acute 
respiratory distress syndrome; COVID-19, coronavirus disease 2019; 
CRS, cytokine release syndrome; CT, computed tomography; DC, 
dendritic cell; DC-SIGN, dendritic-cell specific intercellular adhesion 
molecule-3-grabbing nonintegrin, DC-SIGNR; L-SIGN, DC-sign-
related protein; EAE, experimental autoimmune encephalomyelitis; 
ESR, erythrocyte sedimentation rate; FGF, fibroblast growth factor; 
G-CSF, granulocyte-colony-stimulating factor; GM-CSF, granulocyte-
macrophage colony-stimulating factor; ICU, intensive care unit; IFN, 
interferon; IL, interleukin; ILC, innate lymphoid cell; IP, interferon-
gamma-induced protein; MCP, monocyte chemoattractant protein; 
MERS-CoV, middle-east-respiratory-syndrome coronavirus; 
MIP, macrophage inflammatory protein; NK, natural killer; PD-1, 
programmed cell death-1; PDGF, platelet-derived growth factor; 
RNA, ribonucleic acid; SARS, severe acute respiratory syndrome; 
SARS-CoV, severe acute respiratory syndrome coronavirus; SARS-
CoV-2, severe acute respiratory syndrome coronavirus type 2; TCR, T 
cell receptor; Tim-3, T-cell Immunoglobulin and Mucin-3; TMPRSS2, 
transmembrane protease serine 2; TNF, tumor necrosis factor; VEGF, 
vascular endothelial growth factor

Introduction
Available data observed from China and India revealed that the 

individuals with age group of 20-50 year are likely to be infected 
by the SARS-CoV-2 (COVID-19).1,2 Singapore and Germany took 
measures by ramping up COVID-19 testing capacity quite early 
and by ensuring that all persons had equal opportunity to get tested, 
thus ensuring positive COVID-19 results early during COVID-19 
progression. This meant that most cases were mild symptoms.3 South 
Korea constantly informed their people about the development of 
COVID-19 by using the a centralized messaging system and media. 
South Korea also used the Trace, Test, and Treat protocol to rapidly 
identify and isolate COVID-19 patients, while the United States 
limited this to severe COVID-19 patients with later broadening of this 
criterion as well as India and many European countries. South Korea 
also ensures free COVID-19 diagnostic testing through the universal 
healthcare, unlike the United States. 

Currently, animal-to-human transmission of SARS-CoV-2 
(COVID-19) has not yet been confirmed, whereas the main mode 
of transmission is human-to-human. Droplets are the main route of 
human-to-human transmission, whereas aerosols could be another 
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Abstract

