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Introduction
The wood frogs, Rana sylvatica are a special variety of frogs 

found in the northern part of North America mostly in Canada, 
Alaska and some parts of northern USA.1,2 They are generally rusty 
red, brown, grey or tan in colour and have a dark patch under their 
eyes also known as the Robber’s mask.3 Their size varies from 51 to 
70 mm in length, the females are generally larger than the males.4 

They have received great attention in the scientific world because of 
their freeze tolerance property. They can survive an average minimum 
temperature of −14.6±2.8°C with 60-70% of their body liquid being 
frozen.5 Under such condition they stop breathing, their heart stops 
pumping blood and all the other organ systems stop functioning.6 

However with the onset of spring the frozen frogs start thawing, they 
recover from the zombie state, and their organ systems get activated. 
This review mainly focuses on unravelling the different mechanism 
employed by wood frogs to overcome freezing (Figure 1).

Figure 1 depicts a wood frog, Rana sylvatica in frozen state.

Unravelling the survival mechanism
For wood frogs, the onset of harsh winter and falling temperature 

is accompanied by suppression of the immune system and scarcity of 
food resources.7,8 When the temperature falls rapidly and approaches 
the freezing value the wood frogs start searching for a hibernaculum. 
An ideal hibernaculum site should have a decreased canopy cover, 
increased leaf litter depth, and greater number of logs and stumps.9 This 

will lead to a higher snowpack depth thus providing better insulation 
and a warmer temperature for the frog to survive and will also provide 
enough time for the body to produce and distribute cryoprotectant 
molecules.10 They generally hibernate in shallow depressions in 
the soil where they are concealed by layers of leaf litter and snow 
coverings.6 Sarcoendoplasmic Reticulum Ca-ATPase or SERCA is an 
important enzyme found in cardiac and skeletal musclesthat helps in 
muscle contraction and relaxation by modulating the concentration of 
Ca2+ ions in the myoplasm.11 The Sarcoendoplasmic reticulum (SR) 
is a specialized structure present in the cytoplasm that stores calcium 
ions.11 The transfer of Ca2+ ions from the sarcoplasmic reticulum to 
the cytosol stimulates muscles contraction, and the active reuptake of 
Ca2+ ions into the Sarcoendoplasmic reticulum facilitated by SERCA 
stimulates muscle relaxation.12 The Sarcoendoplasmic Reticulum Ca-
ATPase 1 or SERCA1, coded by the gene ATP2A1 is present in the 
muscles of wood frogs and other animals.13 It catalyses the hydrolysis 
of ATP to provide energy required for the translocation of Ca2+ ions 
from the cytosol to the sarcoendoplasmic reticulum leading to muscle 
contraction.14 This enzyme gets inactivated at a low temperature 
thus causing muscle stiffness.15,16 According to recent studies the 
Sarcoendoplasmic Reticulum Ca-ATPase 1 (SERCA 1) extracted 
from the skeletal muscles of wood frogs showed a unique 7 amino 
acid substitution.17 This leads to a lower activation energy of the 
enzyme and a 1.5 fold higher calcium ions transfer rate compared to 
the wild type variants which helps the muscles to contract even at sub-
zero temperatures thus helping the frog to find a perfect hibernaculum 
prior to freezing.17 The role of these substitutions at proteomic level 
are yet to be known.

Wood frogs accumulate very high level of glycogen in their body 
during autumn.5 During winter, as the temperature in the hibernaculum 
approaches the extracellular freezing point (-2 C to -1.9 C) the body 
starts to freeze this leads to the initiation of glycogenolysis at a great 
pace in the hepatocytes of the wood frogs.6 Freezing exposure increases 
enzymatic activities in the liver. In an experiment carried out by K.B. 
Storey and J.M Storey it was observed that on exposure to freezing 
conditions the total phosphorylase content of the liver increased 
by 520%, the amount of active phosphorylase increased from 37% 
to 80%.6 In addition, the activities of enzymes such as glycerol-3-P 
dehydrogenase, glucose6-P dehydrogenase, 6-phosphogluconate 
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Abstract

