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Pulmonary pathology of COVID-19

Abstract

Currently, animal-to-human transmission of SARS-CoV-2 (COVID-19) has not yet been
confirmed, whereas the main mode of transmission is human-to-human. Droplets are the main
route of human-to-human transmission, whereas aerosols could be another route in addition
to stool-based transmission. Currently, no evidence is available to indicate intrauterine
vertical transmission of SARS-CoV-2 (COVID-19) in pregnant women. In the host, the life
cycle of coronavirus consists of 5 steps: 1) attachment, 2) penetration, 3) biosynthesis, 4)
maturation, and 5) release. Once viruses bind to host receptors (attachment), they enter host
cells, particularly type II pneumocytes via endocytosis or membrane fusion (penetration).
Once viral contents are released inside the host cells, viral RNA enters the host’s nucleus
for replication and making viral proteins (biosynthesis). New viral particles are produced
(maturation) and released. Spike protein of coronaviruses which determines the diversity
of coronaviruses and host tropism is composed of a transmembrane trimetric glycoprotein
protruding from the viral surface. Structural and functional studies demonstrated that the
spike protein the of coronaviruses can bind to angiotensin converting enzyme 2 (ACE2),
a functional receptor for SARS-CoV. ACE2 expression is high in lung (high expression
on lung epithelial cells), heart, ileum, and kidney. The lungs of severe COVID-19 patients
demonstrate infiltration of a large number of inflammatory cells. Due to high ACE2
expression on the apical side of lung epithelial cells in the alveolar space, SARS-CoV-2
(COVID-19) can enter and destroy lung epithelial cells. Significant ACE2 expression on
innate lymphoid cells (ILC)2, ILC3, and endothelial cells is also demonstrated. Pulmonary
endothelial cells represent one third of the lung cells. Endothelial function includes
promotion of anti-aggregation, fibrinolysis, and vasodilatation. Due to a significant role
playing in thrombotic regulation, hypercoagulable profiles that are demonstrated in severe
COVID-19 patients likely suggest significant endothelial injury. Pulmonary thrombosis
and embolism accompanying elevation of d-dimer and fibrinogen levels have been
demonstrated in severe COVID-19. In conclusion, whether these histopathological lesions
are direct consequences of sepsis, SARS-CoV-2 (C)OVID-19), and /or multiple organ
failure is difficult to conclude. Further studies on understanding the roles of ILC1, ILC2,
ILC3, including the difference in response to SARS-CoV-2 (COVID-19) infection between
children and adults are urgently needed to develop efficient targeted therapies.

Keywords: COVID-19, host cells, invasion, pathogenesis, pulmonary, pathology, SARS-
CoV-2

Volume 7 Issue 3 - 2020

Attapon Cheepsattayakorn,'** Ruangrong
Cheepsattayakorn*

'10* Zonal Tuberculosis and Chest Disease Center, Thailand
2Faculty of Medicine,Western University, Thailand

3Faculty of Public Health, St. Theresa International College,
Thailand

“Department of Pathology, Faculty of Medicine, Chiang Mai
University, Thailand

Correspondence: Attapon Cheepsattayakorn, 10th Zonal
Tuberculosis and Chest Disease Center, 143 Sridornchai Road
Changklan Muang Chiang Mai 50100 Thailand,

Tel 66 53 140767, 66 53 276364, Fax 66 53 140773,

66 53 273590, Email Attapon 198@gmail.com

Received: September 10,2020 | Published: November 04,
2020

Abbreviations: ACE2, angiotensin converting enzyme 2;
ACP, antigen presenting cell; AKI, acute kidney injury; ARDS, acute
respiratory distress syndrome; COVID-19, coronavirus disease 2019;

