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various kidney diseases.16,19‒22 Recently increasing evidences showed 
mitochondrial dysfunction in a broad spectrum of pathogenesis of 
renal diseases. Moreover renal diseases patients exhibited an impaired 
mitochondrial respiratory system. It summarizes the possible effects 
of mitochondrial and acquired factors associated with diverse 
renal damage induce mitochondrial dysfunction. Mitochondrial 
dysfunction has resulting in many kidney organ damaged. For 
example, podocyte injury causes from foot process effacement, 
detachment, and apoptosis. Tubular epithelial cell damage causes 
from apoptosis/necrosis and epithelial-mesenchymal transition, 
additionally, endothelial dysfunction causes from apoptosis/necrosis 
and endothelial-mesenchymal transition.18,19,21‒26 Studies have 
shown significantly increased ROS production, up-regulation of 
TGF-β expressions, high glucose levels, proteinuria, uremic toxins, 
ischemia/hypoxia, and activation of RAAS in peripheral blood 
mononuclear cells of patients, thereby demonstrating the close 
association between mitochondrial dysfunction and renal diseases 
progression.21,25,27,28 Recently, a number of studies have revealed 
that regulation of co-activators can physiologically signal to specific 
transcription factor targets. These reason led to activation of genes 
required for mitochondrial biogenesis and respiratory function. The 
major transcription factors, nuclear respiratory factor 1(NRF-1), act 
on the majority of nuclear genes encoding subunits of the respiratory 
complexes. They are also involved in the expression of mitochondrial 
transcription and replication factors.17,19,21,25,29‒31 Nuclear respiratory 
factor-1 (NRF-1), a major transcription factor in the human genome, 
plays a key regulatory role in mitochondrial biogenesis. Initially, 
NRF-1 was identified as being responsible for regulating genes 
involved in mitochondrial respiratory function.22,24,32,33 Subsequently, 
it was also found to be involved in the regulation of genes that play 
a role in a wide range of other biological functions, including signal 
transduction, organelle biogenesis, protein synthesis, cell growth, and 
the progression of the cell cycle.16‒35 Among the specific effects of 
relevance, mitochondrial transcription factor A, which promotes the 
transcription and replication of mitochondrial DNA, is up-regulated 
by NRF-1. Moreover, the distribution of NRF-1 in mammalian cells 
is pervasive, with the transcription factor also playing key parts in 

regulating tissue differentiation and development, gene expression, 
and anti-oxidative stress and inflammatory responses in a range 
of organisms. NRF-1 has been shown to promote cell survival 
and to be involved in the protection of cells from apoptosis during 
development, with decreased NRF-1 expression having been found 
in damaged liver tissues in rats.14,36 With the above observations we 
do believe there exist some relationship between NRF-1 and the 
progression of renal interstitial fibrosis. In our existing findings are 
encouraging, our understanding mitochondrial transcription factors 
NRF-1 changes vary dramatically in relation to the level of renal 
cellular fibrosis. Nevertheless, the downregulation of NRF-1 support 
the role of NRF-1 as a major contributor in kidney fibrosis. Thus, it is 
clear that the pathogenesis of renal cellular fibrosis might be regulated 
by NRF-1, and relatedly, that NRF-1 could potentially be used as a 
novel therapeutic agent for the treatment of diabetic renal interstitial 
fibrosis. Moreover, the use of these agents has only been consider 
to very limited strategies and as yet has no clinical applications. In 
the future, it needs to intensive elucidate their mechanisms and thus 
provide clinicians with the best possible treatment strategies.
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Renal fibrosis is a common final pathway that results in progressive 

end-stage renal failure including diabetic nephropathy.1‒3 Progressive 
of renal disease, characterized histologically by tubular atrophy 
and the accumulation of extracellular matrix proteins in the renal 
interstitium, is associated particularly with declining renal function.4‒7 
Renal fibrosis is characterized by glomerulosclerosis, tubulointerstitial 
fibrosis, loss of renal parenchyme, and inflammatory cell infiltration. 
These are the common features of chronic renal failure.7‒12 This 
pathologic result usually originates from underlying complicated 
renal cellular activities such as epithelial-to-mesenchymal transition, 
fibroblast activation, and the activation of cytokines such as 
transforming growth factor beta.8,13‒15 Mitochondrial dysfunction has 
been found to play a significant role in various diseases, and located 
among the organs that require high levels of energy. The kidneys 
have a relatively high number of mitochondria.16‒18 Mitochondrial 
dysfunction has also been found to be key a contributing factor to 
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