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Flaviviruses are a family of positive - single stranded RNA viruses, which includes Yellow
Fever viruses (YFV), Dengue viruses (DENV), Japanese encephalitis (JEV), West Nile
viruses (WNV), Zika viruses (ZIKV), Bovine Viral Diarrhea virus (BVDV), and Hepatitis
C virus (HCV or Hepatitis C). Majority of these viruses are mostly carried by mosquitoes
and are transmitted through mosquito bites or through contaminated blood or other blood
products. As of now, there are vaccines available for most of these viruses, but some are
still in development and research. HCV is one of the leading cause of liver cirrhosis, chronic
hepatitis C, and liver cancers when left untreated. Currently, there is no vaccine available
for this virus. That is why, HCV remains a threat for public health. Due to genomic
similarities between HCV and Bovine Viral Diarrhea Virus (BVDV), BVDV is widely used
as a surrogate model in studies related to HCV and its therapeutics. Hence, identifying
a suitable target miRNA that could bind to the nucleocapsid protein gene of BVDV to
inhibit viral replication is the main objective of this study and maybe later the same miRNA
can be used for inhibition of HCV. The aim of this review is to highlight the importance
of miRNAs targets, the impacts of Hepatitis C, and how miRNAs are being utilized as
antivirals and vaccines.
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Introduction

Virology of flaviviruses

The Flaviviruses are members of the family Flaviviridae and
are enveloped viruses with a single stranded, positive sense RNA
viruses,! which is divided into three genres: flavivirus, pestivirus,
and hepaciviruses® and comprises over 70 viruses, which includes
dengue virus (DENV) viruses, Japanese encephalitis (JE) viruses, St.
Louis encephalitis (SLEV) virus, yellow fever (YFV) virus, and tick-
borne encephalitis virus which are all important human pathogens.>*
Flaviviruses also include members of West Nile (WNV) virus,
Zika virus, and Hepatitis C viruses (HCV), which are among the
hepatoviruses, and also belong to the flaviviruses family. This family
even includes other important animal pathogens, such as Bovine Viral
Diarrhea virus (BVDV).” Flaviviruses share a common virion structure
and among these viruses DENV and ZIKA are well characterized
in this family.® During infection, the genome is translated into a
single polyprotein, which is then processed into the structural and
nonstructural proteins (NS).” The genome of the Flaviviridae family
is organized as 5’-CAP(Type-I)-5’UTR-C-prim-E-NS1-NS2A-
NS2B-NS3-NS4A-NS4B-NS5-3’UTR and just one open reading
frame (ORF) flanked by untranslated 5* and 3’ regions (UTRs)." In a
study done by Ng, C, W., et al, the non-coding 5’UTR of flaviviruses
comprise about 100 nucleotides in length, as the 3’UTR ranges from
400 to 700 nucleotides in length, depending on the virus (2017).

Virology of bovine viral diarrhea virus

Pestiviruses genus includes 4 species: BVDV 1 and 2, classical
swine fever virus (CSFV) and border disease virus (BDV),'>"'® which
are a group of important animal pathogens that affect cattle, pigs, and
sheep (Xu J, et al 1997). There are 2 subtypes of BVDV: BVDV type
1 and type 2, according to Jackov et al, BVDV Type 1 is a causative
agent of bovine viral diarrhea and mucosal disease, while type 2
isolates may cause hemorrhagic syndrome with high mortality rate
among cattle (2008) (Figure 1).

Figure | Electron microscopy of Bovine Viral Diarrhea Virus virions."”
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BVDV virus particles range between 40 — 60 nm in diameter,' and
the genome is 12.3 kilo-bases in size.'"” The viral proteins of BVDV
are organized in the following order in the polyprotein: NH2-Npro-
C-Erns-E1-E2-p7-NS2- NS3-NS4A-NS4B-NS5A-NS5B-COOH,** %
which is quite similar to that of HCV Polyprotein. All viral structural
proteins consist of autoprotease Npro, capsid protein C and the
glycoproteins Erns, E1 and the E2,%* while the nonstructural (NS)
proteins consist of the p7, NS2, NS3, NS4A, NS4B, NS5A, and
NS5B.”* For viral attachment, BVDV attaches to the CD46bov?
and utilizing the glycoproteins E1 and E2; gp53 and gp48 receptors.”’
Where, Omari, E, K., et al,?® clarifies the role of pestivirus glycoprotein
E2 in viral fusion with host cells (2013) (Figure 2).%
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Figure 2 A.Virus Structure of BVDV. B. Viral Attachment of the El and E2
proteins to the CD46,  receptors in the host cell. C. Polyprotein organization
of the structural protein and nonstructural Proteins.

