Are social inequities the reason for the increase in chronic non-communicable diseases? A systematics review

Abstract

Non-communicable diseases (NCDs) have increased at an alarming rate in both industrialized countries and the developing world. NCDs, which are highly disabling diseases when allowed to develop freely, can ultimately compromise the lives of those who suffer from them. Over the two last decades, an association has emerged between social inequities and the development of NCDs such as diabetes, obesity, cardiovascular disease, dyslipidemia, asthma and hypertension even while people still face undernourishment and stunting. The purpose of this research is to systematically review the existing indexed literature related to the association between supporting the construction of a system of prevention, education and treatment through national and or international public policies and confronting the increase of these diseases. Four different databases including ALAN, SciELO, Lilacs and Science Direct were reviewed, and a total of 22 articles were found related to the topic. The results of these studies are consistent in supporting the association between social disparities and the emergence of NCDs and reported that living in poverty and low family educational level are the main determinants. Nevertheless, variations according to the specific population context were found, suggesting the complexity of the interaction of social determinants for achieving adequate health.

Keywords: social inequities, poverty, chronic non-communicable diseases, low education, obesity, diabetes, stunting

Abbreviations: NCDs, non-communicable diseases; T2DM, type 2 diabetes

Background

Chronic non-communicable diseases are a major health concern and have been rising in prevalence over the last decades. These diseases commonly include obesity, diabetes, cardiovascular diseases, dyslipidemia, high blood pressure and asthma and lead to costly complications and diminish the quality of life of those who suffer from them. These diseases, particularly obesity, have traditionally been associated with socioeconomic privileges; nevertheless, recent studies have associated non-communicable diseases (NCDs) with disadvantaged conditions such as food insecurity, low income, poverty, inadequate living conditions and unemployment. Eighty percent of the deaths caused by NCDs have been reported to occur in low and middle income countries and have been responsible for 44% of deaths globally. Combined with infectious diseases (including HIV, tuberculosis and malaria), poor maternal and perinatal conditions and nutritional deficits, these diseases double the death rate and will have important economic losses. Over the next 10 years, China, India and the United Kingdom will lose close to $558 billion, $237 billion and $33 billion, respectively, as a result of cardiovascular diseases, stroke and diabetes. These losses will be partly due to the reduced economic activity caused by occupational absenteeism induced by NCDs complications.

Social inequities have been emerging as a risk factor for NCDs together with increased physical inactivity, use of tobacco, alcohol and changes in food consumption patterns. Social disparities contribute to the vicious cycle of poverty, which is difficult to break, particularly for those vulnerable groups whose lives are at risk because of issues such as personal insecurity and poor health status. Government interventions are needed in order to promote good quality of life conditions, provide access to adequate nutrition and income through employment, all of which may enhance individuals potential.

Poverty has many faces and can be analyzed from different perspectives. As an example, poverty in Latin America, from a historical perspective, has been a mixture of three types of poverty across the centuries since the American continent was discovered by Christopher Columbus. First, aboriginals lived in poverty; second, those who arrived with the colonizers were impoverished and excluded for many reasons. Third, those individuals who came from Africa were even more impoverished. Thus, poverty in the Latin American continent results from an incomplete process of ethnic, cultural and biological-genetic differences, and these differences should be approached from a more integrated perspective in order to propose adequate solutions.

In the United States, the highest obesity rates have reportedly occurred among population groups with the highest poverty index and lowest education, and an inverse relationship between energy density and energy cost has been shown. In addition, an association exists between poverty and food insecurity on the one hand and lower energy expenditures, low fruit and vegetable consumption and lower quality of diets on the other. The affordability of high energy dense foods versus a diet based on fish, lean meats, fruits and veggies has also been reinforced by the palatability of sugar and fat. Thus, it is easy to understand why NCDs, particularly those associated with...
obesity and co-morbidities of obesity, are increasing in low income populations.

