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Introduction
Mechanism of NMD

In the canonical model of NMD, transcripts that contain PTC 
>55nt upstream of an exon-exon junction are degraded through 
NMD.1 Biochemical and genetic studies have identified a protein 
complex called exon junction complex (EJC) as a key regulator of 
NMD. During the last step of pre-mRNA splicing, EJC is deposited 
~24nt upstream of the exon-exon junction.2–4 EJC is composed of a 
tetrameric core (eIF4AIII, MAGOH/MAGOHB, Y14, and MLN51) 
and more than a dozen peripheral factors including NMD factors UPF2 
and UPF3B.1,5,6 EJC forms a link between nuclear and cytoplasmic 
mRNA metabolism by recruiting various factors important for mRNA 
splicing, export, translation, and NMD.6 It is postulated that EJCs 
remain bound to spliced mRNA until it is disassembled by translating 
ribosome during the first round of translation (also known as pioneer 
round of translation).1 As most termination codons are located in the 
last exon, any EJC remaining on the transcript after translation can 
be considered as aberrant. In the presence of a PTC, EJCs still bound 
downstream of the PTC will not be removed. UPF1, an ATPase-
dependent RNA helicase and a major NMD factor, interacts with the 
eRF3 bound to the terminating ribosome and forms the SURF complex 
consisted of SMG1, UPF1, eRF1, and eRF3.1 Interaction between 
UPF2 and phosphorylated UPF1 remodels the SURF complex into 
decay-inducing complex (DECID). Subsequently, SMG1 kinase 
phosphorylates UPF1 and recruits NMD factors SMG6 and SMG5-
SMG7 heterodimer.1 SMG6, an endonuclease, association with the 
NMD machinery is stabilized through its interaction with EJC through 
its EJC-binding motif (EBM), and this interaction is important for the 
SMG6-mediated degradation of NMD transcripts.7 SMG5-SMG7 
recruits decapping enzyme and deadenylation enzyme which exposes 
mRNA to other RNA degradation enzymes.1 This model of NMD is 
referred to as “EJC-enhanced NMD”.8 ‘Faux 3’UTR’ model of NMD 
is an alternative NMD mechanism that senses unusually long 3’ 
untranslated regions (UTR) instead of an EJC downstream of a PTC.9 
In this model, UPF1 is proposed to bind to long 3’UTR independent 
of terminating ribosomes and senses their lengths.10 3’UTR-bound 
UPF1 is then postulated to interact with yet unclear mRNP to promote 
decay. This form of NMD was initially described in yeast,9 and also 

ascribed to NMD of transcripts during spermatogenesis.11 However, 
the precise detail of this mechanism is still under investigation.

Discussion
NMD regulates normal physiological gene expression

Approximately 10% of all human genes are regulated by NMD.12 
Upstream open reading frames (uORF), unusually long 3’UTRs, 
regulated splicing events which introduce a PTC, and normal stop 
codons upstream of an intron are features which target an mRNA 
for NMD.13 As such, various NMD factors have been shown to be 
essential for embryonic and post-embryonic development in mice.
UPF2, SMG1, UPF3A, and SMG9 knockout mice are all embryonic 
lethal.14 In case of UPF1 and SMG6 knockout mice, the mutations are 
lethal before implantation or around implantation.15,16 Knocking out 
UPF3B is not embryonic lethal, but cause severe neurological defect 
in humans.14 

NMD factors are also important for tissue-specific developmental 
programs. UPF2 is important for spermatogenesis,11 and long 3’UTR-
triggered NMD pathway dependent on TDRD6 promotes proper 
chromatoid body development during spermatogenesis.17 While Upf3b 
promotes NMD, Upf3a was suggested to suppress NMD.17 In mice, 
Upf3a is expressed exclusively in mice testis.18 Conditional knockout 
of Upf3a in meiotic germ cells results in reduced spermatogenesis 
and down regulation of NMD transcripts.17 NMD factors are also 
important for neuronal physiology and development. During neuronal 
differentiation, precise temporal control of UPF1 expression and 
activity is critical for proper neuronal development.19 In neuronal 
cells, miR-128 expression suppressed UPF1 expression, but high 
NMD activity is also associated with low miR-129 expression.19 
In the negative feedback between UPF1 and miR-128, high NMD 
activity and low NMD activity in developing neurons corresponded to 
undifferentiated or differentiated states, respectively.19 Commissural 
axon guidance during spinal cord development requires careful 
balance in expressions of ROBO3 isoforms.20 ROBO3.2 mRNA 
contains a PTC, thus an NMD target. ROBO3.2 mRNA is normally 
degraded during the commissural neuron development by NMD.20 
Conditional knockout of UPF2 from spinal commissural neurons 
prevents proper axon guidance.20 
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Abstract