BVDYV transmission

Possible transmission of BVDV among cattle includes fomites,
such as feed, water, and equipment such as the nose tongues, milk
bottle nipples, needles, palpitations, secretions and excretion of urine
feces, mucus, milk, and other contaminated minerals.? When cattle are
exposed, they usually recover and shed the virus temporarily, however
pregnant cattle are more susceptible and the outcome depends on the
gestational stage of the fetus (Fulton, R W et al., (2000).

Pathogenesis

Acute and persistent BVDV infections of pregnant cows are often
accompanied by BVDV virus transmission into the fetuses in which
the infections may result in abortions, teratogenic changes or delivery
of persistently infected, immunotolerant calves, depending on the
gestation.’ While cattle are the main host, BVDV infects various
cattle including Bisons and can cause immune dysfunction and
infection which result in asymptomatic infections and seroconversion
or a variety of pathologies including fatal mucosal disease (Apapov,
E. etal., 2003). If a cow is pregnant, the fetus will eventually become
infected.’! The virus has the ability to cause transplacental infection
resulting indifferent outcomes depending on the stage which would
lead to fetal death, malformation, acute syndromes of the neonate,
immune tolerance and lifelong viral persistence.’”? Disease associated
with BVDV can range from clinically inappropriate to severe, even
with the availability of vaccines.*

Virology of hepatitis C virus

Like all members of the Flaviviruses, HCV contains a (+) stranded
RNA genome, which contains a 9.6-kb with one long open reading
frame (ORF) encoding a polyprotein that is co- and post translationally
cleaved into structural proteins, that is a single stranded RNA of the
positive polarity consists of a long ORF and 5’ and 3’ non-translated
regions (NTRS).”** The HCV patrticles are enveloped with a diameter
of 55 — 65 nm.*® The genome polyprotein organization of HCV are
arranged in the following order: NH2-C-E1-E2-p7-NS2-NS3-NS4A-
NS4B-NS5A-NS5B-COOH,*** where the Core (C) and the E1, E2
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are the major structural proteins that comprises the virions (virus
particles),* while the nonstructural proteins (NS) consists of the p7-
NS2-NS3-NS4A-NS4B-NS5A-NS5B.#4 HCV, as of now, is one of
the major concerns to public health, due to the lack of a suitable cell
culture system to retain and maintain growth of the virus. Due to this
drawback, there is no vaccine have been developed so far to prevent
the disease. This is the reason why members of the Pestivirus groups
of the Flaviviridae family that are closely related to HCV are widely
used as a surrogate model for HCV (Figure 3) (Figure 4).474
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Figure 3 Electron microscopy of Hepatitis C Virus virions.*
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Figure 4 Overview HCV virus structure. A. The viral protein structure of
HCV. B. The receptors of host cells for HCV entry. C. Polyprotein genome
arrangement.

HCYV transmission

HCYV is a blood borne-virus, but there are other major routes of
transmission, which includes sharing injection needles, drugs-abuse,
which accounts for most infections, blood contaminated needles,
transfusion of contaminated blood, and blood products, and unsafe/
traumatic sexual practices.*=* In a study done by Nijemijer MB et
al., they validated that there is evidence that acute HCV infections
have occurred among MSM (men who have sex with men) who
are HIV- positive and have become a risk factor. Nijemijer MB et
al., also states that HCV infection among MSM has increased from
0.07/100 person a year in 1990 to 1.8 per 100 person a year in the year
of 2014 (2019). There were also studies indicated that in the early
1990s, a study showed an increased prevalence of HCV antibodies in
alcoholic patients, with up to 30%-40% prevalence of chronic HCV
infection reported in this population® and in patients with cirrhosis
had a greater total lifetime alcohol consumption.*

HCYV pathogenesis

Acute HCV infection leads to more than 70% of patients
to the development of chronic hepatitis and then cirrhosis and
hepatocellular carcinoma®® despite antiviral therapeutics.”’ Cirrhosis,
portal hypertension, hepatic decompensation, and hepatocellular
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carcinoma have been reported due to chronic HCV infection.®® When
left untreated, HCV can lead into Chronic HCV (CHC) infection,
which progresses rather slowly after infection for most individuals
and patients are often asymptomatic until they develop liver disease
resulting in delayed diagnosis.”