Currently, animal-to-human transmission of SARS-CoV-2 (COVID-19) has not yet been 
confirmed, whereas the main mode of transmission is human-to-human. Droplets are the main 
route of human-to-human transmission, whereas aerosols could be another route in addition 
to stool-based transmission. Currently, no evidence is available to indicate intrauterine 
vertical transmission of SARS-CoV-2 (COVID-19) in pregnant women. In the host, the life 
cycle of coronavirus consists of 5 steps: 1) attachment, 2) penetration, 3) biosynthesis, 4) 
maturation, and 5) release. Once viruses bind to host receptors (attachment), they enter host 
cells, particularly type II pneumocytes via endocytosis or membrane fusion (penetration). 
Once viral contents are released inside the host cells, viral RNA enters the host’s nucleus 
for replication and making viral proteins (biosynthesis). New viral particles are produced 
(maturation) and released. Spike protein of coronaviruses which determines the diversity 
of coronaviruses and host tropism is composed of a transmembrane trimetric glycoprotein 
protruding from the viral surface. Structural and functional studies demonstrated that the 
spike protein the of coronaviruses can bind to angiotensin converting enzyme 2 (ACE2), 
a functional receptor for SARS-CoV. ACE2 expression is high in lung (high expression 
on lung epithelial cells), heart, ileum, and kidney. The lungs of severe COVID-19 patients 
demonstrate infiltration of a large number of inflammatory cells. Due to high ACE2 
expression on the apical side of lung epithelial cells in the alveolar space, SARS-CoV-2 
(COVID-19) can enter and destroy lung epithelial cells. Significant ACE2 expression on 
innate lymphoid cells (ILC)2, ILC3, and endothelial cells is also demonstrated. Pulmonary 
endothelial cells represent one third of the lung cells. Endothelial function includes 
promotion of anti-aggregation, fibrinolysis, and vasodilatation. Due to a significant role 
playing in thrombotic regulation, hypercoagulable profiles that are demonstrated in severe 
COVID-19 patients likely suggest significant endothelial injury. Pulmonary thrombosis 
and embolism accompanying elevation of d-dimer and fibrinogen levels have been 
demonstrated in severe COVID-19. In conclusion, whether these histopathological lesions 
are direct consequences of sepsis, SARS-CoV-2 (C)OVID-19), and /or multiple organ 
failure is difficult to conclude. Further studies on understanding the roles of ILC1, ILC2, 
ILC3, including the difference in response to SARS-CoV-2 (COVID-19) infection between 
children and adults are urgently needed to develop efficient targeted therapies.
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route4 in addition to stool-based transmission.5,6 Currently, no evidence 
is available to indicate intrauterine vertical transmission of SARS-
CoV-2 (COVID-19) in pregnant women.7 The Indian government 
concerns on how to identify and contain asymptomatic SARS-
CoV-2 (COVID-19) carriers, who could account for approximately 
80 % of COIVID-19-infected individuals.8 As all of SARS-CoV-2 
(COVID-19) may not develop the disease, asymptomatic SARS-
CoV-2 (COVID-19)-infected carriers are at major risk of being 
superinfector with COVID-19.9 Some investigators hypothesize that a 
warm climate could reduce transmission by preventing SARS-CoV-2 
(COVID-19) from surviving for longer periods of time on surfaces. 

Mechanism of SARS-CoV-2 (COVID-19) 
invasion into host cells

Coronaviruses are enveloped and single-stranded ribonucleic acid 
(RNA) viruses of approximately 30 kb with infections of various host 
species.10 SARS-CoV-2 (COVID-19) are divided into four genera; 
α, β, γ, and δ based on their genomic structure. Alpha and beta 
coronaviruses infect only mammals.11 SARS-CoV-2 (COVID-19), 
SARS-CoV, and Middle-East-Respiratory-Syndrome coronavirus 
(MERS-CoV) are classified to β coronaviruses. 

In the host, the life cycle of coronavirus consists of 5 steps: 1) 
attachment, 2) penetration, 3) biosynthesis, 4) maturation, and 5) 
release. Once viruses bind to host receptors (attachment), they 
enter host cells, particularly type II pneumocytes via endocytosis or 
membrane fusion (penetration). Once viral contents are released inside 
the host cells, viral RNA enters the host’s nucleus for replication and 
making viral proteins (biosynthesis). New viral particles are produced 
(maturation) and released. 

Coronaviruses consist of four structural proteins; spike (S), 
membrane (M), envelop (E), and nucleocapsid (N).12 Spike protein 
of coronaviruses which determines the diversity of coronaviruses and 
host tropism is composed of a transmembrane trimetric glycoprotein 
protruding from the viral surface. Spike protein comprises two 
functional subunits; S1 subunit is responsible for binding to the 
host cell receptor and S2 subunit is responsible for the fusion of 
the viral and cellular membranes. Structural and functional studies 
demonstrated that the spike protein the of coronaviruses can bind to 
angiotensin converting enzyme 2 (ACE2),13-15 a functional receptor 
for SARS-CoV.16 ACE2 expression is high in lung (high expression 
on lung epithelial cells), heart, ileum, and kidney.17 Further studies 
are needed for additional SARS-CoV-2 (COVID-19) binding targets.

