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Introduction
Cortisol is the principal glucocorticoid secreted by the interrenal 

tissue (steroidogenic cells) located in the head-kidney of teleost fish.1 

This hormone is released by the activation of the hypothalamus-
pituitary-interrenal axis (HPI axis).2 When an organism is under stress 
conditions, the hypothalamus releases corticotropin-releasing factor 
(CRF) toward blood circulation. This polypeptide further stimulates 
secretion of adrenocorticotrophic hormone (ACTH) from the anterior 
pituitary gland3 which finally activates the release of cortisol by 
the interrenal tissue.2 In recent years the concept of stress induced 
changes in fish has awakened the interest among scientists.4 The 
response to stress in fish is characterized by the stimulation of the 
hypothalamus, which results in the activation of the neuroendocrine 
system and a subsequent cascade of metabolic and physiological 
changes.5 These changes enhance the tolerance of an organism to face 
an environmental variation or an adverse situation while maintaining 
a homeostasis status.6,7 Extrinsic factors may affect a variety of 
biochemical functions within the fish organism such as cortisol 
biosynthesis and release rates. Background environmental color of 
an organism is reported to have an effect on cortisol secretion.8 A 
higher intensity of cortisol response is documented in Pargus pargus 
acclimated in black tanks when compared with those found in gray 
and white tanks when fish were exposed to crowding stress.9

The level of cortisol in the blood of fish is a robust index of stress10 
and, because cortisol is directly implicated in many deleterious effects 
of stress, stress-induced cortisol levels provide a well-defined trait of 
functional significance upon which selection pressure can be directed. 
Strain differences in cortisol responsiveness to stressors have been 
demonstrated in fish11 in that the relative magnitude of the plasma 
cortisol response to stress of individual rainbow trout is a stable trait 
within a proportion of the population12 and pooled gamete crosses of 

fish selected for low- and high-cortisol response to stress generate 
progeny which display traits similar to those of the parental groups.13 
The Giant Danio is a tropical fish belonging to the family Cyprinidae 
and phylogenetically closely related to Danio rerio14 and is one of 
the big sized forms among Danionins. Giant Danio has been used as 
a model in retinal cone electrophysiology,15 fine structure of retinal 
epithelium circuitry and cell electrical coupling,16‒18 trans species 
polymorphism in MHC complex,19 neurotrophic factor,20 body 
flow dynamics in swimming,21 deafferentation and olfactory bulb 
morphology,22 for vision experiment.23 More recently, the Giant Danio 
has been proposed as a model to study skeletal muscle growth,24,25 
cardiac remodeling and regeneration26 visual impairments of retinal 
layers.27

However, the use of human subjects to study markers of the HPA 
axis and adrenal function is extremely difficult. Obesity, gender, blood 
pressure, lifestyle, stress, perception of stress, and psychiatric illnesses 
are all known to affect cortisol secretion and metabolism as well as 
the increased risk of developing DM.28,29 Using an animal model of 
DM would allow for control or elimination of many if not all of these 
confounding factors. Teleost fish, including Giant Danio (Devario 
aequipinnatus), have previously been shown to be glucose intolerant.27 
The experimental studies on hyperglycemia in relation to adrenal 
cortex are still needed, using fish as experimental model. Therefore, 
the present study was on the induced hyperglycemic experiment 
in Giant Danio embryos in relation to effects of hyperglycemia on 
adrenal cortex function and steroidogenesis. 

Materials and methods
Collection, domestication and maintenance of fishes

The wild specimens of Devario aequipinnatus were collected the 
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Abstract

Purpose: The purpose of this study was to induce hyperglycemic experiment in Giant Da-
nio embryos in relation to effects of hyperglycemia on adrenal cortex function and steroi-
dogenesis.

Methods: The wild specimens of Devario aequipinnatus fishes collected from the Cauvery 
river at Stanley Reservoir were induced for breeding without the use of any hormones and 
the matured embryos were obtained. The embryos of Giant Danio were induced for hyper-
glycemic stress, by immersing them in 0.0%, 0.3%, 0.6%, 0.9%, 1.2%, 1.5%, and 1.8% 
glucose solution, at 24h, 48h and 72h. 