Epidemiology of HCV

Worldwide, approximately 200 million people are infected
with HCV and at serious risk of developing chronic hepatitis and
hepatocellular carcinoma, no vaccines are available, and current
therapies fail to eliminate the virus from a large number of patients.’
Approximately 2-4 million new infections occurring each year®
and over 350000 people die each year from hepatitis C related
liver diseases.’"**¢! Furthermore, HCV is a leading factor of liver
transplantation in the United States, and this has caused major
implications in the present era of organ shortages.®> Moosay HS et
al.,’® also mentions that more than 50% of hepatocellular carcinoma
cases in the endemic population have happened due to chronic HCV
infection and consisted of more than 6% of cirrhosis around the world
(2017). In addition, there are problems in different countries; China,
India, and the United States, which are the three most populous
countries around the world, and they are also the top three countries
for the burden of disease associated with HCV infections.*® Yang J et
al.®® goes on to say that it was estimated that 6.2 million new HCV
infections, 0.54 million HCV related deaths reported in 2019, with an
increase of 25.4, and 43.6 % from the year 1990 and the numbers are
still changing as the years go by (2023).

HCYV impacts on indigenous communities

In the United States American Indian/Alaskan Native (AI/AN) are
disproportionately affected by HCV infections. In the U.S., A/AN and
Canadian Aboriginal peoples have a higher prevalence of liver disease
than other peoples.** and validates indicate that chronic liver disease
is the 5th leading cause of mortality for AI/AN peoples.®>* Rempel
J., & Uhanova, J further indicates that in Colonized countries, the
prevalence of HCV infection in indigenous populations tends to be
higher than non-indigenous populations (2012).% In 2019, the U.S.
Department of health and Human Services Office of Minority Health
reported 9.05 cases per 100,000 and 9.08 death rates per 100,000.
Dena Smith (2020) states that in the year of 2019 alone, approximately
35,000 cases of acute HCV among American Indians/Alaskan Native
were reported including 3,887 AI/AN who are living with CHC that
was well above the 2019 target of 41,467 estimated HCV infection in
the U.S. (Figure 5). Although antiviral agents show great efficacy in
HCV treatment, it seems that the global burden of liver disease does
not decrease (Sharifnia, Z et al., 2019).
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Figure 5 HCV cases per 100,000 among Al/AN compared to the cases among
white communities. 2018 report by the Office of Minority Health.
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Clinical virological diagnostics of hepatitis C

Viral serology and molecular assay for HCV have played roles
in identifying the infection (Cloherty, G., et al., 2016) and is based
on two types of laboratory test; serologic assays to detect anti-HCV
antibodies, which is also known as the indirect test and using EIA or
enzyme linked immunosorbent assay (ELISA) (Gupta, E., Baipai, M.,
& Choudhary, A., 2014).5 Guptae et al, and other researchers agree
that HCV can also be detected through quantification of the RNA
genome, by utilizing polymerase chain reaction (PCR) and/or real-
time PCR (2014).

HCV cell culture system

Unveiling a robust cell culture system for HCV represents a
valuable tool for in vitro studies and is still hampering screening of
antiviral strategies,® however without a known system this remains as
a major obstacle for vaccine development. The main reason is that the
infectious genome of HCV upon infection, failed to replicate in cell
cultures. But engineering of HCV replicons to express a drug-selectable
gene made it possible for the RNA replication in cell cultures.®” In
1992 HCV was successfully grown in human T-Lymphocyte MOLT-
4Ma and HPB-Ma cell lines that were pre infected with murine
retroviruses.”” Durverlie, & Wychwoski, mentions that other cell
lines such as human hepatoma cell lines or Huh 7 and Hep-G2 could
support the HCV replication, however these are not reliable and could
not be used for studying viral cycle and screening for antiviral drugs
(2007).7°

In vitro replicons using JFH | based system

There are a few robust methods by which HCV virions were
grown and studied in vitro. Development of HCV RNA replicons was
a breakthrough; however, these replicons do not undergo a complete
replication cycle, and antiviral compounds will not identify early
targets.”' Despite the fact that there is no validated cell culture system
available to support the full viral life cycle, there have been methods
developed to use the JFH1 base system for HCV genotype 1, 2 and
3, but still no known systems for genotypes 4, 5, and 6.7 Scheel et
al discusses that in their investigation, they were able to establish a
cell culture system to study HCV, however this is only the first step
to uncover a new method to maintain the full infectious cycle of
Hepatitis C (2008).7