Traditionally, nonsense-mediated mRNA decay (NMD) is known as an mRNA quality 
control mechanism that prevents potentially toxic truncated proteins to be translated 
from premature termination codon (PTC)-containing transcripts. However, recent 
studies have shown that role of NMD extends beyond mRNA surveillance. Here, we 
review current understanding of various roles played by NMD in the context of normal 
tissue development and diseases including cancer. We first summarize the mechanism 
of NMD, and how it controls mRNA surveillance, and describe how NMD coupled 
with alternative splicing forms a regulatory feedback loop. We further survey how 
NMD affects disease outcome in the context of hereditary diseases as well as cancer. 
In summary, NMD is a mode of complex eukaryotic gene regulation that has broad 
implications in various biological contexts.
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Stress management is also an important part of NMD. Eukaryotic 
cells are under various types of stress such as endoplasmic reticulum 
(ER) stress, hypoxia, osmotic stress, and pathogen-induced stress.21 
Under ER stress, a stress pathway called unfolded protein response 
(UPR) is activated. The UPR is mediated by three major branches 
of UPR pathways characterized by the activities of inositol requiring 
transmembrane kinase/endonuclease1 (IRE1), protein kinase RNA 
(PKR)-like ER Kinase (PERK), activating transcription factor 6 
(ATF6).21 NMD pathway helps to fine tune activity of these sensors by 
regulating mRNA levels of UPR pathway components.23,24 Also, UPR 
pathway can suppress NMD pathway by reducing levels of NMD 
pathway genes post-transcriptionally.24–26 

Mammalian cells utilize alternative splicing to increase proteomic 
diversity by generating multiple mRNA isoforms from a single gene. 
Alternative splicing events, which introduce PTCs, can target those 
mRNA for NMD. Thus, alterative splicing coupled NMD (AS-NMD) 
can be used as an additional mechanism to fine-tune gene expression. 
Many splicing factors use AS-NMD to maintain homeostasis 
of their expression. SR proteins and hnRNP proteins have been 
shown to undergo extensive utilization of AS-NMD as a feedback 
mechanism. Expression of genes important for stem cell function 
can be regulated by NMD when coupled with alternative splicing. 
For example, polypyrimidine tract-binding protein (PTB) represses 
neuronal homologue nPTB by inducing its exon 10 skipping to 
prevent differentiation of a neuronal cell line.27,28 In contrast, nSR100, 
a neuron-specific SR protein, promotes nPTB exon 10 inclusion to 
increase nPTB expression.27,28

RNA viruses have evolved to take advantage of cellular mRNA 
processing machinery and eukaryotes have developed mechanisms to 
target the viruses. Multi-cistronic genome of viruses harbor features 
that could be targeted for NMD such as upstream open reading 
frame (uORF) and long 3’UTR. Not surprisingly, in plants, NMD 
can target viral genomes, and in mammalian cells UPF1, SMG5, and 
SMG7 have been shown to be suppressive for replication of certain 
viruses.29–31 Viruses therefore have developed strategies to evade the 
NMD pathway. NMD components can be sequestered in Human 
T-lymphotropic Virus Type 1 (HTLV-1); Rous Sarcoma Virus (RSV) 
RNA stability element (RSE) that are present downstream of the first 
ORF helps RSV to evade NMD by preventing UPF1 binding.32,33 
Intriguingly, human immunodeficiency virus (HIV) has been 
shown to utilize UPF1 for infectivity and viral RNA export into the 
cytoplasm.34 While this mechanism may involve NMD-independent 
role of UPF1, the usage of NMD pathway component for its survival 
and proliferation is interesting. 

