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Abstract

For five decades, the discovery, mapping and analysis of genomic markers in non-coding,
coding-, and/or intergenic regions have provided precious information which can be used for
translational and personalized medicine. Indeed, submicroscopic genomic variations (e.g.
point mutations, microsatellites, single nucleotide polymorphisms (SNPs), copy number
variations (CNVs), microsatellites) have been associated with changes in gene expression
and clinical phenotypes (e.g. pathologies, population diversity, genetic adaptation and/or
evolution). Emerging findings, including my works, highlighted the important role of SNPs
and CNVs in sickle cell anemia (SCA) patients. In particular, I reported that many of them
often occurred in genes involved inflammation, auto-immunity, lipid metabolism, and cell
adhesion when adult SCA patients with stroke complication were compared to stratified
controls (e.g. groups of SCA patients without stroke). The dynamism of the genome with
possible combined role of sub-microscopic genomic alterations in complex diseases such
SCA, strongly suggest a need for elaborated multi-disciplinary approaches to treat patients
in a personalized fashion. In this manuscript, I critically provide a short cut for personalized
medicine by first describing major genomic variants before focusing on the role of SNPs
and CNVs in human pathology using SCA, the first reported genetic disease, as a key
example.
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Sub-microscopic genomic variants

Mutations are defined as a change of the nucleotide sequence
resulting from:'* (i) unrepaired damage(s) to DNA (e.g. errors in
non-homologous end joining (NHEJ); (ii) errors in the process
of replication (e.g. error-prone translesion synthesis); (iii) a point
mutation (e.g. nonsensense-, missense-); (iv) a frameshift mutation
such as insertion (e.g. duplications) or deletion of DNA segments by
mobile genetic elements (e.g. transposons/”’jumping genes”) through
genetic recombination. Mutations (e.g. loss-of-function-, gain-of-
function-, dominant negative/antimorphic-, lethal, back/reversion,
conditional, neutral or silent) in somatic and/or germinal cells, can
be spontaneous (e.g. tautomerism, depurination, deamination, slipped
strand mispairing) and naturally occurring (e.g. during inheritance)
or induced (e.g. by mutagens such as radiation, alkylating agents
or by experimental mutagenesis). Mutations are essential for specie
evolution,® and so for the genetic diversity (natural selection). They
can be harmful/deleterious, beneficial/advantageous or neutral/nearly
neutral.® Microsatellites represent simple, short or variable sequence
repeats of DNA (e.g. (CA),), and so they are often named as SSRs
(i.e. simple sequence repeats), STRs (short tandem repeats) or VNTRs

(variable number tandem repeats).” A large part of microsatellites
are present in transposons.® Interestingly, these microsatellites are
contributing to studies that investigate frame shift mutations (i.e.
insertion or deletion), for marker-assisted selection (MAS), finger-
printing and/or to better understand regulation of gene expression.
Importantly, microsatellites are considered to be good genomic
markers when the number of sequence repetitions is at least greater
than 10 due to the fact that the level of inter- or intra-specific
polymorphisms becomes higher.” Such length changes usually occur
when potential for replication slippage during meiosis is relatively
high.!o!!

SNPs are common structural genomic variations (e.g. C>T) within
a population or between populations (i.e. about 63millions SNPs in
humans, according to NCBI). Interestingly, almost all SNPs are bi-
allelic facilitating research investigations (e.g. minor allele frequency
(MAF)atalocus).'? SNPs, which affect only one single nucleotide base,
are more frequently present in non-coding regions when compared to
coding regions where two types of SNPs are found (i.e. synonymous
and non-synonymous).'3 Unlike synonymous SNPs, non-synonymous
SNPs (i.e. missense- or nonsense-) affect the protein sequence, and
SNPs distributed in non-coding genomic regions are able to alter
several cellular processes (e.g. pre-mRNA splicing, mRNA stability,
gene expression). Genetic recombination, mutation rate, and/or AT
microsatellites can determine SNP density (e.g. high (AT), is linked to
low SNP density).!*!5 SNPs are often associated with the susceptibility
of certain diseases (e.g. SCA, cancers, and neurodegenerative
disorders). CNVs represent a group of structural rearrangements of the
genome from 1Kb to several mega-bases (e.g. deletions, duplications,
inversions, translocations) that may contribute to the phenotypic
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diversity in humans as well as to the etiology of complex pathologies
such as cardio- and neurovascular diseases.'®!” CNVs originate from
inheritance, de novo mutation, low-copy repeats (LCRs) (http://
en.wikipedia.org/wiki/Low_copy_repeats), segmental duplicate(s),
alterations in the replication process (e.g. microhomology- mediated
break- induced replication (MMBIR)).!*-%2