Hepatitis C infection cycle

The infection cycle of HCV is not fully understood, due to
that lack of an in vitro model system,” but, just like many viruses
replications, HCV replication can be divided into several stages, viral
attachment, viral entry, release of genome, protein translation, RNA
replication, viral assembly, and release of new virus (Li, H., Yang,
C. & Lo, S., 2021). Because the RNA can act as an mRNA, viral
proteins are translated in the cytoplasm by an RNA dependent — RNA
polymerase, rather than entering the nucleus. HCV RNA replication
takes place within the replication organelles (RO) of the endoplasmic
reticulum (ER) (Li, H., Tang, C., & Lo, S., 2021). The (+) stranded
RNA carries a single long open reading frame that encodes a
polyprotein of 3,010 amino acids and generates series of proteolytic
cleavages that are activated by peptidase and two viral proteinases
amidated by host cell signals.” The virus particles contain the core,
the envelope glycoproteins E1, and E2.° E1 has up to 6 glycosylation
sites and E2, which as 11 glycosylation sites, that are used to attach
to the host cell (Charles, M, R., 2011). HCV attaches to the multiple
surface proteins called the scavenger receptor class B type 1, the low-
density lipoprotein receptor (LDLr), and to the tetraspanin Cluster of
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Differentiation 81 protein for viral entry’® on the hepatocytes of the
liver. HCV also binds to an additional receptor known as the claudin-1
and occludin proteins. The virus is then taken up via endocytosis
where the RNA is released into the cytoplasm and is translated into
viral proteins that make up the structure of the HCV (Figure 3).

The proteins of HCV include the structural core and envelope
glycoproteins E1 and E2, and the following nonstructural proteins:
p7 viroporin and nonstructural protein 2 (NS2) that participate in
virus assembly and release; NS3 and NS4A; which is a zinc-binding
and proline-rich hydrophilic phosphoprotein and NS3 which is
responsible for other NS proteins.” P7 are viroprions that aid the virus
to be released from the host cell after replications through interaction
with other viral proteins.”” According to Gailla, C., Tomei, L., &
Francesco, R., they have validated that the NS3 protein is responsible
for the cleavages of the NS3, NS4A, NS4A-NS4B, NS4B-NS5A,
and the NS5A-NS5B junctions (1994).” While the genomic RNA is
translated into a single polyprotein precursor that consists of three
structure; the capsid, the Membrane, the Envelope and the seven
nonstructural proteins, where only the structural proteins become part
of the mature virion, where the polyprotein processes RNA synthesis
and virus morphogenesis (Figure 7).
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Death Rates due to HCV, 2018

Death Rates per 100, 000

Ethnic Groups

Figure 6 The death rates among American Indians/Alaskan Native per
100,000, compared to non-Hispanic whites, and white Americans. Reported in
2018 by the U.S. Office of Minority Health.
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Figure 7 The replication cycle of HCV.

Hepatoviruses genomic variations

There are 5 distinctive types of hepatitis viruses: A, B, C, D, and E,
which all infect the liver and cause inflammation, but they share very
different genomes. Hepatitis viruses are the leading cause of morbidity
and mortality as the consequences of acute chronic infections.® Hence,
HBYV and HCV infections account for a substantial proportion of liver
diseases worldwide, they have some differences. Like HBV belongs to
the Hepadnaviridae family and while HCV belongs to the Flaviviridae
family.?' HBV is a double stranded DNA virus, with approximately 3.2
kb and classified into eight genotypes A through H.8' HCV is a single

stranded RNA virus whose genome is approximately 9.6 kb, which is
quite larger from its counterparts. Hepatitis A Virus (HAV) harbors
7.5 kb genome/polyproteins that is processed into four structural and
six nonstructural proteins by proteinase.®? Wassenaar, et al added
that, in the lack of the cap assembly that is common in RNA viruses,
translation of HAV is initiated by the 5’-untranscribed regions of the
RNA genome, which functions as the ribosome entry site (2019).%

HEYV, unlike HCV, HEV is a non-enveloped viruses and has a
genome length of 7.2 kb, with approximately 33 nm in diameter size,
and is a member of the family Hepeviridae® and contains three virus
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like proteins (VLP). According to Lemon, M, S., & Walker, M, C.*
in these viruses: HEV and HAV viruses are shed as non-enveloped
virions to the environment as compared to their counterparts, while
HBYV, HCV, and HDYV, are the only members that have an envelope.
The most fascinating about these hepatitis viruses is that HAV is an
RNA virus, as well as HCV, HDV, and HEV, however, Hepatitis B
Virus is the only hepadnaviral group that contains a double-stranded
DNA virus.%

In this section of the review, we will discuss the different
variations in the different Hepatitis viruses. Due to significant
genetic heterogeneity, HCV is classified into 7 major genotypes and
numerous subtypes that differ in — 30% Nd -20% of their sequences.*
Gottwein et al,* mentioned that the genotypes also differ biologically
and in their rates of response to therapy and antivirals (2011). The 7
genotypes of HCV includes: 1a (isolate H77), 1b (J4 and Con-1), 2a
(J6), 2b (J8), 3a (S52 and 452), 4a (ED43), 5a (SA13), 6a (HK6a), and
7a (QC69) which all express recombinants in the core-NS2 proteins
(Sheel T et al. 2011). Out of the 7 genotypes, genotype 1a accounts for
most of the HCV infections worldwide and were found to be resistant
to alpha interferon/ribavirin treatment (Li Y, et al 2014). Of these 7
genotypes, 1a and 2a have worldwide distribution and are known to be
associated with different clinical profiling and therapeutic responses
(Kato, T et al, 2007).