After binding of SARS-CoV-2 (COVID-19) to the host protein, 
protease cleavage is underwent by the spike protein. Activation of 
the spike protein of SARS-CoV-2 (COVID-19) and MERS-CoV as 
a two-step sequential protein cleavage has been proposed as a model 
that consists of cleavage at the S1/S2 cleavage site for priming and a 
cleavage for activation at a position adjacent to a fusion peptide within 
the S2 subunit “ S2 ” site.18-20 Following the cleavage at the S1/S2 
cleavage site, S1 and S2 subunits remain non-covalently bound and the 
distal S1 subunit leads to the stabilization of the membrane-anchored 
S2 subunit at the pre-fusion state.14 Presumably activation of the spike 
protein for membrane fusion through irreversible and conformational 
changes is due to subsequent cleavage at the S2 site.21 Existence of 
furin cleavage site (“RPPA” sequence) at the S1/S2 site is the unique 
characteristics of SARS-CoV-2 (COVID-19) among coronaviruses. 
During biosynthesis, the S1/S2 site of SARS-CoV-2 (COVID-19) 
is entirely subjected to cleavage in a drastic contrast to SARS-CoV 
spike protein that is incorporated without cleavage.14 The expression 

of furin makes SARS-CoV-2 (COVID-19) very pathogenic although 
the S1/S2 site is also subjected to cleavage by other protease, such 
as cathepsin L and transmembrane protease serine 2 (TMPRSS2).20,22 

T-cell mediated responses against coronaviruses are antigen 
presentation through dendritic cells (DCs) and macrophage that can 
phagocytize virus-infected-apoptotic epithelial cells contributing to 
antigen presentation to T cells. The expression of ACE2 on (splenic) 
dendritic cells and pulmonary alveolar macrophages is present but 
limited, based on the Immunological Genome database (http://rstats.
immgen.org). DCs and macrophages may be primarily infected with 
virus. SARS-CoV-2 (COVID-19) uses another protein to bind to 
antigen presenting cells (ACPs) or not should be investigated. These 
ACPs move to the draining lymph nodes to present viral antigens to T 
cells. In addition to ACE2, SARS-CoV can also bind to dendritic-cell 
specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-
SIGN, high expression on dendritic cells and macrophages) and DC-
SIGN-related protein (DC-SIGNR, L-SIGN).23-25 CD8+ T cells kill 
viral infected cells, whereas CD4+ T cells activate B cells to promote 
the virus-specific antibody production. 

Patients with severe COVID-19 demonstrated lymphopenia, 
especially in peripheral blood T cells26,27 and increased plasma 
concentrations of granulocyte-colony stimulating factor (G-CSF), 
interleukin (IL)-6, IL-10, macrophage inflammatory protein (MIP)-
1α, monocyte chemoattractant protein 1 (MCP-1), and tumor 
necrosis factor (TNF)-α.26-28 The higher levels of IL-6 are, the more 
severe conditions the COVID-19 patients are in. Higher expression 
of CD38, CD44, and CD69 is demonstrated in COVID-19 patients 
with activation of CD4+ and CD8+ T cells. T cells exhaustion that 
could have led to the progression of COVID-19 is indicated by 
higher percentage of checkpoint receptor Tim-3+ PD-1+ subsets in 
CD4+ and CD8+ T cells. Another marker for T cells exhaustion is 
elevation of NK group 2 member A (NKG2A) on CD8+ T cells.29 
Aberrant pathogenic CD4+ T cells with co-expressing interferon 
(IFN)-γ and granulocyte-macrophage colony-stimulating factor (GM-
CSF) are demonstrated in severe COVID-19 patients.26 Significant 
decrease in circulating T cells, the majority of infiltrating adaptive 
immune cells are primary cytotoxic CD8+ T cells. CD4+ T cells 
are also pathological cytotoxic T cells found in severe COVID-19 
patients30 with lung injury.31 These pathological CD4+ T cells 
release circulating monocytes responding to GM-CSF. Significant 
higher percentage of CD14+CD16+ inflammatory subsets are 
also identified in COVID-19 patients, but they are seldom exist in 
health individuals. These inflammatory CD14+CD16+ inflammatory 
monocytes demonstrate high IL-6 expression, that accelerates the 
progression of systemic inflammatory response. GM-CSF, a response 
to virus infection can assist in differentiation of innate immune cells 
augment T cell function, but GM-CSF can trigger tissue damage at 
excess.32,33 Previous experimental autoimmune encephalomyelitis 
(EAE) models in adults revealed that GM-CSF+IFN-γ+CD4+ T cells 
were demonstrated upon strong T cell receptor (TCR) responses, 
whereas CD8+ T cells expressing GM-CSF were identified at higher 
percentage and secreted IL-6. Neutrophils, the majority of innate 
immune cells can induce lung injury.34-36 

