Consolidated properties and new perspectives for polyunsaturated fatty acids in ruminant diet

Editorial

Nowadays, it is easy to misunderstand the big amount of information coming from media and other sources about human health and foods, creating public confusion about the effects of fat and fatty acids in animal products. Fruits and vegetables have always been considered beneficial for human health, but bioactive components are also present in animal-derived foods, such as milk and dairy products. In particular, there is an increasing awareness of the health effects of specific polyunsaturated fatty acids (PUFA) such as n-3 and conjugated linoleic acid (CLA) fatty acids, the latter found predominantly in products of ruminant origin. Different nutritional strategies have been proposed in order to enrich dairy products with beneficial PUFA and ameliorate the human diet without any kind of change in consumer’s eating habits. Very interestingly, recent studies have also highlighted a possible role of dietary lipids in the mitigation of enteric methane emissions, a crucial environmental issue.

Manipulating milk fat content

The interest in manipulating the milk fat content started at the beginning of 80s and the pressure to reduce total fat content and its saturation has lasted until now with different strategies. One example is the chance to supplement ruminant diets with n-3 PUFA such as eicosapentaenoic acid (EPA 20:5 n-3) and docosahexaenoic acid (DHA 22:6 n-3) from marine sources, but it is important to take into account their low transfer rate into milk, due to their ruminal biohydrogenation and low intestinal digestibility.1

The n-6/n-3 fatty acid (FA) ratio in Western diet has increased drastically in the last 100 years due to the relevant consumption of vegetable oils rich in n-6 FA.2 This shift in the ratio has been associated with health disorders, such as cardiovascular diseases, arthritis, psoriasis and colitis3,4 and various neuroendocrine conditions. Recommendations of nutritionists are for a ratio of n-6/n-3 PUFA less than 5, but unfortunately this ratio in animal products is between 10 and 15. In fact, n-3 PUFAs cannot be synthesized by animals because desaturation of fatty acids does not occur at positions greater than D9 and the conversion of C18:3 n-3 into its long-chain derivates (EPA and DHA) is limited by metabolic factors, due also to the excessive dietary intake of n-6 FA, in particular of C18:2 n-6.1

Several studies investigated the addition of fish oil and marine algae in ruminant diet as a way to enhance EPA and DHA content in milk.5-15 In dairy cows, fish oil seems to have a toxic effect on milk 16 and environmental, have to be taken in account when using fish oil as feed. Alternative rumen protection strategies include heating feeds at high temperature, using calcium salts of fatty acids or encapsulating the lipids in a matrix of rumen-inert protein.12

During the last two decades, several studies, firstly in vitro, and subsequently on humans, have been proving different biological activities of CLA (conjugated linoleic acid) found in food products of ruminant origin. These studies highlighted that CLA can positively affect human health, such as diminishing cancer, atherosclerosis, diabetes and obesity.16

CLA belong to a series of positional and geometric isomers of linoleic acid, with conjugated double bonds. Important for their benefits for humans, they are present in products of ruminant origin. The most predominant form is rumenic acid (cis-9, trans-11 CLA), which represents more than 90% of total CLA in ruminant milk fat. Milk usually contains 0.2 - 0.9% of CLA and its concentration differs among ruminant species, depending also on stage of lactation.27-29

Diet is the most significant factor affecting the milk content of cis-9-trans 11 CLA and of its precursor, trans-11 C18:1 (vaccenic acid). Milk CLA can be enhanced by feeding sources rich in PUFA, such as pasture, plant oils, oleic-rich sunflower oil and soybean oil all proved to be effective in increasing secretion of cis-9, trans-11 C18:2 in milk fat.30-34 Numerous studies have also evidenced that fresh pasture feeding can increase milk CLA content compared to diets based on conserved forages.11,19-21,35 Marine oils, rich in EPA and DHA, have been shown to be more effective than vegetable oils at increasing CLA concentration in ruminant milk. In dairy cows, CLA proportion increased in milk from 0.2-0.6% to 1.5-2.7% when...
Consolidated properties and new perspectives for polyunsaturated fatty acids in ruminant diet

Diets were supplemented with 200-300g/d fish oil and in dairy goats supplementation with 47g/d fish oil enhanced milk fat CLA content from 0.6% to 1.93%. The inclusion of soybean oil in combination with fish oil in goat’s diet also proved to be effective, resulting in an enhancement of CLA content in milk (4.04 vs 0.57%).

Reducing emissions of greenhouse gases

Mitigation of greenhouse gases emission is a social and environmental priority. Methane (CH\textsubscript{4}) is a potent greenhouse gas produced in the rumen due to the metabolic activity of bacteria, the methanogenicarchaea, which use hydrogen (H\textsubscript{2}) and carbon dioxide (CO\textsubscript{2}) as substrates. High concentrations of H\textsubscript{2} are toxic for microbial enzymes, affecting their activity and ruminal fermentation, so the formation of CH\textsubscript{4} sustains the efficiency of ruminal degradation with the dissipation of H\textsubscript{2}. Different dietary interventions have been studied to address this issue and dietary lipids are considered among the best for enteric methane mitigation. Substitution of dietary carbohydrates with lipids can reduce methane emission and decrease rumen protozoa which are producers of hydrogen, the precursor of methane. Interestingly, linseeds rich in n-3 PUFA have been shown to reduce methane yield more efficiently than saturated (calcium salts of palm oil, tallow) and unsaturated sources containing oleic acid (rapeseed) or linoleic acid (sunflower, cottonseed). Very recently, the possibility to reduce methane production by adding fish oil in low-starch diets has been demonstrated. Also increasing doses of coconut and fish oil quadratically decreased concentration of methane.

Reducing emissions of greenhouse gases is a social and environmental priority. Methane (CH\textsubscript{4}) is a potent greenhouse gas produced in the rumen due to the metabolic activity of bacteria, the methanogenic archaea, which use hydrogen (H\textsubscript{2}) and carbon dioxide (CO\textsubscript{2}) as substrates. High concentrations of H\textsubscript{2} are toxic for microbial enzymes, affecting their activity and ruminal fermentation, so the formation of CH\textsubscript{4} sustains the efficiency of ruminal degradation with the dissipation of H\textsubscript{2}. Different dietary interventions have been studied to address this issue and dietary lipids are considered among the best for enteric methane mitigation. Substitution of dietary carbohydrates with lipids can reduce methane emission and decrease rumen protozoa which are producers of hydrogen, the precursor of methane. Interestingly, linseeds rich in n-3 PUFA have been shown to reduce methane yield more efficiently than saturated (calcium salts of palm oil, tallow) and unsaturated sources containing oleic acid (rapeseed) or linoleic acid (sunflower, cottonseed). Very recently, the possibility to reduce methane production by adding fish oil in low-starch diets has been demonstrated. Also increasing doses of coconut and fish oil quadratically decreased concentration of methane.

Acknowledgements

None.

Conflict of interest

Author declares that there is no conflict of interest.

References