Introduction

Available data observed from China and India revealed that the

CRS, cytokine release syndrome; CT, computed tomography; DC,
dendritic cell; DC-SIGN, dendritic-cell specific intercellular adhesion
molecule-3-grabbing nonintegrin, DC-SIGNR; L-SIGN, DC-sign-
related protein; EAE, experimental autoimmune encephalomyelitis;
ESR, erythrocyte sedimentation rate; FGF, fibroblast growth factor;
G-CSF, granulocyte-colony-stimulating factor; GM-CSF, granulocyte-
macrophage colony-stimulating factor; ICU, intensive care unit; IFN,
interferon; IL, interleukin; ILC, innate lymphoid cell; IP, interferon-
gamma-induced protein; MCP, monocyte chemoattractant protein;
MERS-CoV, middle-east-respiratory-syndrome coronavirus;
MIP, macrophage inflammatory protein; NK, natural killer; PD-1,
programmed cell death-1; PDGF, platelet-derived growth factor;
RNA, ribonucleic acid; SARS, severe acute respiratory syndrome;
SARS-CoV, severe acute respiratory syndrome coronavirus; SARS-
CoV-2, severe acute respiratory syndrome coronavirus type 2; TCR, T
cell receptor; Tim-3, T-cell Immunoglobulin and Mucin-3; TMPRSS2,
transmembrane protease serine 2; TNF, tumor necrosis factor; VEGF,
vascular endothelial growth factor

individuals with age group of 20-50 year are likely to be infected
by the SARS-CoV-2 (COVID-19).'? Singapore and Germany took
measures by ramping up COVID-19 testing capacity quite early
and by ensuring that all persons had equal opportunity to get tested,
thus ensuring positive COVID-19 results early during COVID-19
progression. This meant that most cases were mild symptoms.? South
Korea constantly informed their people about the development of
COVID-19 by using the a centralized messaging system and media.
South Korea also used the Trace, Test, and Treat protocol to rapidly
identify and isolate COVID-19 patients, while the United States
limited this to severe COVID-19 patients with later broadening of this
criterion as well as India and many European countries. South Korea
also ensures free COVID-19 diagnostic testing through the universal
healthcare, unlike the United States.

Currently, animal-to-human transmission of SARS-CoV-2
(COVID-19) has not yet been confirmed, whereas the main mode
of transmission is human-to-human. Droplets are the main route of
human-to-human transmission, whereas aerosols could be another
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route*in addition to stool-based transmission.>® Currently, no evidence
is available to indicate intrauterine vertical transmission of SARS-
CoV-2 (COVID-19) in pregnant women.” The Indian government
concerns on how to identify and contain asymptomatic SARS-
CoV-2 (COVID-19) carriers, who could account for approximately
80 % of COIVID-19-infected individuals.® As all of SARS-CoV-2
(COVID-19) may not develop the disease, asymptomatic SARS-
CoV-2 (COVID-19)-infected carriers are at major risk of being
superinfector with COVID-19.° Some investigators hypothesize that a
warm climate could reduce transmission by preventing SARS-CoV-2
(COVID-19) from surviving for longer periods of time on surfaces.

Mechanism of SARS-CoV-2 (COVID-19)
invasion into host cells

Coronaviruses are enveloped and single-stranded ribonucleic acid
(RNA) viruses of approximately 30 kb with infections of various host
species.!” SARS-CoV-2 (COVID-19) are divided into four genera,
a, B, v, and o based on their genomic structure. Alpha and beta
coronaviruses infect only mammals.!" SARS-CoV-2 (COVID-19),
SARS-CoV, and Middle-East-Respiratory-Syndrome coronavirus
(MERS-CoV) are classified to  coronaviruses.

In the host, the life cycle of coronavirus consists of 5 steps: 1)
attachment, 2) penetration, 3) biosynthesis, 4) maturation, and 5)
release. Once viruses bind to host receptors (attachment), they
enter host cells, particularly type II pneumocytes via endocytosis or
membrane fusion (penetration). Once viral contents are released inside
the host cells, viral RNA enters the host’s nucleus for replication and
making viral proteins (biosynthesis). New viral particles are produced
(maturation) and released.