The wood frogs are a special variety of frogs native to Alaska, Canada and Northern 
USA. Their ability to tolerate freezing has been regarded as one of the most 
astonishing natural wonders of the world. These frogs can survive partial freezing of 
their body. During winter about 60% of their body fluid freezes up, they stop breathing 
and their heart stops beating. Organ systems become inactive. However, the body 
remains alive at cellular level. Due to unavailability of oxygen the cells carry out 
anaerobic respiration to generate energy. Prior to freezing, the frog’s liver produces 
a large amount of glucose molecules which acts as a cryoprotectant and protects the 
vital organs of the body from freezing. In addition to glucose accumulation many other 
factors are involved in providing freeze tolerance. With the onset of spring the frozen 
frogs start thawing, they regain consciousness and recover from the hibernating state 
within 24 hours of thawing. Unravelling the underlying mechanism behind their freeze 
tolerance can help to develop a better strategy for cryopreservation of organs for a 
longer duration in the future.
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dehydrogenase and glucose 6-phosphatase also increased by 140-
160%.6 With freezing exposure considerable increase in the activities 
of glucose 6-phosphatase and phosphorylase were also observed in 
the leg muscles of wood frogs.6 The enzymes Phosphorylase and 
Glucose 6 Phosphatase are directly involved in the glycogenolytic 
pathway as depicted in Figure 2. Their hyperactivity increases the 
rate of glycogenolysis, thus increasing the production of glucose 
molecules.18 This large amount of glucose is mostly synthesized in the 
liver, and it is then distributed throughout the body through the blood.6 

An over expression of glucose transporters on the surface of the liver 
cells are observed, and the number of glucose transfer sites was found 
to be 8.5 fold higher in autumn than in summer this leads to a higher 
transfer rate of glucose in the blood.19 Within hours from initiation of 
freezing, the glucose concentration in the core organs rises by about 
100 folds.16,20 It was found to be 10 fold higher in the heart and 3.3 
fold higher in the liver.6 Glucose acts as the sole cryoprotectant in 
wood frogs.21 Prolonged exposure to sub-zero temperatures causes 
cellular shrinkage as the water from the cells are drawn out due to ice 
formation in the extracellular spaces, leading to cell death and tissue 
damage.22 A liquid freezes only when its vapour pressure becomes 
equal to that of its solid form.23 The addition of non-volatile solutes to 
a liquid reduces its vapour pressure which in turn reduces its freezing 
point.24 In the same way, the presence of glucose molecules in the 
blood depresses the freezing point thus reducing the intracellular 
ice formation. Increased concentration of glucose in the blood also 
causes organ dehydration which reduces freezing injury caused due to 
intercellular ice formation.25

Figure 2 It depicts the process of glycogenolysis that takes place in the 
hepatocytes of wood frogs. Glycogenolysis leads to the formation of a large 
amount of glucose molecules which is then transferred to the blood stream 
through the glucose transporter proteins. The glucose molecules are then 
transported to the rest of the body through the blood stream.

The insulin extracted from the pancreas of Rana sylvatica was 
compared with the insulin extracted from freeze intolerant American 
bullfrogs, and it was observed that the primary structure of the insulin 
from wood frogs differed from that of bullfrogs at A12 (Threonine 
to methionine substitution), A23 (Asparagine to Serine substitution), 
B5 (Tyrosine to Histidine substitution) and B13 (Glutamic acid to 
Aspartic acid substitution) respectively.26 These substitutions lead to 
an impaired protein structure.26 As a result the insulin formed fails to 
activate protein phosphatase 1 which is responsible for regulating the 
rate of glycogenolysis through the inactivation of phosphorylase A.26 

As phosphorylase A is not inactivated the rate of glycogenolysis is 
maintained leading to a high concentration of glucose in the blood.26 
However, the structure of the glucagon was found to be conserved 
and it didn’t show any aberration in its activity.26 When the wood 
frogs were dissected at -4 C ice crystals were found surrounding the 
internal organs, no bleeding, breathing or heart beats were observed.6 

As the organ systems stop functioning it leads to the accumulation 
of waste products such as urea in the extracellular regions.27 The 
urea molecules act alongside glucose and stabilizes cells by reducing 
water loss.12 In addition to glucose and urea, a Xylomannan based 
high molecular weight antifreeze glycolipid (AFGL) is also present in 
wood frogs.5 It has a high hysteresis value i.e it can inhibit ice growth 
by binding to the surface of the nucleating ice crystals, and it can also 
prevent the incursion of ice into the cells.5,28

