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Re-hardening effect of two-applications of combined
fluoride-laser on incipient-enamel lesions

Abstract

Previous research demonstrated that combined treatment of fluoride followed by laser
irradiation propitiates an expressive fluoride uptake, reducing the progression of white-spot-
lesions. Since no other studies investigated the treatment effect of repeated applications of
fluoride-laser combined treatment, this study aimed to investigate if two-applications of
fluoride-laser sequence would re-harden enamel surface of incipient-enamel lesions more
than one-time application. 36 enamel slabs (3mm x 3mm x 4mm) were cut from 6 human
molars, ground flat, polished and coated with nail varnish except 2x3 windows. White-spot
lesions (WSL) were created in all specimens (demineralizing solution/16 hrs). Specimens
randomly assigned into 3 groups; (1) (Control) received no treatment, (2) (FL1) one-
application of MI fluoride-varnish followed by CO2 laser (short-pulsed 10.6um, 2.4J/cm2,
10HZ, 10sec), (3) (FL2) two-applications of MI varnish-CO2 laser, specimens were left in
distilled water for one day between applications. 8-day pH cycle (2hr demin/ 22hr remin)
was carried out for all tested groups. Knoop surface-microhardness using 50-grams/10
seconds (SMH) was measured at baseline, after WSL formation, and after treatment.
Percentage of surface microhardness recovery (%SMHR) was calculated. ANOVA
followed by Duncan’s Multiple Range Test were used for data analysis (5% significance
level). Findings suggest that treating WSL with fluoride-laser sequence was capable of
inhibiting further progression and re-hardened incipient-enamel lesions when compared to
control (-117%), which showed significant, further decrease in SMH when challenged by
pH-cycle. Although two-time application of fluoride-laser showed the highest percentage
of SMH recovery (77%), results revealed that it does not provide a significant additional
remineralization potential when compared to one-time application (40%).

Keywords: fluoride, lasers, enamel caries, remineralization

Volume 3 Issue 3 - 2015

Amal Noureldin,' Heena Jupta,?

Tarng Hunyh,? Ines Quintanilla,? Elias
Kontogiorgos,® Daniel Jones'

'Department of Public Health Sciences, Texas A&M University
Baylor College of Dentistry, USA

2Undergraduate student, Texas A&M University Baylor College
of Dentistry, USA

*Department of Restorative Sciences, Texas A&M University
Baylor College of Dentistry, USA

Correspondence: Amal Noureldin, Department of Public
Health Sciences, Texas A&M University Baylor College of
Dentistry, USA, Tel 214-828-8354, Fax 214-874-4555,

Email ael-din@bcd.tamhsc.edu

Received: November 24,2015 | Published: December 7,2015

Introduction

CO, lasers had shown great potential in increasing the resistance
of enamel surface to acid attacks. The thermal effect of certain laser
parameters proved to cause some structural and chemical changes in
enamel. The available data revealed a promising combined treatment
when fluoride and laser were used together compared to laser or
fluoride treatment alone.

Liu et al.,! explained the possible cariostatic mechanisms of
the combined fluoride-laser treatment. They suggested that a laser-
induced purification of the human enamel hydroxy apatite structure
takes place and plays the major role in this cariostatic process. They
also mentioned that the low-energy laser treatment has a photo thermal
effect that may cause a reduction in enamel permeability. They also
reported an increase in the fluoride uptake by the enamel surface in
the form of calcium fluoride. And subsequently, in the presence of
fluoride and laser treatment a transformation of hydroxy apatite into
“fluoro apatite” takes place, which is more resistant to acid attacks.

Several researchers have evaluated caries prevention using
combined lasers and fluoride treatment. However, only minimal
research has focused on testing the re-hardening effect on already
existing white spot lesions. They always tested one laser effect with

one acid attack. But based on previous studies we had the insight of
investigating the frequency of laser irradiation combined with fluoride
treatment. This study was designed to test the null hypothesis that
repeated application of the combined varnish and laser treatment
would not have any significant effect on the further progression of the
white spot lesion in enamel.

Materials and methods

Experimental design

36 enamel slabs were cut from 6 human molars. Following white-
spot lesions (WSL) creation in all specimens, they were randomly
assigned into 3 groups; (1) (Control) received no treatment, (2) (FL1)
one-application of MI fluoride-varnish followed by CO2 laser (short-
pulsed 10.6um, 2.4J/cm2, 10HZ, 10sec), (3) (FL2) two-applications of
MI varnish-CO2 laser. Treatments were followed by caries challenge
(pH-cycling). The response variable was surface microhardness
(SMH), which was measured at baseline, after WSL formation, and
after treatment.