In addition, the so-called Nutrition Transition phenomenon describes body composition alterations due to changes in lifestyle patterns as a consequence of urbanization and migration. This process is occurring at different levels around the world, but is particularly high in low and middle income countries where gaps in the quality of life might be wide among different population groups.\(^6\)\(^7\)

In addition to the previous statements, it should be noted that NCDs can be prevented with cost-effective measures, particularly those associated with lifestyle changes. Obesity and type 2 diabetes (T2DM) are two diseases whose complications can include high blood pressure, dyslipidemia and cardiovascular diseases. Specially for those in poverty, risk factors for diseases start early in life, even in utero and they face a lifecycle of disadvantageous conditions. An undernourished pregnant mother is at risk of having a premature or low birth weight baby, predisposing the baby to cardiovascular diseases later in life.\(^8\) Frequently occurring in low income settings, pregnancy during adolescence has also shown risks for intergenerational malnutrition consequences such as low height, increased adiposity and early onset of T2DM among others.\(^9\)

A concern for health practitioners that should also be a concern for policy makers is that a large portion of the population still lives in inadequate conditions. A systematic review of the indexed literature was conducted to clarify these aspects within the context of policymaking.

Methods

A systematic search for peer-reviewed information was conducted between March 15 and June 12, 2013 focusing in the association between social inequities and the presence of non-communicable diseases with strong emphasis in Latin America, but not excluding other countries if they were found during the search. We searched in four databases: (3 of which are from Latin America) Latin American Archives of Nutrition database (ALAN), Scielo, Lilacs and Science Direct for published indexed literature between January 2000 and May 2013 using the following terms in Spanish, Portuguese and English: “social inequities”, “social disparities”, “food security/insecurity”, “poverty”, “nutrition transition”, “non-communicable diseases (NCDs)”, “obesity”, “hypertension”, “diabetes” and “asthma”.

The inclusion and exclusion criteria were as follows: original articles published during the established period that showed the association between social inequities expressed as food insecurity, poverty, low income, low socioeconomic status, disadvantaged living conditions and the presence and/or risk of the following non-communicable diseases: obesity, diabetes, hypertension, dyslipidemia, cardiovascular diseases and asthma. Studies included were those in which the unit of analysis was individuals, including children, adolescents and/or adults, or specific groups of households or schools.

Letters to the editor, commentaries or perspectives were excluded, as well as books and grey literature.

The eligibility of the articles was initially ascertained by screening the titles in order to exclude non-relevant studies and remove duplicates of articles identified in multiple databases.

Two investigators (KM and MAC) independently reviewed the studies for eligibility according to the criteria above. Any differences were agreed upon by all authors.

Data extraction and reporting

Because of the relatively novel topic, the team agreed on the above inclusion/exclusion criteria. Traditionally, poverty and its associated social inequities have been related to communicable diseases and poor nutrition, and this phenomenon still exists. The team decided to include any of the manifestations of social inequities, as they express the vulnerable group’s opportunity for exposure to disparities. As a result, analyses of food insecurity, poverty, low socioeconomic status and belonging to a particular ethnic group were included so that different aspects of the life experience in disadvantaged conditions could be approached as determinants of chronic non-communicable diseases. A large emphasis was made on articles on Latin America because of the authors research interests were compatible with this region’s characteristics and the authors are involved in regional projects, whereby understanding social inequities as an influence of developing NCDs would be important. However, articles that fit the inclusion criteria and examined other countries were included because of the topic’s relevance and to learn different approaches.

After searching the four databases, 395 total articles were found; 36, 21, 290 and 48 were found from ALAN, Scielo, Science Direct and Lilacs, respectively. After matching and discarding the duplicates and non-relevant articles for the selected topic, 22 total articles were included in this systematic review as shown in Figure 1.

Categorization of results

Articles were categorized by their bibliographic characteristics according to the following criteria: number of authors, year of publication, language of publication, country of origin and center or academic institution to which authors are affiliated and the database from which they were obtained (Table 1). The articles were also categorized according to subjects/units of analysis, methodology and findings (Table 2).

Citation: Herrera-Cuenca M, Castro J, Mangia K, et al. Are social inequities the reason for the increase in chronic non communicable diseases? A systematic review. *J Diabetes Metab Disord Control*. 2014;1(3):81–88. DOI: 10.15406/jdmc.2014.01.00017
Are social inequities the reason for the increase in chronic non communicable diseases? A systematic review

Results/Findings

Table 1 Categorization of articles according their bibliographic characteristics

<table>
<thead>
<tr>
<th>Category</th>
<th>Characteristics</th>
<th>Total of authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of authors</td>
<td>1 author</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2-5 authors</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>6 or more</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2000-2002</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2003-2005</td>
<td>3</td>
</tr>
<tr>
<td>Year of Publication</td>
<td>2006-2008</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2009-2011</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2012-2013</td>
<td>3</td>
</tr>
<tr>
<td>Language of Publication</td>
<td>Spanish</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>English</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>United States of America</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Holland</td>
<td>2</td>
</tr>
<tr>
<td>Country of Origin</td>
<td>Switzerland</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Latin American Countries (Brasil, Mexico, Ecuador, Colombia, Chile and Peru)</td>
<td>16</td>
</tr>
<tr>
<td>Institution of Affiliation</td>
<td>University</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Academic Society, Other</td>
<td>1</td>
</tr>
</tbody>
</table>

One examined metabolic syndrome and four were related to growth impairments including low stature (Table 2).