As physical activity and breathing stops the body cells have to rely 
only on endogenous sources of energy for survival. The cells switches 
to anaerobic respiration for energy which leads to the accumulation of 
lactic acid in the tissues.6 Creatine phosphate reserves present in the leg 
muscles are also depleted in order meet the demand for energy.6 Wood 
frogs can remain frozen for about 193days at -6.3 C with 100% chances 
of survival.5 As spring sets in, the atmospheric temperature rises 
causing the ice to melt. It takes about 4hours for the wood frog’s body 
to defrost completely.6 However, it takes about a day for the wood frog 
to regain consciousness and sensitivity.9 Recent studies unravelled the 
upregulation of 5genes in wood frogs in response to freezing.29 A 457 
bp long novel gene was found to be expressed in the liver, gut, heart, 
lung, brain and bladder of wood frogs with the initiation of freezing.30 
The gene was found to exclusively present in certainfreeze tolerant 
animals and wasn’t found to be homologous to any pre-existing genes 
present in the gene bank database.30 The gene was designated as Fr10, 
and the putative protein was found to carry a hydrophobic N terminal 
containing a nuclear export signal (NES signal).30 It was hypothesized 
to be involved in the movement of certain freezing induced mRNAs 
from the nucleoplasm to the cytoplasm where they can be translated 
into freeze tolerance proteins.30 A second novel gene lil6, was also 
depicted to be upregulated in response to anoxia stress.29 It codes for 
a 115 amino acids long protein that is suggested to provide endurance 
to organs during ischaemia.29 The Aat gene, coding for ADP/ATP 
translocase was observed to be upregulated prior to freezing.31 ADP/
ATP translocase stimulates the exchange of ADP and ATP between the 
cytoplasm and the mitochondrial matrix. It provides a constant supply 
of ATP required for the process of glycogenolysis that takes place 
in the cytoplasm.31 Upregulation of the genes coding for fibrinogen 
alpha and fibrinogen gamma was also observed during freezing, they 
are suggested to be involved in clotting to prevent bleeding loss from 
the ice damaged and ruptured parts of the body during thawing.24 
In general, the physiology of wood frog is quite distinct from other 
amphibians or mammals which gives them the advantage of survival 
in extreme cold temperature.

Drawbacks
Although the anti-freezing strategy employed by wood frogs 

proved to be effective, it has got some limitations. Survival rate 
appears to be dependent on the degree of extracellular freezing, frogs 
that were exposed to -30 C had 50% of their body frozen and they 
failed to recover to their normal state.32 Temperature fluctuations in 
the natural environment can expose the wood frogs to multiple cycles 
of freezing and thawing.33 This may lead to the generation of reactive 
oxygen species which can cause immense tissue damage due to 
oxidative stress.34
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Conclusion
Global shortage of organs is a major healthcare challenge. As 

estimated by Global Observatory on Donation and Transplantation in 
2010, only 10% of the need for organs are being met.35 It has been 
suggested that ignoring all restrictions organ replacement can prevent 
more than 30% of all deaths in the US.36 Every year 50,600patients are 
added to the US transplant waiting list.37 The above problem can be 
solved in two steps. The first step is to collect enough organs to meet 
the global need and the second step is to preserve these organs until 
they are transplanted.37 It is the second step that seems to be arduous. 
Although several techniques such as machine perfusion and organ 
cryopreservation have been developed the maximum preservation time 
is very low which increases the average cost of transplantation to about 
1 million dollars.37–44 Mike D. Taylor, Professor at Carnegie Mellon 
University said “At least 45 species survive bitterly low temperatures 
including the Arctic wood frog. That’s why we think translating the 
natural mechanisms of survival can affect organ preservation. We can 
manipulate organs with cocktails from species of nature and extend 
storage from one or two days to one or two weeks, which would be 
a game changer in transplants”.45 Unravelling the science behind the 
freeze tolerance of wood frogs can lead to the development of a better 
strategy for preserving human organs for a longer time thus making it 
possible to be easily shipped from one place of the world to another 
which would also reduce transplantation cost.22 Disease transmission 
rates in organ transplantation are 10,000 times higher compared to 
blood transfusion.46 Increasing the preservation time would allow 
thorough screening of organs for transmissible diseases prior to 
transplantation . This would greatly improve the donor matching 
process and organ reuse which could save millions of lives throughout 
the world.47,48
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