HCYV genotypes and subtypes

Current classification of HCV genotypes in seven major types
which include 1, 2, 3, 4, 5, 6, 7, with genotypes 1 - 3 being widely
distributed throughout the world”**! and genotype 1 being the most
common in the United States.?? In few recent studies by Brancho., et
al., 2008; Li et al.,'¥; & Lu L et al.,”” it is explained that of genotype
1 there are seven subtypes (la, 1b, lc, le, 1g, 1h, and 1i) that were
confirmed with genomic sequences. However, Lu L et al.,”* claims that
there are 5 additional subtypes of HCV 1 which are 1d, 1f, 11, 1j, and
1k, that were identified through partial sequencing. Worldwide the
most common genotypes are genotypes 1 and 3 and relatively make
up about 46% and 30% of HCV cases.* Keikha et al,** also states
that based on treatment, genotypes 2 and 3 have poor responses as
compared to genotypes 1 and 4 (2020).

HCYV genotype 3

Within these major genotypes, globally genotype 3 makes up 22 -
30% ofall infections and has higher rates of steatosis, faster progression
of cirrhosis, and higher rates of hepatocellular carcinoma as compared
to HCV genotype 1. HCV 3 is the most clinical importance, which
confers a high level of resistance to treatments such as daclatasvir and
to velpatasvir.” It is the second most common phenotype in the world,
affecting approximately 54.3 million individuals.”” Shahnazariam et
al explains that 75% HCV-3 cases occur in East Asia, 54% - 80% in
India, 79% in Pakistan, and 30% in Europe (2018).

HCV and BVDY similarities

a. BVDV and HCV surface protein similarities: HCV and BVDV
share a high degree of homology in terms of their genomic
organization, strategies of protein expression, genome replication,
and viral envelope.”® Pestiviruses are more closely related to
HCV than to the classical flaviviruses and have been used as a
surrogate model for HCV.? Although HCV E1 and E2 proteins
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both resemble class II fusion proteins found in alphaviruses and
flaviviruses, evidence suggests that the HCV glycoproteins are
more similar to their pestiviruses homologs.'® Tellinghuisen et al.>
states that in BVDYV, the four conserved cysteine residues often
associated with a structural tetrahedral mental (zinc)-binding site
are that similar to those identified in the NS5A protein of HCV
(2006). When aligning the sequence of the cysteine residues,
they were in similar arrangement as in the NS5A zinc-binding
site of HCV. Like HCV, BVDV utilizes the LDL (low-density
lipoprotein) receptor to enter cells, similar internal ribosome entry
site (IRES) for translation, NS4A cofactor with homologous NS3
protease, similar NS3 Helicase/NTPase, which is also similar to
NS5B RNA-dependent RNA polymerase.”! The literature review
also validated that HCV and BVDV do indeed harbor a long 5’
UTR (Non-Transcription Region) and IRES (internal ribosomal
entry site) in their genome, which lead to BVDV being studied
in place of HCV.

b. BYDV and HCV molecular similarities: As one of the most
Characterized members of the Flaviviridae family, BVDV
provides a good model system for HCV, both utilize an IRES
within the 5” UTR for translation of viral polyprotein, both viral
NS3 proteases of both viruses require NS4A as a cofactor for
polyprotein processing (Lai, H, C, V., et al 2000). Lai et al goes on
to say that the entire of the BVDV IRES could be replaced by the
HCV IRES and the resulting chimeric viruses relied on the HCV
IRES for growth, which allowed the in vitro efficacy evaluation
of HCV IRES inhibitors (2000). Additionally, pestiviruses are
more closely related to HCV than the classical flaviviruses, and
they have also been used as a surrogate model for HCV.**% and
in vitro infectivity.'®

Surrogate models

Like BVDV, Yellow Fever Virus (YFV) has also been employed as
a surrogate model for HCV replication for the evaluation of antiviral
agents. Although this virus can also be utilized as another surrogate
model, the genome is much more distinct from HCV and BVDV, by
harboring a cap-dependent genome instead of an IRES translation.
Moreover, BVDV is still the top selection of HCV surrogate model
because of its noninfectious status against humans, while YFV has
mostly been used for evaluating compounds for antiviral efficacy.
There have been reports on a surrogate model that were used to
develop an antiviral drug for Hepatitis E viruses. Debing Y et al.,'"!
and his colleagues employed cutthroat trout virus (CTV), which is a
nonpathogenic fish virus with remarkable similarities to HEV, and as a
potential surrogate for HEV and established an antiviral assay against
this virus using the chinook salmon embryo (CHSE-214) cell lines.