Studies showing a relationship between a socio-demographic variable and obesity and metabolic syndrome

From these studies, five, showed a trend toward developing obesity with the presence of poverty, food insecurity or living in disadvantaged conditions, while the remaining three showed a trend toward the rise of obesity when socio-economic status is higher. The Peruvian articles showed good examples of differences in results across the same age groups within the same country. For instance, the Health and Familiar surveys (Endes) reported a trend toward the increased risk of becoming obese in extreme poverty strata while Pajuelo et al., reported a higher prevalence of obesity in higher socioeconomic statuses. Cardenas et al. reported that metabolic syndrome was related to older ages in Peru and decreased while poverty was accentuated. Bustos et al. found a relationship between belonging to an ethnic (indigenous) group and a higher risk of becoming obese and stunted but found less risk of becoming obese when living in poverty as a member of a non-indigenous group.

Studies showing associations with cardiovascular diseases

In particular, the association with cardiovascular diseases and at least one of the manifestations of social inequities such as low level of education or lack of schooling appears to be an influencing factor in the presence of cardiovascular disease and mortality as a consequence of these entities. In addition, diabetes appears to be higher amongst groups with low education levels. In contrast, Morenoff et al., reported no consistent evidence that social inequities affected the treatment of hypertension in the Chicago area, while Addor et al., found that a social gradient affected the increase in cardiovascular risk in low educated girls and women in a Swiss study. Carneiro et al., in Brazil found a significant association between mortality due to CVD and living with low SES.

Table 2 Characteristics of the selected studies grouped by Non Communicable Disease associated to Social inequities

<table>
<thead>
<tr>
<th>Alteration related to social inequities</th>
<th>Reference</th>
<th>Subjects/Unit of Analysis</th>
<th>Methodology</th>
<th>Descriptors</th>
<th>Results/Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obesity</td>
<td>Yepez R et al.</td>
<td>2,829 Ecuadorans adolescents between 12<19 age from public and private schools</td>
<td>Cross sectional, probabilistic design, stratified randomized selection, national representative</td>
<td>Overweight, Obesity, Adolescents, malnutrition, Ecuador</td>
<td>Excess weight is more prevalent in adolescents attending private schools but it is increasing at public schools</td>
</tr>
<tr>
<td></td>
<td>Bustos P et al.</td>
<td>1,580.103 Chilean Children indigenous and non indigenous</td>
<td>Retrospective study</td>
<td>Poverty, stunting, obesity, indigenous, Chile</td>
<td>Being an indigenous rises the Risk of becoming obese by 6%, scholars living in poverty had lower Risk of becoming obese RM 1.06 (IC 95% 1.05-1.08) but higher risk of stunting in indigenous RM 2.30 (IC 95% 2.27-2.30)</td>
</tr>
<tr>
<td></td>
<td>Alvarez L. et al.</td>
<td>2,719 households and 5,556 adults between 18 and 69 years</td>
<td>Cross sectional descriptive, retrospective study</td>
<td>Overweight, Obesity, social justice, quality of life, poverty, social class</td>
<td>16.2% of adults were obese 19,1% of women and 11,1 of men were obese, obesity increased at lower SES</td>
</tr>
<tr>
<td></td>
<td>Pajuelo J et al.</td>
<td>3,669 children less than 5 years old from Peru</td>
<td>Cross sectional study, multiphase, national representative</td>
<td>Pre-school children, infant, Peru, Obesity, Nutrition survey</td>
<td>Overweight and Obesity are higher in privileged SES</td>
</tr>
</tbody>
</table>

Citation: Herrera-Cuenca M, Castro J, Mangia K, et al. Are social inequities the reason for the increase in chronic non communicable diseases? A systematics review. J Diabetes Metab Disord Control. 2014;1(3):81-88. DOI: 10.15406/jdmdc.2014.01.00017
Are social inequities the reason for the increase in chronic non communicable diseases? A systematics review