Sample preparation

0.1% (wt/vol) thymol solution at 4°C was used for human teeth
storage, until the beginning of the experiment.> Teeth were checked
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for restorations, cracks, caries or developmental defects. Teeth with
intact buccal enamel surfaces were used. Roots were removed using
a high-speed hand piece with copious amount of water. Each tooth
crown was sectioned to create 3 specimens, using one in each group.
To minimize variations in results, the control and the experimental
specimens were from the same tooth. The enamel surfaces were
fixed in Teflon matrices using casting wax,* and were ground flat and
polished with carbide paper (600, 800 and 1200 grid in sequence)
under copious running water on a grinding and polishing machine
(DP-9U2; Struers S/A, Copenhagen, Denmark). An acid-resistant nail
varnish (Revlon Cherry color) double coated the specimens except for
a treatment window (2.0 x 3.0mm) that left exposed. Specimens were
stored in distilled water.

Artificial caries lesions

Following a demineralization protocol from Queiroz et al.,* early
caries lesions were created in all groups by individually immersing
the specimens in falcon tube containing 12ml demineralizing solution
(2ml/mm?2 of the enamel area) without agitation at 37% for 64 hours.
The demineralization solution composed of 50mM acetate buffer
solution containing (1.28mM) calcium nitrate trihydrate, (0.74mM)
sodium dihydrogen phosphate monohydrate, and 0.03pg F/mL (0.03
ppm fluoride).The addition of low fluoride concentration (0.03ug F/
mL) was to help preserve the enamel surface. This is a relevant aspect
when considering the formation of a typical subsurface lesion Rehder
Neto et al.’ Then, all specimens were cleaned with a piece of gauze
soaked in deionized water and kept in artificial saliva in an incubator
at 37°C for 24 hours to be treated later. Artificial saliva formulation
consisted of hydrogen carbonate (22.1mmol/L), potassium
(16.1lmmol/L), sodium (14.5mmol/L), calcium (0.2mmol/L),
hydrogen phosphate (2.6mmol/L), boric acid (0.8mmol/L), calcium
(0.7mmol/L), thiocyanate (0.2mmol/L) and magnesium (0.2mmol/L)
with a pH between 7.4 and 7.8.

Surface treatment

Following WSL creation, the randomly assigned specimens
received the following treatments; (CON) control group: no surface
treatment and enamel received pH cycle. (F-L1): One-time application
of Fluoride varnish-laser group. Specimens were dried with absorbent
paper then MI varnish (5% sodium fluoride varnish with Recaldent
(CPP-ACP), GC America, USA) was applied to the treatment window
using the application micro brush as directed by the manufacturer.
Fluoride-treated surface was irradiated with 10.6um CO, laser
(Azuryt CTL 1401, CO, North American Clinical Lazer System,
LTD) (fluence per pulse from 3.3 to 4.4 J/cm2, wave length 10.6um,
pulse duration 20us, pulse repetition rate 20Hz, beam diameter of
focus 1100um). A straight hand piece was used to deliver the laser
beam from a distance of approximately 5 mm. Only one operator
treated enamel windows with laser in a scanning mode moving the
hand piece uniformly and longitudinally over the treatment window.
After 4 min, specimens were immersed in artificial saliva at 37°C.
After 24hours storage, a knife blade was used to remove the fluoride
varnish from enamel surface to resemble the varnish removal in vivo
by tooth brushing.? Then specimens were rinsed with deionized water
before the pH-cycle. (F-L2): Two applications of Fluoride varnish-
laser: This group received similar treatment as F-L1 group. A second
application of the fluoride-laser treatment was carried out at the end of
the first pH cycle followed by another 9-day pH cycling.
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Artificial cariogenic challenge