Role of SNPs and CNVs in etiology of diseases
and personalized medicine

The evoked sub-microscopic genomic alterations, in particular
mutations, SNPs and CNVs, are known to deeply contribute in the
etiology of most human pathologies, depending on their respective
frequency (i.e. relative rate), function (e.g. gain or loss of), molecular
interaction (possible additive or synergic effects), genomic location
(e.g. exon, intron, promoter, junction), microenvironment (e.g.
epigenetic considerations such methylation, acetylation) (see
“Bayesian Network” model.?*?* Therefore, one should keep in
mind that CNVs, SNPs and/or mutations (e.g. silent) are not always
associated directly with a disease/a clinical phenotype at a determined
time point or period.

Tremendous advances in the development of state-of-the-art
genomic technologies (e.g. microarrays, next-generation sequencing
(NGS) platforms)® and in the constitution of large databases derived
from many international research investigations (e.g. Human genome
sequencing Project, international HapMap project involving genomic-
wide association studies (GWAS)) that aimed to genotype and map
millions of variants?>? for better understanding of the complexity of
particular diseases have been performed. Nevertheless, many gaps
still need to be filled in order to obtain a reliable big picture of the
functional gene/genomic dynamic in a spatio-temporal and clinical
context (e.g. chemotherapy and/or radiotherapy, which can induce
new genomic alterations).”” Further, for personalized theranostic
and prognosis medicine, the genomic deoxyribonucleotide acid
(gDNA) used for sequencing the human genome, the current meta-
analyses at the different biosystem levels (i.e. RNA and proteins) and
using different technological platforms induced a relative number
of bias (i.e. intra- and inter-errors).”’**3! To minimize such effects,
deep analyses, interpretations and validations are requested. In this
context, system biology much matters when OMICS are involved.
Indeed and interestingly, one study on genetic variations between
different species of Drosophila suggests that, if a mutation changes
a protein produced by a gene, the result is likely to be harmful, with
an estimated 70% of amino acid polymorphisms that have damaging
effects, and the remainder being either neutral or weakly beneficial.®
Nowadays, several databases describe the characteristics of variants
in humans (e.g. frequency, location, their association between them
and diseases) are available online (e.g. NCBI, OMIM, SNPedia,
Human Gene Mutation, GWAS Central, Genebank),?326:323¢

Until recently, GWAS have been mainly focused on associating
SNPs with a particular clinical phenotype, which undoubtedly
help a lot for personalized medicine.’” Indeed, the identification of
significant genetic variants of major effect or “modifiers” in complex
diseases, can be used as markers for a specific disease such as age-
related macular degeneration, diabetes, obesity, cancers, cardio-
and neurovascular diseases (i.e. stroke).”®* For instance, a point
mutation in the APOE (apolipoprotein E) gene was associated with
a high susceptibility of developing Alzheimer disease.* In more
complex diseases, SNPs rather work in coordination as seen in the
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case of osteoporosis (i.e. SNP-SNP interaction within APOE gene).*’
Besides, SNPs are relevant pharmacogenomic targets for drug
therapy,*' and represent stable inherited markers which are useful for
specie evolution or adaptation studies independently of an observable
phenotypic impact.*?