Results/Findings

Descriptors

Methodology

Subjects/Unit of Analysis

Reference

<table>
<thead>
<tr>
<th>Alteration related to social inequities</th>
<th>Reference</th>
<th>Subjects/Unit of Analysis</th>
<th>Methodology</th>
<th>Descriptors</th>
<th>Results/Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic non communicable diseases</td>
<td>Ortiz L et al.¹⁴</td>
<td>768 school age children</td>
<td>Cross sectional study, convenience sample in 6 schools of Mexico City</td>
<td>Food insecurity, food insufficiency, hunger, overweight, obesity</td>
<td>Children belonging to food insecure households are 2.53 more likely to be overweight compared to those being in secure households independently of sex</td>
</tr>
<tr>
<td></td>
<td>Tazza R & Bullon L¹⁵</td>
<td>Peruvian Children less than 5 years old</td>
<td>Retrospective Study of the data bases from Health and Familiar surveys (Endes) 1991/1992, 1996 y 2000</td>
<td>Obesity, Nutrition disorders, Pre-school children, Nutritional Status</td>
<td>Overweight and Obesity increased from 17% and 5% to 19% and 7% between 1992-2000 with higher prevalence among children in extreme poverty group. Undernourishment decreased from 12% to 9% in the same period, and children whose mothers were illiterate were at higher risk of chronic undernourishment and stunting</td>
</tr>
<tr>
<td></td>
<td>Guedes DP et al.¹⁶</td>
<td>5.100 Brazilian Children and adolescents between 6-18 years</td>
<td>Cross sectional survey with multistage sampling</td>
<td>Obesity, Overweight, children, adolescence, Brazil, nutrition assessment, socioeconomic factors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schlussel MM et al.¹⁷</td>
<td>3.433 children between 0-60 months, 1.529 adolescent women and 10.226 adult women</td>
<td>Retrospective study for evaluating the association between household food insecurity and excess of weight</td>
<td>Food insecurity, nutrition transition, nutritional status</td>
<td></td>
</tr>
<tr>
<td>Metabolic Syndrome</td>
<td>Cardenas H et al.¹⁸</td>
<td>4.053 adults older than 20 years</td>
<td>Cross sectional, multistage study national representative of Peruvian population</td>
<td>Metabolic Syndrome (MS), poverty, Socioeconomic Status</td>
<td></td>
</tr>
<tr>
<td>Increased Risk of Cardiovascular diseases and other chronic diseases</td>
<td>Carneiro et al.¹⁹</td>
<td>Low income communities from the city of Fortaleza, Brazil</td>
<td>Cross sectional, ecologic study through data available from “Sistema Unico de Salud” year 2007</td>
<td>Mortality, social inequalities, deprivation, socioeconomic factors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cerezo M et al.²⁰</td>
<td>10.676 adults between 18 and 69 years of age</td>
<td>Cross sectional analytic study</td>
<td>Social inequities, chronic diseases, inequalities in health, body mass index, health surveys, measurements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Morenoff J et al.²¹</td>
<td>3105 Adults and over from Chicago Health Study belonging to 343 neighborhoods from the Chicago area</td>
<td>Face to face interviews with blood pressure check ups</td>
<td>Social disparities, neighborhoods, health inequalities, health inequities, blood pressure, hypertension</td>
<td></td>
</tr>
</tbody>
</table>

Table Continued....

