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Introduction
CO2 lasers had shown great potential in increasing the 

resistance of enamel surface to acid attacks. The thermal effect 
of certain laser parameters proved to cause some structural 
and chemical changes in enamel. The available data revealed 
a promising combined treatment when fluoride and laser were 
used together compared to laser or fluoride treatment alone.

Liu et al. [1] explained the possible cariostatic mechanisms 
of the combined fluoride-laser treatment. They suggested that a 
laser-induced purification of the human enamel hydroxy apatite 
structure takes place and plays the major role in this cariostatic 
process. They also mentioned that the low-energy laser treatment 
has a photo thermal effect that may cause a reduction in enamel 
permeability. They also reported an increase in the fluoride 
uptake by the enamel surface in the form of calcium fluoride. 
And subsequently, in the presence of fluoride and laser treatment 
a transformation of hydroxy apatite into “fluoro apatite” takes 
place, which is more resistant to acid attacks.

Several researchers have evaluated caries prevention using 
combined lasers and fluoride treatment. However, only minimal 
research has focused on testing the re-hardening effect on already 
existing white spot lesions. They always tested one laser effect 
with one acid attack. But based on previous studies we had 
the insight of investigating the frequency of laser irradiation 
combined with fluoride treatment. This study was designed to 
test the null hypothesis that repeated application of the combined 

varnish and laser treatment would not have any significant effect 
on the further progression of the white spot lesion in enamel.

Materials and Methods

Experimental design

36 enamel slabs were cut from 6 human molars. Following 
white-spot lesions (WSL) creation in all specimens, they were 
randomly assigned into 3 groups; (1) (Control) received no 
treatment, (2) (FL1) one-application of MI fluoride-varnish 
followed by CO2 laser (short-pulsed 10.6μm, 2.4J/cm2, 10HZ, 
10sec), (3) (FL2) two-applications of MI varnish-CO2 laser. 
Treatments were followed by caries challenge (pH-cycling). The 
response variable was surface microhardness (SMH), which was 
measured at baseline, after WSL formation, and after treatment.

Sample preparation

0.1% (wt/vol) thymol solution at 4°C was used for human 
teeth storage, until the beginning of the experiment [2]. Teeth 
were checked for restorations, cracks, caries or developmental 
defects. Teeth with intact buccal enamel surfaces were used. 
Roots were removed using a high-speed hand piece with copious 
amount of water. Each tooth crown was sectioned to create 3 
specimens, using one in each group. To minimize variations 
in results, the control and the experimental specimens were 
from the same tooth. The enamel surfaces were fixed in Teflon 
matrices using casting wax [3], and were ground flat and polished 
with carbide paper (600, 800 and 1200 grid in sequence) under 
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copious running water on a grinding and polishing machine 
(DP-9U2; Struers S/A, Copenhagen, Denmark). An acid-resistant 
nail varnish (Revlon Cherry color) double coated the specimens 
except for a treatment window (2.0 x 3.0mm) that left exposed. 
Specimens were stored in distilled water.

Artificial caries lesions

Following a demineralization protocol from Queiroz et al. [4], 
early caries lesions were created in all groups by individually 
immersing the specimens in falcon tube containing 12ml 
demineralizing solution (2ml/mm2 of the enamel area) without 
agitation at 37% for 64 hours. The demineralization solution 
composed of 50mM acetate buffer solution containing (1.28mM) 
calcium nitrate trihydrate, (0.74mM) sodium dihydrogen 
phosphate monohydrate, and 0.03μg F/mL (0.03 ppm fluoride).
The addition of low fluoride concentration (0.03μg F/mL) was to 
help preserve the enamel surface. This is a relevant aspect when 
considering the formation of a typical subsurface lesion Rehder 
Neto et al. [5]. Then, all specimens were cleaned with a piece of 
gauze soaked in deionized water and kept in artificial saliva in an 
incubator at 37°C for 24 hours to be treated later. Artificial saliva 
formulation consisted of hydrogen carbonate (22.1mmol/L), 
potassium (16.1mmol/L), sodium (14.5mmol/L), calcium 
(0.2mmol/L), hydrogen phosphate (2.6mmol/L), boric acid 
(0.8mmol/L), calcium (0.7mmol/L), thiocyanate (0.2mmol/L) 
and magnesium (0.2mmol/L) with a pH between 7.4 and 7.8 [4].