NMD in hereditary diseases

Nonsense mutations comprise about 20% of all known pathogenic 
genetic mutations within the coding region.35 Among these, some 
nonsense mutations can result in mutant alleles that are insensitive to 
NMD (NMD-insensitive) leads to dominant-negative phenotype.36 For 
example, nonsense mutant allele of SOX10 that is sensitive to NMD 
can cause Waardenburg syndrome due to the loss of SOX10 function. 
However, NMD-insensitive nonsense mutation in SOX10 that occurs 
downstream of the penultimate exon generates toxic SOX10 protein 
that results in a severe neurological disease characterized by peripheral 
demyelinating neuropathy, central dysmyelinating leukodystrophy, 
Waardenburg syndrome and Hirschsprung disease (PCWH).36 NMD-
sensitive nonsense mutations can result in recessive diseases. Cystic 
fibrosis (CF) is caused by loss-of-function mutations in cystic fibrosis 
transmembrane conductance regulator (CFTR) gene. CFTR-W1282X 

mutation causes a severe form of CF when combined with another 
loss-of-function mutation.37 The truncated CFTR-W1282X protein 
retains partial function, but due to NMD, CF patients with the mutation 
express little to no expression of functional CFTR.38–40 IDUA-W402X 
mutation causes a severe form of Hurler’s syndrome due to low 
levels of functional IDUA protein characterized by accumulation of 
dermatan and heparan sulfate within the lysosomes.41 

Aminoglycoside antibiotics, such as gentamicin or G418, and 
PTC124 are read-through compounds (RTC) that can promote 
generation of functional protein by suppressing translational 
termination at the PTC.42 Gentamicin can induce read-through in 
vitro for CFTR-W1282X and IDUA-W402X mRNA.43 However, the 
clinical trial of gentamicin for CF caused by was limited by NMD of 
CFTR-W1282X mRNA.40–44 Also, inhibition of NMD in combination 
with RTC treatment improved the nonsense suppression in vivo.45 
Suppression of NMD can be a potential therapeutic strategy for 
diseases caused by NMD-sensitive nonsense mutations. One approach 
is to use small molecules to inhibit the activity of NMD factors. SMG8 
is part of the SMG1-kinase complex, and pharmacological inhibition 
effectively inhibited NMD.46 Antisense-mediated knockdown of 
Upf3b is able to inhibit NMD.47 In a humanized mouse model of 
hemophilia B harboring hFIX-R29X mutation, knocking down Upf3b 
using an antisense oligonucleotides (ASO) conjugated to triantennary 
N-acetyl galactosamine (Gal-NAc) partially restored FIX activity.47 
However, global inhibition of NMD may potentially detrimental. In a 
more targeted approach, ASOs that inhibit NMD by preventing EJC 
binding combined with RTC can restore full-length protein from a 
nonsense allele in a gene-specific manner.48 Further development of 
these approaches may help to alleviate the symptoms of a wide range 
of genetic diseases caused by PTC.

Impact of NMD in cancer

In various tumors, many tumor suppressor genes contain PTC 
and are targets for NMD. Based on a gene expression array-based 
assay called gene identification by NMD inhibition (GINI), various 
NMD transcripts have been found.49 These genes include nonsense 
mutations in well-known tumor suppressors such as WT1,TP53, 
RB, and BRCA1/2.50–54 Microsatellite instability in colon cancer is 
an important hallmark in a subset of colon cancers, which results in 
various oncogenic mutations. A study identified a large number of 
NMD-sensitive mutations in microsatellite-unstable colon cancer cell 
lines, and these included several genes that can drive oncogenesis.49 In 
other cancer contexts, mRNAs that contain upstream of penultimate 
exons are NMD-insensitive. NMD-insensitive nonsense mutants 
of ATM, CHK2, BRCA1, TP53, and WT1 that produce truncated, 
dominant-negative proteins have been reported.53,55–58 