<table>
<thead>
<tr>
<th>Alteration related to social inequities</th>
<th>Reference</th>
<th>Subjects/Unit of Analysis</th>
<th>Methodology</th>
<th>Descriptors</th>
<th>Results/Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karlamanga A et al. 22</td>
<td>5,115 men and women between 18-30 years old from CARDIA Study</td>
<td>Prospective bi racial cohort study</td>
<td>Socioeconomic factors, Cardiovascular diseases, Risk factors, growth trajectories</td>
<td>Individuals with high overall Risk in midlife for CVD can be identified by their relatively high values of Risk factors in younger ages and that Socio economic differences in cardiovascular Risk start accumulating early in life</td>
<td></td>
</tr>
<tr>
<td>Addor et al. 23</td>
<td>3,636 adolescents 9 a-19 years and 3,299 adults 25-74 anos</td>
<td>Retrospective study using data from 2 Swiss Health Surveys</td>
<td>Cardiovascular diseases, Risk factors, Child, adolescent, adult, social class, Switzerland, Obesity, Smoking, Exercise, Epidemiology</td>
<td>Discontinuities in the cross sectional ages patterns of Cardiovascular Risk factors, indicated the emergence of a social gradient and the need for preventive actions against the early adoption of persistent unhealthy behaviors to which low educated girls and women are particularly exposed</td>
<td></td>
</tr>
<tr>
<td>Aiello et al. 24</td>
<td>999 adults between 45-84 years</td>
<td>Review of cross sectional data from the multi ethnic study of atherosclerosis</td>
<td>Socioeconomic position, immune response, psychosocial stress, cardiovascular disease</td>
<td>Low education was a significant independent factor of higher pathogen burden related to cardiovascular disease</td>
<td></td>
</tr>
<tr>
<td>Redondo A et al. 21</td>
<td>9,646 adults between 35-74 years</td>
<td>Retrospective study to analyze the years: 1995, 2000 and 2005</td>
<td>Social determinants, educational level, cardiovascular Risk factors</td>
<td>Prevalence of subjects with diabetes and or hypertension was larger in groups with low educational level</td>
<td></td>
</tr>
<tr>
<td>Barros MB et al. 26</td>
<td>384,764 y 391,868 adults included in PNAD database from Brazil between 2003-2008.</td>
<td>Retrospective study of atherosclerosis</td>
<td>Chronic diseases, health inequities, health survey, PNAD, Brazil</td>
<td>Increased prevalence of diabetes, hypertension and cirrhosis was observed and prevalence was higher among adults belonging to low educational strata</td>
<td></td>
</tr>
</tbody>
</table>

Asthma

| Benicio et al. 27 | 1,132 children between 6-59 months | Retrospective Cross sectional study for reviewing sociodemographic, environmental, nutritional variables and immunization status | Asthma/epidemiology, Risks factors, socioeconomic factors, housing, child, Brazil | The prevalence of recent wheezing episodes was 12.5% and was associated with low per capita income, poor housing conditions, low birth weight (LBW) and poor day care attendance |

Growth Alterations in children

| Molina E 28 | 107 children less than 5 years, 27 pregnant women, from a low income community in Mexico | Retrospective, longitudinal, comparative study of nutritional status between WHO international standards and CENAN standards | Nutrition assessment, Pregnant women, chronic undernourishment | 22.4% of children reported growth retardation of which 1.8% showed severe stunting, 0.9% of children were obese. 29.6% of Pregnant women reported low GWG whereas 18.5% had excessive GWG |

| PoelVE et al. 29 | Children under 5 years old from 47 countries where data from recent demographic health surveys (DHS) are available | Data from most recent demographic DHS available anthropometric data on children less than 5 years | Child Health, Urban-rural disparity, developing countries, socioeconomic inequality, Urban poor | There is an urban-rural gap in stunting and mortality being the largest in the Latin American and the Caribbean region. The gap in growth stunting is 1.5 higher than that in mortality. Urban poor children are at risk of stunting |

| PoelVE et al. 30 | Children up to 5 years old in 47 developing countries | Evaluation on anthropometric data from DHS in 47 countries | Childhood malnutrition developing countries, social inequalities | Malnutrition in children is unequally distributed, and eradicating malnutrition does not necessarily reduces social inequalities |

Are social inequities the reason for the increase in chronic non communicable diseases? A systems review

13,15,28

Subjects/Unit of Analysis

Methodology

Descriptors

Results/Findings

Table Continued....

Studies showing associations with growth impairments in children

Studies reporting growth alterations essentially focus on stunting. Van de Poel et al.,29 reported a large gap between rural and urban children and highlighted that urban poor children are at risk of stunting. In addition, Molina30 reported that growth alterations occurred in a low income community in Peru in which obesity is as low as 0.9% of the studied population, while 22.4% reported growth retardation and 1.8% was severely stunted. Navarrete et al.,31 reported that obesity was higher in Chilean boys between 2-5 years of age (10.6%) compared with girls (5.3%); 25.3% of the boys showed stunting and these outcomes were associated with extreme poverty.