Result: The Giant Danio exposed to glucose solution appear to experience acute stress as 
indicated by the significant elevation in serum glucose and serum cortisol. The ranges of 
average cortisol level for all embryo samples exposed for 24h, 48h and 72h in stock aquaria 
were: 1.2-6.4µg/dL, 0.8 to 7.6µg/dL and 0.8-9.6µg/dL respectively. 

Conclusion: The results showed positive correlation between the %glucose solution and 
the cortisol level, as well as the incubation time and the cortisol level as reported previously 
in other model systems. 
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Cauvery river at Stanley Reservoir, (N 11° 54’18.3” E 77° 53’ 15.8”) 
Salem District, Tamil Nadu, India, during September to March 2016, 
using drag net (Figure 1). The live fish samples were transported to 
the Laboratory in aerated bags and were maintained in a 700 L FRB 
tank with artificial, continuous aeration at a room temperature of 27-
30°C. The collected fishes were stocked in rearing tanks of size 1.5m 
x 0.5m x 1.5m and mature males and females were kept separately 

with the density of 6-7 in each tank. The rearing tanks were provided 
with dark substrate (gravel and pebbles) and mild circulating water 
current with the help of electric motors for their adaptation. After 
proper acclimatization and maintenance, the domesticated brood 
stock was selected for the breeding experiments. The glass tank (1.5m 
x 0.5m x 1.5m) with dark substrate and natural day lighting provided 
with spawning mops made of green wool.

Figure 1 The Experimental Fish Devario aequipinnatus.

Water quality parameters

Fresh, dechlorinated and well aerated water was used for 
domestication of the fish in all the tanks. In the tanks for rearing 
and breeding experiments, pH was maintained in the range 6.7±0.2, 
nitrates, nitrites and ammonia were maintained at 0, hardness in the 
range of 60-70mg/L, conductivity in the range of 0.1±0.02mg/S, total 
alkalinity in the range of 30-35mg/L and dissolved oxygen in the 
range of 8.0±0.5mg/L. In the rearing tanks temperature of 25±0.5°C 
was maintained with the help of regulated water heaters. The water 
temperature was measured with the help of a centigrade thermometer. 
Alkalinity and total hardness were measured following standard 
procedures.30 Conductivity, pH, and dissolved oxygen were analyzed 
using meters by Lutron Co. Test kits were used to check nitrates, 
nitrites and ammonia.

Feeding, selection of brood pair, collection of embryos

The fishes were fed ad libitum with live food (mosquito larvae 
and chironomous larvae) and with commercially available fish food. 
The mature females were larger when compared to males and had a 
rounded belly while the males were slender and streamlined and more 
colorful. In the spawning tank, one gravid female was released along 
with two mature males and then their behaviour was observed. If a 
pair was interested then the male would constantly chase the female 
all around the tank and hit the female in its abdomen with its head for 
spawning. If no interest was seen between them then the male was 
replaced by another mature male to check for the interest between 
them for spawning. The male which showed interest in the female are 
kept in the spawning tank and observed till the spawning takes place. 
After releasing the brood pair in the spawning aquarium, temperature 
was gradually increased to 27±0.5°C from 25±0.5°C within 48h. After 
48h, 3/4th of spawning aquarium water was removed and replaced 
by creating artificial rain with a sprinkler with water 4°C cooler than 

the spawning tank of to 27±0.5°C at night around 10pm. The eggs 
were removed from the spawning aquarium with a dropper. The 
embryos were viewed under Magnus stereozoom microscope in 10X 
magnification and matured eggs were selected for the experiments. 
Fish maintenance, breeding, embryo collection, and experimental 
design followed by Dey S et al.,31 animal care and maintenance 
protocols approved by the Periyar University Institutional Animal 
Ethical committee (No. 1085/ac/07/PU/IAEC/2012/10).

Induction of hyperglycemia 

The embryos were allowed to incubate in stock aquaria water at 
28°C until they naturally hatched from the chorion, or approximately 
48h post-fertilization (hpf). One hundred and fifty embryos from each 
clutch were placed in 50ml of various solutions of glucose (0.0%, 
0.3%, 0.6%, 0.9%, 1.2%, 1.5%, and 1.8%) prepared using glucose 
added to stock aquaria water. The embryos were allowed to incubate 
for 24, 48 and 72h in the corresponding glucose solutions. Following 
incubation, the embryos were anesthetized in 0.02% Tricaine solution. 
They were then rinsed for 1min with stock aquaria water×3 and 
placed into a 2ml micro centrifuge tube. The embryos were briefly 
centrifuged, all water was removed, hand was homogenized for 30s, 
and centrifuged again at 14,000rpm for 1min. The glucose level was 
then obtained by placing 1.5μl of supernatant to a glucometer strip 
(One-Touch Select) with three readings taken from each sample.