In addition to IL-6 production, SARS-CoV-infected lung epithelial 
cells produce IL-8, a well-known chemoattractant for neutrophils 
and T cells.37 The three main components for innate immunity in 
human airway are epithelial cells, pulmonary alveolar macrophages, 
and dendritic cells (DCs), whereas DCs are located underneath 
the epithelium and macrophages reside at the apical side of the 
epithelium.37 The lungs of severe COVID-19 patients demonstrate 

https://doi.org/10.15406/jlprr.2020.07.00234
http://rstats.immgen.org
http://rstats.immgen.org


Pulmonary pathology of COVID-19 81
Copyright:

©2020 Cheepsattayakorn et al.

Citation: Cheepsattayakorn A, Cheepsattayakorn R. Pulmonary pathology of COVID-19. J Lung Pulm Respir Res. 2020;7(3):79‒83. 
DOI: 10.15406/jlprr.2020.07.00234

infiltration of a large number of inflammatory cells.38,39 Due to high 
ACE2 expression on the apical side of lung epithelial cells in the 
alveolar space,40,41 SARS-CoV-2 (COVID-19) can enter and destroy 
lung epithelial cells. Significant ACE2 expression on innate lymphoid 
cells (ILC)2, ILC3,42 and endothelial cells43,44 is also demonstrated. 
NK cells, a member of ILC1 constitute a majority of pulmonary ILCs, 
approximately 95 %, whereas ILC2 and ILC3 are responsible for 
mucous homeostasis. Nevertheless, there is a very limited knowledge 
of ILC2- and ILC3-involved coronavirus infection. Pulmonary 
endothelial cells represent one third of the lung cells.45 Endothelial 
function includes promotion of anti-aggregation, fibrinolysis, and 
vasodilatation.46 Due to a significant role playing in thrombotic 
regulation,46 hypercoagulable profiles that are demonstrated in severe 
COVID-19 patients likely suggest significant endothelial injury. 
Pulmonary endothelial injury can facilitate viral invasion through 
abnormal microvascular permeability. Pulmonary thrombosis and 
embolism accompanying elevation of d-dimer and fibrinogen levels 
have been demonstrated in severe COVID-19. The clinical features 
of SARS-CoV-2-infected patients vary from minimal symptoms to 
severe respiratory failure with multiple organ failure, in addition to 
pulmonary thrombosis and embolism. Computed tomography (CT) of 
the chest in COVID-19 patients reveals the characteristic pulmonary 
ground glass opacification even in the asymptomatic patients.47 