Study showing associations with asthma

An association was reported between asthma and poor housing conditions, low per capita income and low birth weight in a study by Benicio et al.32

Discussion

The rise in the prevalence of non-communicable diseases worldwide is a serious issue, particularly in the developing world where good life conditions might not reach a large proportion of individuals. How social inequities are associated with the appearance of NCDs is a complex question to answer. Globalization and demographic transition and urbanization processes had been keys to generating economic development. On the one hand, these processes have made interesting improvements in health achievements but have contributed to rise of social disparities on the other hand.33

Uncontrolled access to unhealthy foods and the fact that some groups who previously did not have consistent access to food now can regularly access cheap and calorie-dense food have been determinants in the rising prevalence of overweight and obesity in disadvantaged groups.3

As evidenced in the majority of the articles above, an association between social inequities and the presence of non-communicable diseases, particularly between obesity, increased cardiovascular risks, diabetes and altered growth pattern in children has emerged as an interesting topic for research. The traditionally expected outcome for those living in poverty is changing from undernourishment and classic stunting to the coexistence of obesity and excess weight and stunting and low weight, as shown in several studies, highlighting the presence of “the double burden of malnutrition”.35

Interestingly, when analyzing the studies, differences within the same country could be observed. In one community, characteristics of low income, poverty and social inequities and the consequences of over nutrition status and NCDs can result in an increase in the prevalence of obesity, while the same sociodemographic characteristics in other communities can manifest as marked undernourishment.31,35,36 This should be taken cautiously when analyzing social determinants of NCD since characteristics of the communities themselves can influence particularly the nutritional outcomes, rather than an absolute criteria of the association of poverty and being socially disadvantaged and the presence of overweight and obesity this show the multidimensionality of social factors and their complex interactions.

In addition, a gap between the rural and urban population was observed, resulting in different perspectives for analysis and interpretation. This gap is evident in children’s nutritional status, as observed in Mexico City where children attending 6 schools were 2.53 more likely to be obese if living in food insecure households than their food secure counterparts.37 By contrast, in a more rural, small city (Chalhuancu, Peru), a sample of children had an obesity prevalence of 0.9% and 22.4% had stunted growth.38

Wasting in children, manifesting as low weight for height, is caused mainly by immediate caloric deficiencies and has been associated traditionally with food insecurity and hunger. On the other hand, stunting or chronic malnutrition happens when consistent low levels of insufficient caloric intake are present and are also associated with micronutrient deficiencies.39 Wasted children are susceptible to disease while stunting reduces later performance at school and income as adults. Moreover, stunting starting early in life increases the risk of obesity and NCDs later in life, which is a key motivation of this present article.40

As a result, these differences might mean that access to opportunities is unevenly distributed among the population and that the nutrition and demographic processes are at different levels of evolution in different regions. Additionally, as was shown in an important quantity of the articles in this review, low education level is a key factor, particularly nutritional knowledge. While not specifically addressed in these articles, lack of nutritional knowledge is as an obstacle to achieving good health and preventing the presence and evolution of NCDs when improved outcomes such as obesity are ameliorated.41

Equally important is the types of disadvantages these communities are experiencing. Thus, programs and interventions cannot be the same for a totally deprived community compared with a low income community.

There are several definitions and categorizations of poverty, including differences in approaches according to the elements taken into account. The one introduced by Walter25 is an interesting one, as it describes a classification in external poverty characterized by low income and difficulties for maintenance and internal poverty that would include potentially harmful effects on good and adequate nutrition. The latter concept would refer to knowledge and beliefs about nutrition and attitudes as a key factor of good eating habits that are even more important than income. A recent study found

Are social inequities the reason for the increase in chronic non communicable diseases? A systematic review

no relationship between income and obesity in a disadvantaged population. However, when considering the line of poverty, the association was statistically significant, also low level of education was a factor that increased the risk of being obese, which is important when considering the multidimensionality of poverty for analysis.37

The aspects that are to be considered when assuming the different aspects of poverty are more complex than just lack of adequate income. In spite of being important elements for quality of life, low education, lack of nutritional knowledge and family structure are aspects that will impact nutritional adequacy and ultimately the development of a chronic condition related to nutritional disease.4,38

The formula to explain the increasing prevalence of non-communicable diseases is complex and it reflects cultural, geographical, genetic and other differences. NCD as shown can express in affluent communities as well as in disadvantaged ones. However, inequality in access to goods and services is a constant; in a changing world, understanding that malnutrition and obesity can be expressions of inequalities in access to food and education requires a methodological effort. It is not logical to think that less food results in more malnutrition and that more food results less malnutrition. The nutrition transition phenomenon does not appear to be a continuum from the weight-height deficit towards obesity through normal status. Rather, it seems that the two poles of malnutrition and obesity are on one side of the spectrum and normal on the other and determining the factors for non-communicable diseases.

Acknowledgements

None.

Conflict of interest

Author declares that there is no conflict of interest.

References