Coronaviruses consist of four structural proteins; spike (S),
membrane (M), envelop (E), and nucleocapsid (N).!> Spike protein
of coronaviruses which determines the diversity of coronaviruses and
host tropism is composed of a transmembrane trimetric glycoprotein
protruding from the viral surface. Spike protein comprises two
functional subunits; S1 subunit is responsible for binding to the
host cell receptor and S2 subunit is responsible for the fusion of
the viral and cellular membranes. Structural and functional studies
demonstrated that the spike protein the of coronaviruses can bind to
angiotensin converting enzyme 2 (ACE2),'*'" a functional receptor
for SARS-CoV.'® ACE2 expression is high in lung (high expression
on lung epithelial cells), heart, ileum, and kidney.!” Further studies
are needed for additional SARS-CoV-2 (COVID-19) binding targets.

After binding of SARS-CoV-2 (COVID-19) to the host protein,
protease cleavage is underwent by the spike protein. Activation of
the spike protein of SARS-CoV-2 (COVID-19) and MERS-CoV as
a two-step sequential protein cleavage has been proposed as a model
that consists of cleavage at the S1/S2 cleavage site for priming and a
cleavage for activation at a position adjacent to a fusion peptide within
the S2 subunit “ S2 ” site.'®* Following the cleavage at the S1/S2
cleavage site, S1 and S2 subunits remain non-covalently bound and the
distal S1 subunit leads to the stabilization of the membrane-anchored
S2 subunit at the pre-fusion state.'* Presumably activation of the spike
protein for membrane fusion through irreversible and conformational
changes is due to subsequent cleavage at the S2 site.?! Existence of
furin cleavage site (“RPPA” sequence) at the S1/S2 site is the unique
characteristics of SARS-CoV-2 (COVID-19) among coronaviruses.
During biosynthesis, the S1/S2 site of SARS-CoV-2 (COVID-19)
is entirely subjected to cleavage in a drastic contrast to SARS-CoV
spike protein that is incorporated without cleavage.'* The expression
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of furin makes SARS-CoV-2 (COVID-19) very pathogenic although
the S1/S2 site is also subjected to cleavage by other protease, such
as cathepsin L and transmembrane protease serine 2 (TMPRSS2).20:22

T-cell mediated responses against coronaviruses are antigen
presentation through dendritic cells (DCs) and macrophage that can
phagocytize virus-infected-apoptotic epithelial cells contributing to
antigen presentation to T cells. The expression of ACE2 on (splenic)
dendritic cells and pulmonary alveolar macrophages is present but
limited, based on the Immunological Genome database (http://rstats.
immgen.org). DCs and macrophages may be primarily infected with
virus. SARS-CoV-2 (COVID-19) uses another protein to bind to
antigen presenting cells (ACPs) or not should be investigated. These
ACPs move to the draining lymph nodes to present viral antigens to T
cells. In addition to ACE2, SARS-CoV can also bind to dendritic-cell
specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-
SIGN, high expression on dendritic cells and macrophages) and DC-
SIGN-related protein (DC-SIGNR, L-SIGN).?» CD8+ T cells kill
viral infected cells, whereas CD4+ T cells activate B cells to promote
the virus-specific antibody production.