Discovery of microRNAs

Since the discovery of the first microRNA (miRNA) in
Caenorphabditits elegans (C. elegans), it has changed the field
of molecular biology. MicroRNAs (miRNA) are a class of small
non-coding RNAs.'”1% These molecules play crucial roles in cell
replication, differentiation, immune responses, viral replication and
have been used for antiviral drugs and vaccine development. Many of
the miRNA known today, have been uploaded and listed in computer
user friendly databases that can be easily accessible to users (Figure
8) (Figure 9).
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3. HCV 2 mRNA CP JN055424.1
4. HCV 3 mRNA CP HM042020.1
5. HCV 4 mRNA CP U33436.1

6. HCV 5 mRNA CP U3343.1
7.HCV 6 mRNA CP U33435.1

Figure 9 Nucleotide sequence alignment, generated by Mega alignment database. The BVDV type | nucleocapsid sequences aligned with the Capsid/Core

sequences of the HCV virus and its 6 genotypes. Perfect alignments are indicated by *.

MicroRNA roles and functions

Unlike mRNAs, which encode proteins, miRNAs do not but
they do control various levels of gene expressions.!% There are three
type of small non-coding RNAs: small interference RNA (siRNA),
micro RNAs and RNA interference (RNAI), that are considered as a
significant posttranscriptional gene silencing mechanism and functions
as an antiviral immunity in eukaryotes.!”” Zhao, Y., & Srivastava,
D., also classified additional miRNAs: the repeat-associated small
interfering RNAs, and piqi-interacting RNAs (piRNAs) (2007).1%
They are critical for development, used as biomarkers for diseases,
and regulate cell-cell communications.!” miRNA are small RNA
molecules with length of 18 to 25 nucleotides (nt) and have been
detected in many plants and animal species and even in some
animal viral RNA genomes.'"” miRNAs sequences expressed from
longer transcripts encoded in animal, plant, and virus genomes and
recently discovered in single-celled eukaryotes.!"! Griffiths-Jones et al
continues that miRNAs also regulate the expression of target genes by
binding to complementary sites in transcripts and cause translational
repression or transcript degradations (2007).!!

The Review also reveals various databases that are considered
useful in developing and annotating miRNA sequences for specific
targets. Examples of databases that contain miRNAs are miRDbase,
microRNA REGISTRY, NCBI Basic Local Alignment Search Tool
(BLAS), MiRBase Targets, and miRanda Algorithms. With the use
of these databases miRNAs can be sequenced, aligned, and amplified
using alignment search tools. One of which was presented by Griffiths-
Jones, et al.'® who used the miRBase database which is aimed to
provide integrated interfaces to comprehensive miRNA sequence
data, annotation, and predicted gene targets. miRBase targets is a
comprehensive new database of predicted miRNA target genes at
http://microrna.sanger.ac.uk.'” This review will also discuss the
impact of HCV on the indigenous populations, genomic similarities
within HCV and BVDYV, and miRNA’s role and functions in vaccine
development against these viruses.

miRNAs are known to have a major role in regulating the expression
of protein-coding genes, to block invading viruses and to quell the
genomic incorporation of genetic parasites like retroviruses and
lentiviruses.'> miRNA may be capable of inhibiting viral replication,
they are also known to enhance the virulence of viral replication. For
example, miR-122 is a liver-specific miRNA and most abundant in
the liver (70%) that positively regulates HCV RNA abundance and
essential for production of infectious HCV (Jangra et al., 2010).
miRNA are also crucial regulators of innate and adaptive immune
responses by activating T and B cells and their abnormal expression
function of the immune system have been linked to multiple human’s
diseases including inflammatory disorders such as inflammatory
bowel disease, and cancers.'"?