Surface treatment

Following WSL creation, the randomly assigned specimens 
received the following treatments; (CON) control group: no 
surface treatment and enamel received pH cycle. (F-L1): One-
time application of Fluoride varnish-laser group. Specimens were 
dried with absorbent paper then MI varnish (5% sodium fluoride 
varnish with Recaldent (CPP-ACP), GC America, USA) was applied 
to the treatment window using the application micro brush 
as directed by the manufacturer. Fluoride-treated surface was 
irradiated with 10.6μm CO2 laser (Azuryt CTL 1401, CO2 North 
American Clinical Lazer System, LTD) (fluence per pulse from 
3.3 to 4.4 J/cm2, wave length 10.6μm, pulse duration 20μs, pulse 
repetition rate 20Hz, beam diameter of focus 1100μm). A straight 
hand piece was used to deliver the laser beam from a distance 
of approximately 5 mm. Only one operator treated enamel 
windows with laser in a scanning mode moving the hand piece 
uniformly and longitudinally over the treatment window. After 4 
min, specimens were immersed in artificial saliva at 37°C. After 
24hours storage, a knife blade was used to remove the fluoride 
varnish from enamel surface to resemble the varnish removal 
in vivo by tooth brushing [3].Then specimens were rinsed with 
deionized water before the pH-cycle. (F-L2): Two applications of 
Fluoride varnish-laser: This group received similar treatment as 
F-L1 group. A second application of the fluoride-laser treatment 
was carried out at the end of the first pH cycle followed by another 
9-day pH cycling.

Artificial cariogenic challenge

After treatment, groups were subjected to a 9-days pH-cycling 
model (8+1 day remineralization bath at 37°C), following Queiroz 
protocol [4]. All specimens were covered with pink wax except for 
the treatment window, attached to a piece of orthodontic wire to 
suspend it in plastic falcon tubes which were kept in an incubator 
at 37°C and under constant agitation at 200rpm during the whole 
pH-cycle. The specimens in all groups were immersed for 4h in 
25mL demineralization solution (1.28mM calcium nitrate, 0.74mM 
sodium dihydrogen phosphate, 0.05 M acetate buffer, 0.03μg F/ml, 
pH 5.0).Followed by thorough rinsing of the specimens (10s) in 
distilled water and drying with absorbent paper. Then, specimens 
immersed 20h in 12.5mL remineralization bath (1.5mM calcium 
nitrate, 0.9mM sodium dihydrogen phosphate, 150mM potassium 
chloride, 0.1 M Tris buffer, 0.05μg F/ml, pH 7). After 8 days of 
cycling, remineralization for 24h took place in the 9th day. On 
the 4th day, the de- and remineralizing solutions were replaced 
by fresh solution. The plastic falcon tubes with the suspended 
specimens were kept in an incubator at 37°C and under constant 
agitation at 200rpm during the whole pH-cycle. After completion 
of the pH-cycling specimens were stored on wet cotton fabric at 
room temperature and 100% relative humidity [6].

Surface microhardness analysis

1200 grid carbide paper was used to obtain polished, smooth 
and unscratched enamel. All specimens were tested for (SMH) 
using 50-gram load for 10seconds. SMH was recorded three 
times for each specimen, baseline SMH, SMH after induction 
of WSL, SMH after pH cycling. Five clear flawless indentations 
spaced 100µm were made at the center of the working enamel 
surface. The average of the five readings was calculated for each 
specimen as the microhardness value. Then the percentage of 
mineral recovery of the SMH values (%SMHR) was calculated by 
this formula

   –    100

   –    

Treated Enamel TE Demineralized Enamel DE

Initial Enamel IE Demineralized Enamel DE

×

Results
ANOVA followed by Duncan’s Multiple Range Test were used 

for data analysis (5% significance level). 

Table 1 & Figure 1 shows the descriptive statistics for the three 
different groups with the different SMH readings Tests detect 
significant differences at the level of (P≤.001), between various 
surface treatments at different phases of study. Figure 2 shows 
the percentage of surface micro hardness recovery for Con, FL1, 
FL2 groups (-117%, 77%, 40% respectively). Control group was 
significantly lower compared to FL1 and FL2.