AS-NMD can contribute to oncogenesis as well. Tumor associated 
changes in pre-mRNA splicing due to alterations in the core splicing 
factors have been reported.59 Mutations in the core splicing machinery 
components (reported by Yoshida et al. 2011) have also been well-
characterized in hematological malignancies. Mutations in multiple 
splicing factors including SF3B1, SRSF2, U2AF1, and ZRSR2 have 
been found in up to 60% of myelodysplastic syndrome (MDS) 
patients who have an increased risk of developing acute myeloid 
leukemia.60 SF3B1 mutations are associated with abnormal cryptic 
3’ splice site selection;61 SRSF2 mutations lead to altered exon 
inclusion patterns due to change in binding motif;62 U2AF1 can lead 
to abnormal 3’ splice site selection.63 Such changes can lead to many 
aberrant splicing events that introduce PTCs in mRNAs. For example, 
in a mouse model of MDS, Srsf2 P95H mutation has been shown to 
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promote inclusion of a poison exon in Ezh2, leading to its degradation 
by NMD and contribute to the pathogenesis of MDS.62,64 

Aberrant UPF1 expression or activity can affect tumor progression. 
Mutations in the key NMD factor UPF1 was commonly found in 
pancreatic adenosquamous carcinoma (ASC).65 These mutations were 
concentrated in the helicase domain and the SQ domain of UPF1. 
Helicase domain is essential for activation of NMD; SQ domain 
phosphorylation by SMG1 is important for activation of NMD.66 
Although the impact of these mutations still remain to be elucidated, 
concentration of potentially inactivating mutations on UPF1 gene 
suggests that NMD may contribute to the tumorigenesis in ASC.65 
Inflammatory myoblastic tumors (IMT) harbor UPF1 mutations which 
affect its alternative splicing.67 The mutations caused reduced NMD 
efficiency in these tumors and increased expression of chemokine 
genes as well as NF-κB induction that contributes to inflammatory 
response characteristic of IMTs.67 In hepatocellular carcinoma, UPF1 
promoter hypermethylation that results in reduced UPF1 expression 
can lead to up-regulation of Smad7 and tumor progression.68 In 
lung adenocarcinoma, the tumor UPF1 expression is lower than in 
adjacent normal tissue. The decreased NMD efficiency resulting from 
lower UPF1 expression leads to higher TGF-β signaling, promoting 
epithelial-mesenchymal transition.69 

In certain types of cancers, NMD inhibition could raise 
vulnerability for cancers. Some NMD-sensitive transcripts are pro-
apoptotic genes. Growth arrest and DNA damage 45 (GADD45) is an 
NMD controlled gene that can induce apoptosis by activating mitogen-
activated protein kinase (MAPK) signaling.70 Growth arrest-specific 5 
(GAS5) is another NMD-controlled pro-apoptotic gene that can cause 
cell-cycle arrest and apoptosis.71,72 Also, NMD inhibition can suppress 
tumorigenesis in microsatellite-unstable colon cancer with high 
NMD factor levels.73 Large number of in-del mutations in cancer can 
increase the abundance of neoantigens that are highly immunogenic.74 
Indeed, tumor infiltrating lymphocytes were higher in tumors with 
more nonsense mutations.75 These in-del mutations can shift the 
reading frame and generate PTC. NMD could suppress expression 
of neo-antigens generated from PTC-containing transcripts in cancer 
cells. Thus, suppressing NMD to increase the level of novel cancer 
antigens could potentially benefit anti-cancer immunotherapy.76 As 
blanket inhibition of NMD could be toxic to various tissues, targeted 
NMD inhibition method may be a more feasible strategy.

Conclusion 

The roles of NMD in normal physiology and disease settings 
are quite complex. On one hand, NMD is a necessary regulatory 
mechanism of gene expression that is essential for life. On the other 
hand, NMD inhibition could be beneficial in certain disease contexts. 
Especially in cancer, NMD suppression by UPF1 depletion can lead 
to opposite consequences for tumor survival depending on its type. 
These observations suggest that NMD pathway intersects with diverse 
biological processes. Deeper understanding of NMD beyond its role 
in mRNA surveillance could lead to discoveries that impact our health 
and diseases. 
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