Cortisol extraction and measurement

Two hundred microliters of 10mM Tris–HCl was added to 
each sample and then homogenized for 30s using a rotor-stator 
homogenizer. The samples were centrifuged at 10,000×g for 20min 
at 4°C. Strata C18-E columns (Phenomenex, Inc.) were equilibrated 
according to manufacturer’s suggestion. The supernatant from each 
sample was added to a column and allowed to flow through by gravity. 
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The samples were eluted by addition of 500μl of the supplied elution 
buffer. The samples were placed in a SpeedVac until dry. Cortisol 
measurements were taken of each sample in triplicate using a Cortisol 
EIA Kit (Caymen Chemical).

Results
Induction of hyperglycemia and glucose level in 24h, 
48h and 72h embryos

To induce hyperglycaemia initially, the embryos were treated in a 
0.0%, 0.3%, 0.6%, 0.9%, 1.2%, 1.5%, and 1.8% glucose solution, as 
it readily take up substances from the water.32 The average glucose 
measurement for all embryo samples incubated for 24h, 48h, 72h 
in stock aquaria water ranged from 65 to >600mg/dl. Glucose 
concentrations of stock aquaria water were adjusted for samples 
incubated with glucose such that they remained iso-osmolar. For 
samples incubated for 24h in 0.0%, 0.3%, 0.6%, 0.9%, 1.2%, 1.5%, 
and 1.8% the average glucose measurements level were 82±1.58mg/
dl; 116±2.7mg/dl; 138.8±3.0mg/dl; 183.2±2.4mg/dl; 225.6±1.5mg/dl; 
285.4±4.8mg/dl; 316.2± 1.3mg/dl respectively. For samples incubated 
for 48h in 0.0%, 0.3%, 0.6%, 0.9%, 1.2%, 1.5%, and 1.8% the average 
glucose measurements level were 72.2±1.7mg/dl; 145.2±2.2mg/dl; 
194.4±1.6mg/dl; 243.6±3.8mg/dl; 316.4±2.6mg/dl; 396.4±1.6mg/
dl and 445.6±2.6mg/dl respectively. For samples incubated for 72h 
in 0.0%, 0.3%, 0.6%, 0.9%, 1.2%, 1.5%, and 1.8% the average 

glucose measurements level were 67.4±3.9mg/dl;200.4±3.2mg/dl; 
250.8±4.1mg/dl; 324.4±3.8mg/dl; 407.6±2.9mg/dl; 522.8±6.2mg/dl 
and >600mg/dl respectively. These results show a direct correlation 
between the glucose level and induced glucose concentration Figure 
2A.

Blood cortisol levels in 24h, 48h, and 72h induced 
embryos:

There was also a significant increase in the cortisol level of 
hyperglycemia induced embryos. The average cortisol level for all 
embryo samples exposed for 24 h, 48 h and 72 h in stock aquaria 
water ranged from 1.2 - 6.4µg/dL, 0.8 to 7.6µg/dL and 0.8-9.6µg/
dL respectively. For samples incubated for 24h in 0.0%, 0.3%, 
0.6%, 0.9%, 1.2%, 1.5%, and 1.8% the average cortisol levels were: 
1.37±0.17µg/dL; 2.36±0.18µg/dL; 3.61±0.25µg/dL; 4.16±0.05µg/dL; 
4.97±0.17µg/dL; 5.76±0.11µg/dL and 6.31±0.08µg/dL respectively. 
For samples incubated for 48 h in 0.0%, 0.3%, 0.6%, 0.9%, 1.2%, 1.5%, 
and 1.8% the average cortisol levels were: 1.0±0.2µg/dL; 3.1±0.2µg/
dL; 4.2±0.3µg/dL; 4.7±0.1µg/dL; 5.9±0.1µg/dL; 6.6±0.2µg/dL 
and 7.5±0.1µg/dL respectively. For samples incubated for 72 h in 
0.0%, 0.3%, 0.6%, 0.9%, 1.2%, 1.5%, and 1.8% the average cortisol 
levels were: 0.84±0.05µg/dL; 3.54±0.26µg/dL; 4.77±0.24µg/dL; 
6.06±0.18µg/dL; 6.91±0.27µg/dL; 8.09±0.18µg/dL and 9.31±0.30µg/
dL respectively. These results show a direct correlation between the 
glucose level and cortisol level in hyperglycemia induced embryos. 