MicroRNA inhibitors against various viruses

a. MicroRNA used against the influenza virus: Not only do
miRNA regulate gene expression, play role in cell proliferation,
and apoptosis, but an increasing number of studies suggest that
viral miRNAs are key in controlling viral infection in mammalian
hosts via several distinct mechanisms (Figure 7)."'0 In an
experiment done by Lipong Song et al,''° cellular miRNAs which
bind and degrade PB1 mRNA of Influenza A virus (IAV) and
low PB1 protein demonstrated inhibitory replication of IAV and
downregulated PB1-F2, which reduced viral virulence (2010).
Aside from being used as a siRNA against the PB1 protein in
Flu A, miRNA was also used as a silencing tool synthesized to
target the NP gene. Waring et al.''* Demonstrated a miRNA to
target the NP gene of the mRNA they have attenuated the Flu
A virus by using miR-21. Results demonstrated by Yang Y,'"
showed three siRNAs (N796, N580, and N799) Targeting the
N gene could inhibit rabies (RABV CVS-11) (challenge virus
standard) reproduction, by using a pRL-TK vector with the [AV
gene inserted into the Xbal Sites (Figure 10).'°

Citation: Cayatineto HW, Hakim ST. Prospective approaches to target bovine viral diarrhea virus and hepatitis C virus using miRNA-based inhibitors. | Hum

Virol Retrovirol. 2024;11(1):36-47. DOI: 10.15406/jhvrv.2024.11.00278


https://doi.org/10.15406/jhvrv.2024.11.00278

Prospective approaches to target bovine viral diarrhea virus and hepatitis C virus using miRNA-based

inhibitors

b. MicroRNA against rabies virus: This discovery has led to
potentially new and effective anti-RABV drugs, which used
siRNAs that were able to bind and attach to the N gene of the
rabies virus. The results by Yang et al, demonstrates that the
three siRNAs, N796, N580, and N799, were used targeting the N
gene which could potently inhibit RABV CVS-11 reproduction
and have the potential to be developed into new and effective
prophylactic anti-RABYV drugs (2012).'%

c. MiRNA used to silence hepatitis B: miRNA was also used
to silence the HBSAG gene of Hep B virus by using a miRNA
like has-miR-125a-5p that was expressed in human liver, was
introduced via transfection into PLC/PRF/cells infected with Hep
B virus and has led to a reduced in expression of HBsAg.!"® In
an experiment done by Gao Y et al.''”” the amiRNAs were used
to inhibit Hep B replications. They also stated that out of the
miRNAs that were tested, amiRNA-HBV-S608 was the most
effective in inhibiting HBV and found that HBSAG and HBeAg
were also inhibited and found that HBV DNA decreased in the
process.

d. RNAi against foot-and-mouth disease: RNAi was another
miRNA molecule that was used as a silencing gene that was used
against Foot-and-Mouth Disease (FMDV). FMDV is a highly
contagious disease of cloven-hoofed animals and is a member of
the Picornaviridae and is a positive-stranded RNA virus. Chen,
W et al.,"!8 reports that a DNA vector-based RNAi Technology
specifically suppresses the expression FMDV VP1 in BHK021
Cell and inhibits FMDV replication in BHK-21 cells. Chen,
W et al.,'"® states that the results indicate that specific siRNAs
dramatically inhibit the replication of FMDYV, and it is well
known that RNAI acts as a natural antiviral defense mechanism
in plants against RNA viruses.

e. Small interfering RNA used against pestiviruses and addition
flaviviruses: In an experiment done by Misher N et al,'® they
have successfully inhibited viral replication in BVDV by using
siRNA, to target the E1, E2, and the E™ regions of BVDV and
what was presented was a reduction in virus titers by 7.9 — 19.9
folds and they demonstrated that moderate anti-BVDV — 1 effect
in MDBK cells was achieved by sicock tail. Another example
of successful viral inhibition was using siRNAs targeting the
nucleoprotein gene of rabies virus. There are two main methods
to identified miRNAs first that has target in the flavivirus
genomes, in vitro or in vivo strategies which is a time-consuming
procedure and the second is bioinformatics by defining a panel of
miRNAs that target the flavivirus genome.'? Not only were these
miRNAs used against BVDV, but they were also used against
various members of the flavivirus family such as dengue virus
(DENV). In an experiment done by Xie, P et al, who used 6 out of
21 single- amiRNAs that were expressed in plasmid vectors and
have shown to be effective against DENV replication (2013). Wu
N et al.”?! found that an overexpression of miR-233 in EAhy926
cells suppresses the DENV2 replication which could lead to an
antiviral miRNA against DENV2.

There was also data available that validated that miRNAs were
used against flaviviruses and used as inhibitors against their replication
cycle. In an article written by Saha, A et al, they used an artificial
miRNA (amiRNA) based approach by using vector-delivering
amiRNA to effectively inhibit viral replication of Chikungunya virus
(CHiKV) by inhibiting the E2 protein (2015). The literature also
demonstrated that several RNAi were used to reduce the viral protein
expression in the core and E2 protein of HCV, because the core and
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the E2 protein play crucial roles in viral infection and replication
cycle.!'?? In the experiment it mentioned the use of four miRNAs that
were used against the two E2 proteins and two C proteins and show
inhibitory effects of HCV. This discovery has led the development of
antiviral therapeutics against HCV in humans.