Table 1: Surface Microhardness (SMH) comparison of different surface treatment groups (Mean±SD) at different phases of the study.

Control Fl*1 Fl*2

Baseline 355.02 (±53.93)a 353.50 (±55.52)a 351.10 (±55.81)a

WSL 294.26(±50.09)b,c 291.57 (±52.52)b,c 281.95 (±50.01)c

pH 222.53(±33.25)d 316.49 (±45.91)a,b,c 334.94 (±44.68)a,b

a, b, c, d: Means with same superscript do not differ each other (Duncan’s Multiple Range Test).
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Figure 1: Bar chart of Surface Microhardness (SMH) comparison of 
different surface treatment groups (Mean±SD) at different phases of the 
study.

Figure 2: Percentage of surface micro hardness recovery.
(F-V)  Fluoride Varnish, (F-L1) One time-application Fluoride Varnish 
followed by Laser, (F-L2) Two time-applications Fluoride Varnish 
followed by Laser.

Discussion

In our study, we have chosen the CPP-ACP, which is a relatively 
new mineralization technology. The formula is based on casein 
phosphopeptide (milk protein casein) [5]. The CPP (Casein 
phosphopeptide) is able to stabilize calcium phosphate in nano 
complexes like ACP (amorphous calcium phosphate). CPP binds 
to ACP in meta stable solution, which prevents of dissolution of 
calcium and phosphate ions. By this mechanism CPP-ACP acts as 
reservoir of bio-available calcium and phosphate. The solutions 
around the teeth will remain supersaturated thus facilitating 
remineralization.

The selection of CO2 laser in our study was based on findings of 
other studies reporting that the CO2 lasers are the most efficient 
in caries inhibition compared to other lasers [5-9]. This could 
be attributed to the scientific fact that because of the phosphate, 
carbonate, and hydroxyl groups in the crystalline structure of 
enamel, dentin, and cementum they have absorption bands in the 
infrared region (9.0 to 11.0μm region) [10,11]. These absorption 
bands are close to the CO2 laser irradiation [10,12-17]. This is why 
these tissues can efficiently absorb the irradiation from the CO2 
laser.

In our study the sequence of fluoride followed by laser was 
selected over laser followed by fluoride. This selection was 
based on the findings of several studies that reported better 
acid-resistance of enamel when the first sequence was used 
[5,7,15,18,19].

The one-time and two-time applications of fluoride varnish 
followed by laser showed statically significant increased SMH 
values compared to control group (CON) and fluoride-treated 
group (FV) after the pH challenge. This would translate into 
increased surface hardness and acid-resistance of the F-L-treated 
enamel surface. These results were consistent with other in 
vitro studies that have shown that combined laser-fluoride have 
beneficial effects on enamel microhardness [5-8,16,20]. This 
re-hardening effect could be attributed to the physico-chemical 
changes that have been shown to take place after F-L treatment in 
several studies as increased micro-porosities in tooth structure, 
increase in deposition of calcium fluoride on surface, partial 
conversion of hydroxy apatite to fluoro apatite which becomes 
trapped in the surface and subsurface enamel and crystal growth 
related to the temperature change [1].

The two applications of F-L treatment did not show significant 
difference compared to one-time application. However, SMH 
numerical values of the F-L2 group were greater than those in 
the F-L1 group. This might suggest a beneficial value of repeated 
application and may be increased hardness of the soft WSL. This 
might be attributed to the possibility that post lasing the surface 
twice there was a greater affinity for calcium, phosphate, and 
fluoride ion and an enhanced accumulation of these minerals [21].

In this study, the internal comparison between the experimental 
treatment and the respective control carried out here in helped 
eliminate experimental variability with regard to the employed 
human enamel substrate. One limitation is that it is not possible 
to predict the further effect of acid attacks since we cannot reflect 
on the long-term durability of this therapy.

Conclusion
In this vitro study the synergistic effect of fluoride and CO2 

laser was confirmed. It showed the ability of the fluoride-laser 
sequence to treat, re-harden the WSL, and increases the resistance 
to further acid dissolution. Further studies that simulate the 
clinical conditions are needed to test optimal frequency and 
longevity of applications of this combined treatment for the WSL.
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