SARS-CoV-2 (COVID-19) causes lung parenchymal injury by 
interstitial lung and/or alveolar inflammation via directly binding 
to the pulmonary ACE-2 receptors resulting in pneumonitis and 
respiratory failure.48 The related cytokine release syndrome (CRS) that 
mainly developed by the IL-648 can exacerbate both lung parenchymal 
and microvascular inflammation contributing to refractory acute 
respiratory distress syndrome (ARDS).49-51 Cardiac dysfunction 
with related pulmonary edema, such as cardiac arrhythmias, stress 
cardiomyopathy, myocarditis, etc. can be contributed by SARS-
CoV-2 (COVID-19) has been demonstrated by several previous 
studies.52-58 Severe brain injury in COVID-19 could induce neurogenic 
pulmonary edema due to the catecholamine storm.58 The incidence of 
acute kidney injury (AKI) among hospitalized COVID-19 patients 
is approximately 11 %, whereas actual AKI incidence in intensive 
care unit (ICU) remains uncertain.59 Proteinuria during SARCoV-2 
(C)OVID-19) infection is reported approximately 7 % to 63 % of 
cases,60-63 reflecting diffuse acute renal tubular injury.64 

Su et al. studied renal histopathological lesions in 26 dead 
COVID-19 patients and revealed that underlying conditions, such as 
diabetes, arteriosclerosis in patients with cardiovascular diseases and/
or ischemic renal glomeruli with hypertension. They found diffuse 
acute proximal tubular injury with cytoplasmic vacuoles that may 
associated with direct SARS-CoV-2 (COVID-19) in the podocytes 
with secondary foot process effacement and detachment of podocytes 
from the glomerular basement membrane and in the cytoplasm of 
the proximal tubular epithelium with expression of SARS-CoV 
nucleoprotein. Glomerular ischemia with fibrin thrombi within the 
glomerular capillary loops reflecting coagulation activation. Diffuse 
erythrocyte aggregation and obstruction in the lumen of peritubular 
and glomerular capillaries without red blood cell fragments, thrombi, 
fibrinoid, or platelet necrosis.65

Rhabdomyolysis has been noted in COVID-19 patients.66 The 
kidneys showed no evidence of complement activation.67 Hence, 
whether these histopathological lesions are direct consequences 
of sepsis, SARS-CoV-2 (C)OVID-19), and /or multiple organ 
failure is difficult to conclude68 Direct viral impact, liver congestion 
abnormalities, hypoxia-induced damage, and systemic inflammation 
are factors that are associated with COVID-19-associated liver 

damage.69 The neurological symptoms are characterized as the central-
nervous-system symptoms in severe cases, such as ataxia, epilepsy, 
dizziness, reduced consciousness, head pain, and acute cerebrovascular 
diseases70 and as the peripheral nervous system symptoms, such as 
fatigue, myalgia, neuralgia, hypoplasia, hypogeusia, and anosmia (or 
hyposmia).71-73 The pathogenesis of SARS-CoV-2 (COVID-19) in 
the nervous system is associated with direct viral attachment of the 
nerve endings in the peripheral nervous system or indirect injuries 
associated with the viral sepsis and the cytokine storm.74 

The difference of pathophysiology between children and adults in 
COVID-19 is hypothesized as the following: 1) The expression level 
of ACE2 may differ between children and adults,41 2) Children have 
a qualitatively different response to the SARS-CoV-2 (COVID-19) 
virus to adults,75 and 3) The simultaneous presence of other viruses in 
the mucosa of lungs and airways that are common in young children 
can contribute to SARS-CoV-2 (COVID-19) virus compete with them 
and limit its growth.76 

Conclusion
Some questions involving SARS-CoV-2 (COVID-19) are needed 

to be answered include: 1) Do asymptomatic persons develop the 
disease at any point in time at all?, 2) How long do the patients shed 
the virus for ?, 3) Do the patients eventually develop antibodies ?, and 
4) Is SARS-CoV-2 (COVID-19) stored in any individuals’ tissue in 
a dormant state ? Additionally, further studies on understanding the 
roles of ILC1, ILC2, ILC3, including the difference in response to 
SARS-CoV-2 (COVID-19) infection between children and adults are 
urgently needed to develop efficient targeted therapies. 
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