Figure 2 

(A) Glucose levels in Giant Danio embryos exposed to 0.0%, 0.3%, 0.6%, 0.9%, 1.2%, 1.5%, and 1.8% glucose in fish water over a period of 24, 48, and 72h. Glucose 
levels for samples incubated for 24h ranged from 82 to 316.2mg/dl; for 48h, 72.2-445.6mg/dl; for 72h, 67.4 to 522.8 samples in 1.8% had glucose levels >600. 

(B) Cortisol levels in hyperglycemic Giant Danio embryos over a 24, 48 and 72h period. There is a direct correlation between the % glucose solution and cortisol 
levels. There is also a direct correlation between hours in incubation and cortisol level.

Discussion
The levels of plasma cortisol in Giant Danio Devario aequipinnatus 

embryos have not previously been reported. The presently obtained 
data show that levels of cortisol in unstressed Devario aequipinnatus 
embryos (0.8-1.2µg/dL) are of a similar order of magnitude to, or 
higher than, those in other cyprinid species such as the common 
carp.33‒35 Following the imposition of hyperglycemia, cortisol levels 
in Giant Danio embryos were elevated approximately 12-fold, to a 
mean level of almost 9.6µg/dL (the highest individual level recorded 
in a hyperglycemic embryos during this study was 1.8 % of glucose 
solution in 72h incubation period). The magnitude of this induced 
hyperglycemia increase, in terms of a proportional elevation above 
basal levels, is similar to that seen in salmonid fish. However, 

in absolute terms, the levels of cortisol observed in even non-
hyperglycemic embryos far exceed the levels of cortisol known to 
elicit adverse effects on growth, reproduction, and the immune system 
in salmonid fish.36,37 In fish, cortisol is bound to plasma proteins in 
considerably lower amounts.38 Plasma cortisol levels are known to 
cycle diurnally and to change according to season. During the day the 
highest concentration is generally found during morning and then the 
level declines throughout the day.39

 There was also a direct correlation between the %glucose solution 
and the cortisol level, as well as the incubation time and the cortisol 
level. These data demonstrate that hyperglycemia can reliably be 
produced in the Giant Danio Devario aequipinnatus embryos, as has 
previously shown in Danio rerio species by Gleeson M,32 Powers JW 
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et al.40 The induced hypergylcemia in adult rainbow trout through 
manipulation of food source and stocking conditions.41Their study 
showed changes in cortisol levels in conjunction with glucose levels 
suggesting that hyperglycemia-induced stress results in changes 
in cortisol levels. Presently, embryonic Giant Danio Devario 
aequipinnatus from 24 to 72hpf was used, a period during which the 
embryos nutritional demands might have been supplied by the yolk 
sac.42 This eliminates any variability in glucose levels being attributed 
to natural variations in food intake,43 using the same Cortisol EIA kit 
used in our studies, showed a natural increase in production of cortisol 
starting around the time of hatching, approximately 48hpf. The 
Present investigation showed data indicate that there is an increased 
level of cortisol present in embryos associated with hyperglycemia. It 
remains unclear, however, if hyperglycemia induces a stress-response 
leading to increased production of cortisol, as could be measured by 
increased ACTH levels, or if hyperglycemia impairs hydroxysteroid-
dehydrogenase activity resulting in decreased metabolism of cortisol. 

The normal adult size of the Giant Danio ranges between 6 
and 10cm, which is more than four times the average adult size of 
zebrafish. Also, when compared to the zebrafish, the Giant Danio 
exhibits 129% increase in growth following exogenous growth 
hormone application.44Therefore, unlike the zebrafish, the Giant 
Danio appears to exhibit indeterminate growth, even though it is very 
closely related to the zebrafish. 