Patients with severe COVID-19 demonstrated lymphopenia,
especially in peripheral blood T cells**? and increased plasma
concentrations of granulocyte-colony stimulating factor (G-CSF),
interleukin (IL)-6, IL-10, macrophage inflammatory protein (MIP)-
la, monocyte chemoattractant protein 1 (MCP-1), and tumor
necrosis factor (TNF)-a.2¢2® The higher levels of IL-6 are, the more
severe conditions the COVID-19 patients are in. Higher expression
of CD38, CD44, and CD69 is demonstrated in COVID-19 patients
with activation of CD4+ and CD8+ T cells. T cells exhaustion that
could have led to the progression of COVID-19 is indicated by
higher percentage of checkpoint receptor Tim-3+ PD-1+ subsets in
CD4+ and CD8+ T cells. Another marker for T cells exhaustion is
elevation of NK group 2 member A (NKG2A) on CD8+ T cells.?”
Aberrant pathogenic CD4+ T cells with co-expressing interferon
(IFN)-y and granulocyte-macrophage colony-stimulating factor (GM-
CSF) are demonstrated in severe COVID-19 patients.” Significant
decrease in circulating T cells, the majority of infiltrating adaptive
immune cells are primary cytotoxic CD8+ T cells. CD4+ T cells
are also pathological cytotoxic T cells found in severe COVID-19
patients® with lung injury.’' These pathological CD4+ T cells
release circulating monocytes responding to GM-CSF. Significant
higher percentage of CD14+CD16+ inflammatory subsets are
also identified in COVID-19 patients, but they are seldom exist in
health individuals. These inflammatory CD14+CD16+ inflammatory
monocytes demonstrate high IL-6 expression, that accelerates the
progression of systemic inflammatory response. GM-CSF, a response
to virus infection can assist in differentiation of innate immune cells
augment T cell function, but GM-CSF can trigger tissue damage at
excess.?3 Previous experimental autoimmune encephalomyelitis
(EAE) models in adults revealed that GM-CSF+IFN-y+CD4+ T cells
were demonstrated upon strong T cell receptor (TCR) responses,
whereas CD8+ T cells expressing GM-CSF were identified at higher
percentage and secreted IL-6. Neutrophils, the majority of innate
immune cells can induce lung injury.3*3¢

In addition to IL-6 production, SARS-CoV-infected lung epithelial
cells produce IL-8, a well-known chemoattractant for neutrophils
and T cells.’” The three main components for innate immunity in
human airway are epithelial cells, pulmonary alveolar macrophages,
and dendritic cells (DCs), whereas DCs are located underneath
the epithelium and macrophages reside at the apical side of the
epithelium.”” The lungs of severe COVID-19 patients demonstrate
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infiltration of a large number of inflammatory cells.*®** Due to high
ACE2 expression on the apical side of lung epithelial cells in the
alveolar space,***! SARS-CoV-2 (COVID-19) can enter and destroy
lung epithelial cells. Significant ACE2 expression on innate lymphoid
cells (ILC)2, ILC3,* and endothelial cells** is also demonstrated.
NK cells, a member of ILC1 constitute a majority of pulmonary ILCs,
approximately 95 %, whereas ILC2 and ILC3 are responsible for
mucous homeostasis. Nevertheless, there is a very limited knowledge
of ILC2- and ILC3-involved coronavirus infection. Pulmonary
endothelial cells represent one third of the lung cells.** Endothelial
function includes promotion of anti-aggregation, fibrinolysis, and
vasodilatation.*® Due to a significant role playing in thrombotic
regulation,* hypercoagulable profiles that are demonstrated in severe
COVID-19 patients likely suggest significant endothelial injury.
Pulmonary endothelial injury can facilitate viral invasion through
abnormal microvascular permeability. Pulmonary thrombosis and
embolism accompanying elevation of d-dimer and fibrinogen levels
have been demonstrated in severe COVID-19. The clinical features
of SARS-CoV-2-infected patients vary from minimal symptoms to
severe respiratory failure with multiple organ failure, in addition to
pulmonary thrombosis and embolism. Computed tomography (CT) of
the chest in COVID-19 patients reveals the characteristic pulmonary
ground glass opacification even in the asymptomatic patients.*’