According to Slonchak et al,'?* they have used a miRNA called
miR-532-5p, which was used against the viral replication in WNV.
The mentioned miRNA has enhanced virus infection by 8 — folds
at 24 hpi but inhibited viral replication approximately 10-fold at 48
hpi. As of late, miRNAs have been used against majorities of viruses
related to the flaviviruses, but they were also effective against other
viruses as well such as the Flu, Rabies, CHiKV, FMDV, and members
of the Flavivirus families, data available in various literature has
also demonstrated the use against miRNAs that even inhibited the
replication of COVID-19.

f. MicroRNA against Covid-19: Studies done by Yan et al,
(2022) who used several strategies for blocking the interaction
between SARS-CoV-2 and ACE2 receptors, preventing the
spread of infection. Yange et al, goes on to demonstrate that the
protocol was achieved by directly targeting the binding domains
of coronavirus S (spik) protein (2022). This can be achieved by
inserting a perfect miRNA complementary target into a target
gene becoming a siRNA, in process inhibiting viral replication. A
similar strategy can be utilized for HCV by using BVDV as the
surrogate model.
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Figure 10 Mechanism of inhibitions of microRNAs attaching to specific parts
of a viral genome causing a mismatch, leading to the inhibition of the viral
genome.

Discussion

Overall, this review article discussed the impacts Hepatitis C has
in both the United States, and globally, but also on the indigenous
communities, and how it still remains a threat to public health. With
no suitable cell culture system and no production of a vaccine, HCV
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remains a major risk factor for the development of liver cirrhosis and
hepatocellular carcinoma.'* Buckwould et al.’** explains that without
an authentic method to grow and maintain Hepatitis C in cells,
surrogate viruses are continuously being utilized. Without a reliable
cell culture system, the viral life cycle remains complex and not
fully understood.'® While there are some differences, BVDV shares
similarities in replication cycle, biology, and genetic organization with
Hepatitis C, and hence BVDYV is mainly used as a surrogate model for
in vitro testing in the search of antivirals against Hepatitis C.!%

Even with the discoveries of using the JFH1 method to study
Hepatitis C in vitro, there is still no cell culture that can maintain all
genotypes, meaning that development of a novel cell culture system
is still a needed priority. Although people have cloned full length
Hepatitis C genomes and confirmed their infectivity in chimpanzee
models, none of them is infectious in cell cultures except for the JFj-1,
which is the first clone to support efficient cirrus production in Huh7
hepatoma cells.”® Even though that JHF1 was proven effective, the
sensitivity of the different genotype viruses were relatively small'?’
and the titers of viral RNA level are relatively low.!*

Though miRNAs have been discovered in invertebrates, there are
miRNAs found in plants too, which could also play a possible role
in antiviral mechanisms.'?’ This review also discusses the importance
of miRNAs, how they play pivotal roles in biological processes
including cell proliferation, metastasis, differentiation, development
and apoptosis.’*® They were even shown to have the capabilities to
block viral replication for virus infections. These miRNAs have
additional roles other than the already mentioned functions, they are
important for natural target recognition.”*' It has mentioned that the
host miRNAs were shown to interact directly with viral RNAs of
RNA viruses and modulate replication (Sonchak et al 2016). They can
also silence genes and block replication in various viruses, which can
be used as an antiviral therapeutic and used as vaccines. In validation
that RNA viruses do have miRNA-binding sites within their genome
and miRNAs can bind to RNA virus genomes, enhancing genome
stability, repressing translation and altering free miRNA level in the
Cell.l32—145

Conclusion

The Flavivirus family consists of positive strand RNA viruses
and includes viral genus pestiviruses and hepatoviruses. HCV is
a member of the same family that remains a threat to public health
due to the unavailability of appropriate vaccines to prevent HCV
infection. BVDV, a member of the pestiviruses genus and a member
of the flavivirus family, has proven to be related to Hepatitis C, which
is why they are used as surrogate models. With the use of miRNAs,
which are small noncoding RNA molecules ranging from 18 — 25
nucleotides that form a hairpin structure, they play an important role
in gene expression, cell proliferation, cell apoptosis, enhancing viral
replications, and are used as target genes against viral mRNAs for
development of vaccines and antiviral synthesis. With the information
presented in this review paper, we anticipate possible use of these
miRNAs that could target and inhibit the BVDYV replication process
of the nucleocapsid protein, and later could potentially use to inhibit
HCV.
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