In addition to SNPs, rare or common CNVs are distributed
in the human genome and each CNV ranged from about 1Kb to
several megabases in size.>* 364 Indeed, the HapMap data analysis
estimated SNPs frequency to 83.6% while CNVs represented
as low as 17.7%, with a little overlap (1.3%) between SNPs and
CNVs signals.** This roughly confirms a more recent study which
reported that CNV variation accounted for about 12% of the human
genome.* Interestingly, since about 0.4% of the genome of unrelated
people typically differs with respect to CNVs* and de novo CNVs,*
CNVs can be used as markers for population studies and for twins/
individual differentiation. Remarkable studies showed that the
patterns of both SNPs and CNVs together combined to environmental
factors are required to produce the disease phenotype.'®3%4 Further,
likewise SNPs and possibly in combination to them, CNVs can affect
the individual’s drug response individual and so, the subsequent
susceptibility to health complications (e.g. disease resistance, adverse
effects).'® Thereby, CNVs has been associated with several complex
health conditions (e.g. cancers, infections, auto-immune diseases,
autism, schizophrenia, idiopathic learning disability).** Indeed,
higher EGFR copy number than normal has been associated with
non-small cell lung cancer.” However and importantly, a higher copy
number of a particular gene (e.g. CCL3LI) is not always associated
with a poor prognosis (i.e. HIV infection),* while a low copy number
of certain other genes (e.g. CD16) can increase the risk of developing
a complex disease (i.e. systemic lupus erythematosus).* Further, rare
CNVs play a crucial role in causing disease, which is rarely observed
with most common CNVs.* It is even worth to note that common
CNVs of certain genes (e.g. AMY1) can even be beneficial, and this
could be explained by their favored frequency during evolution
for adaptation.®®>” These observations are in line with my ongoing
experiments in adult SCA patients which confirmed that rare CNVs
can be reliable and targetable causative markers of diseases/disease
complications.’®%

Etiology of sickle cell anemia: important
influence of SNPs and CNVs

The discovery of a pathological hemoglobin S (HbS) by Pauling
and colleagues in 1949 was the first demonstration that the production
of an abnormal protein could be the cause of a genetic disorder.®’
Thereby, the SCA is a quite interesting example because:?$3%5572 (j) it
is the first diagnosed molecular disease, which is caused by an unique
mutation (i.e. single nucleotide substitution (f6Glu (GAG)—Val
(GTG)) in the normal B-globin gene (HBB) and inherited following
an autosomal recessive Mendelian pattern; (ii) it is the most common
hemoglobinopathy, which induces a structural transformation of
the normal (i.e. “donut-like shape”) red blood cells (RBCs) into
intravascular sickle RBCs (i.e. “croissant-like shape”); (iii) the
homozygous form of SCA (HbSS), which is the symptomatic form,
is associated with numerous complications, including stroke, a major
health public concern worldwide manifested by vaso-occlusive events
and episodic hemolysis; (iv) its large panel of subsequent complications
were found to be associated with SNPs and/or CNVs (e.g. SNPs in the
CYBA, ANGI1, TGFBR3, SELP, IL4R, ADRB2, VCAM1, LDL-R, AGT,
ANXA2 or TEK genes; CNVs in the UGT2B28 gene). Conversely, it
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is important to keep in mind that certain genomic variants are not
always associated with SCA seriousness. Thereby, SNPs in ADCY9
or BCL11A4 genes were associated with decreased stroke risk in SCA
patients due to their participation in up-regulating fetal hemoglobin
(HbF) production. Overall, these findings suggest a need for multi-
disciplinary approaches to manage SCA complexity with more
confidence (e.g. over-expression of HbF but also for a large panel of
genomic variants which can be used as reliable biomarkers of SCA
disease).?® The great advancement of the OMICS era shall provide
soon more insights regarding the etiology of SCA complications
and contribute to the implementation of the HapMap data in order to
develop efficient and safer theranostics.

Conclusions and perspectives

Although GWAS are fast emerging, it is clear that the set of markers
analyzed up-to-date do not cover the variability of the entire genome
yet. Therefore, continuous data implementation is still needed. Owing
to this consideration, CNVs can implement SNPs for the diagnosis
and prevention of a given disease (i.e. monogenic or polygenic).
Eventually, variants can be considered as valuable biomarkers of
disease, and should permit precocious diagnosis and more efficient
treatment of a given patient.
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