SARS-CoV-2 (COVID-19) causes lung parenchymal injury by
interstitial lung and/or alveolar inflammation via directly binding
to the pulmonary ACE-2 receptors resulting in pneumonitis and
respiratory failure.* The related cytokine release syndrome (CRS) that
mainly developed by the IL-6* can exacerbate both lung parenchymal
and microvascular inflammation contributing to refractory acute
respiratory distress syndrome (ARDS).*>' Cardiac dysfunction
with related pulmonary edema, such as cardiac arrhythmias, stress
cardiomyopathy, myocarditis, etc. can be contributed by SARS-
CoV-2 (COVID-19) has been demonstrated by several previous
studies.**>® Severe brain injury in COVID-19 could induce neurogenic
pulmonary edema due to the catecholamine storm.*® The incidence of
acute kidney injury (AKI) among hospitalized COVID-19 patients
is approximately 11 %, whereas actual AKI incidence in intensive
care unit (ICU) remains uncertain.® Proteinuria during SARCoV-2
(C)OVID-19) infection is reported approximately 7 % to 63 % of
cases,*% reflecting diffuse acute renal tubular injury.*

Su et al. studied renal histopathological lesions in 26 dead
COVID-19 patients and revealed that underlying conditions, such as
diabetes, arteriosclerosis in patients with cardiovascular diseases and/
or ischemic renal glomeruli with hypertension. They found diffuse
acute proximal tubular injury with cytoplasmic vacuoles that may
associated with direct SARS-CoV-2 (COVID-19) in the podocytes
with secondary foot process effacement and detachment of podocytes
from the glomerular basement membrane and in the cytoplasm of
the proximal tubular epithelium with expression of SARS-CoV
nucleoprotein. Glomerular ischemia with fibrin thrombi within the
glomerular capillary loops reflecting coagulation activation. Diffuse
erythrocyte aggregation and obstruction in the lumen of peritubular
and glomerular capillaries without red blood cell fragments, thrombi,
fibrinoid, or platelet necrosis.®

Rhabdomyolysis has been noted in COVID-19 patients.®® The
kidneys showed no evidence of complement activation.”” Hence,
whether these histopathological lesions are direct consequences
of sepsis, SARS-CoV-2 (C)OVID-19), and /or multiple organ
failure is difficult to conclude®® Direct viral impact, liver congestion
abnormalities, hypoxia-induced damage, and systemic inflammation
are factors that are associated with COVID-19-associated liver
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damage.® The neurological symptoms are characterized as the central-
nervous-system symptoms in severe cases, such as ataxia, epilepsy,
dizziness, reduced consciousness, head pain, and acute cerebrovascular
diseases” and as the peripheral nervous system symptoms, such as
fatigue, myalgia, neuralgia, hypoplasia, hypogeusia, and anosmia (or
hyposmia).”"”® The pathogenesis of SARS-CoV-2 (COVID-19) in
the nervous system is associated with direct viral attachment of the
nerve endings in the peripheral nervous system or indirect injuries
associated with the viral sepsis and the cytokine storm.”

The difference of pathophysiology between children and adults in
COVID-19 is hypothesized as the following: 1) The expression level
of ACE2 may differ between children and adults,*' 2) Children have
a qualitatively different response to the SARS-CoV-2 (COVID-19)
virus to adults,” and 3) The simultaneous presence of other viruses in
the mucosa of lungs and airways that are common in young children
can contribute to SARS-CoV-2 (COVID-19) virus compete with them
and limit its growth.”

Conclusion

Some questions involving SARS-CoV-2 (COVID-19) are needed
to be answered include: 1) Do asymptomatic persons develop the
disease at any point in time at all?, 2) How long do the patients shed
the virus for ?, 3) Do the patients eventually develop antibodies ?, and
4) Is SARS-CoV-2 (COVID-19) stored in any individuals’ tissue in
a dormant state ? Additionally, further studies on understanding the
roles of ILC1, ILC2, ILC3, including the difference in response to
SARS-CoV-2 (COVID-19) infection between children and adults are
urgently needed to develop efficient targeted therapies.
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