Changes in blood cortisol levels in the hyperglycemic embryos 
are considered to be a more direct indicator of the activity of the 
hypothalamic–pituitary–interrenal HPI axis than changes in glucose 
levels following stress. The induced hyperglycemia increase in 
circulating levels of cortisol is believed to be wholly dependent on 
de novo biosynthetic activity within the interrenal tissue. This in turn 
is dependent on stimulation by adrenocorti- cotropin ACTH secreted 
by the pituitary, following stimulation of the pituitary corticotropes 
by corticotropin-releasing hormone CRH of hypothalamic origin.45 
‘Resting’ cortisol levels are low 0.8-1.6µg/dL in controlled Giant 
Danio embryos and which can increase more than 10 fold of glucose 
exposure of the fish to a stressful stimulus. While the untreated fish 
exhibited a low mean serum cortisol level (0.8-1.6µg/dL), the stressed 
fish (glucose treated) showed a high mean serum cortisol level (9.6µg/
dL) after 72h period of exposure. A significant increase in serum 
cortisol concentration was seen in the glucose exposed embryos. 

An increased blood glucose level has led to hyperglycemia stress 
that resulted in various clinical conditions and many disorders such 
as cardiovascular, microvascular diseases, traumatic brain injury, 
periodontal diseases and also cause increased vulnerability to other 
diseases.46 Diabetes can damage neurons,47 Glia fibrillary acidic 
protein;48,49 and vascular tissues within the retina50 such neural 
alterations includes the presence of apoptosis51,52 in the inner retinal 
layers and photoreceptors in diabetic animals.53 

The result of the present study show that Giant Danio exposed 
to glucose solution appear to experience acute stress as indicated 
by the significant elevation in serum cortisol and serum glucose. 
Post-stressor increases in blood glucose levels have also been used 
as monitors; glucose levels are easy to measure and relatively 
inexpensive, and are the most commonly measured indicator of the 
secondary phase stress response in fish.11 Since this increased result, in 
part, has been from cortisol-induced gluconeogenesis, blood glucose 
changes have sometimes been used as indirect measures of altered 
cortisol secretion. Plasma cortisol levels rise rapidly following acute 
exposure to physical stressors.56 It has been considered that elevated 
plasma cortisol levels increase the susceptibility of fish to fungal, 

bacterial, and parasitic infections.5 Cortisol has been widely used 
to assess the state of health of the fish exposed to stress condition.6 
Changes in the concentration of plasma cortisol, however, depend 
upon the nature of stress stimuli and the duration of the stress as well 
as due to the magnitude and severity of stress7 and the type of species 
under investigation.55 In the present study, since there is a significant 
increase in the cortisol concentration immediately after exposure and 
continuous increase till 72h, it could be concluded that fishes exposed 
to the glucose concentration undergo an immediate stress.56

The induced hyperglycemia stress increases in plasma glucose 
levels in several species of fish.57,58 The concurrent increase in glucose 
and cortisol in channel catfish following a 2h low-water confinement.58 
The significant correlation between cortisol and glucose in contrast to 
a clear absence of correlation for hyperglycemic embryos. Cortisol 
is usually considered to have a hyperglycemic effect2 and, indeed, 
it has been reported that fish exposed to increased levels of cortisol 
had shown an increased glucose levels,59 which could explain the 
significant correlation described herein. Zebrafish have similar 
metabolic regulation of glucose as that found in mice and human,60 and 
the Giant Danio is phylogenetically closer to Danio rerio.14 Effects 
of induced hyperglycemia stress resulted in positive correlation 
between the % glucose solution and the cortisol level, as well as the 
incubation time and the cortisol level as seen previously in other 
model systems, consistent with onset of adrenal cortex function and 
steroidogenesis.32 In conclusion, the present study demonstrated that 
hyperglycemic effects on adrenal cortex function and steroidogenesis 
in the freshwater fish Giant Danio Devario aequipinnatus embryos. 
Hence, it is proposed that the effects of hyperglycemia induced stress, 
adrenal cortex function and steroidogenesis in Giant Danio could 
form a reproducible and complementary model and hence the fish can 
be tried as a new “model” for conducting biomedical experiments.\
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