After treatment, groups were subjected to a 9-days pH-cycling
model (8+1 day remineralization bath at 37°C), following Queiroz
protocol.* All specimens were covered with pink wax except for
the treatment window, attached to a piece of orthodontic wire to
suspend it in plastic falcon tubes which were kept in an incubator at
37°C and under constant agitation at 200rpm during the whole pH-
cycle. The specimens in all groups were immersed for 4h in 25mL
demineralization solution (1.28mM calcium nitrate, 0.74mM sodium
dihydrogen phosphate, 0.05 M acetate buffer, 0.03ug F/ml, pH 5.0).
Followed by thorough rinsing of the specimens (10s) in distilled water
and drying with absorbent paper. Then, specimens immersed 20h in
12.5mL remineralization bath (1.5mM calcium nitrate, 0.9mM sodium
dihydrogen phosphate, 150mM potassium chloride, 0.1 M Tris buffer,
0.05ug F/ml, pH 7). After 8 days of cycling, remineralization for 24h
took place in the 9th day. On the 4th day, the de- and remineralizing
solutions were replaced by fresh solution. The plastic falcon tubes
with the suspended specimens were kept in an incubator at 37°C and
under constant agitation at 200rpm during the whole pH-cycle. After
completion of the pH-cycling specimens were stored on wet cotton
fabric at room temperature and 100% relative humidity.®

Surface microhardness analysis

1200 grid carbide paper was used to obtain polished, smooth and
unscratched enamel. All specimens were tested for (SMH) using 50-
gram load for 10seconds. SMH was recorded three times for each
specimen, baseline SMH, SMH after induction of WSL, SMH after
pH cycling. Five clear flawless indentations spaced 100pm were
made at the center of the working enamel surface. The average of the
five readings was calculated for each specimen as the microhardness
value. Then the percentage of mineral recovery of the SMH values
(%SMHR) was calculated by this formula

Treated Enamel TE — Demineralized Enamel DEx100/

Initial Enamel IE — Demineralized Enamel DE

Results

ANOVA followed by Duncan’s Multiple Range Test
were used for data analysis (5% significance level).
Table 1 & Figure 1 shows the descriptive statistics for the three
different groups with the different SMH readings Tests detect
significant differences at the level of (P<.001), between various surface
treatments at different phases of study. Figure 2 shows the percentage
of surface micro hardness recovery for Con, FL1, FL2 groups (-117%,
77%, 40% respectively). Control group was significantly lower
compared to FL1 and FL2.

Table | Surface Microhardness (SMH) comparison of different surface
treatment groups (Mean*SD) at different phases of the study

Control FI*1 FI*2
Baseline  355.02 (+53.93)>  353.50 (+55.52)" 351.10 (£55.81)
WSL 294.26(+£50.09)><  291.57 (£52.52)><  281.95 (+50.01)¢
pH 222.53(+33.25)¢ 316.49 (£45.91)*><  334.94 (+44.68)*°

a, b, ¢, d: Means with same superscript do not differ each other (Duncan’s
Multiple Range Test)
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Figure | Bar chart of Surface Microhardness (SMH) comparison of different surface treatment groups (Mean+SD) at different phases of the study.
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Figure 2 Percentage of surface micro hardness recovery.
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(F-V) Fluoride Varnish, (F-LI) One time-application Fluoride Varnish followed by Laser, (F-L2) Two time-applications Fluoride Varnish followed by Laser.

Discussion

In our study, we have chosen the CPP-ACP, which is a
relatively new mineralization technology. The formula is based on
casein phosphopeptide (milk protein casein).” The CPP (Casein
phosphopeptide) is able to stabilize calcium phosphate in nano
complexes like ACP (amorphous calcium phosphate). CPP binds to
ACP in meta stable solution, which prevents of dissolution of calcium
and phosphate ions. By this mechanism CPP-ACP acts as reservoir of
bio-available calcium and phosphate. The solutions around the teeth
will remain supersaturated thus facilitating remineralization.

The selection of CO, laser in our study was based on findings of
other studies reporting that the CO, lasers are the most efficient in
caries inhibition compared to other lasers.>® This could be attributed
to the scientific fact that because of the phosphate, carbonate, and
hydroxyl groups in the crystalline structure of enamel, dentin, and
cementum they have absorption bands in the infrared region (9.0 to
11.0um region).'*!" These absorption bands are close to the CO, laser
irradiation.'™*'” This is why these tissues can efficiently absorb the
irradiation from the CO, laser.

In our study the sequence of fluoride followed by laser was
selected over laser followed by fluoride. This selection was based on
the findings of several studies that reported better acid-resistance of
enamel when the first sequence was used.>”!>1819

The one-time and two-time applications of fluoride varnish
followed by laser showed statically significant increased SMH values
compared to control group (CON) and fluoride-treated group (FV)
after the pH challenge. This would translate into increased surface
hardness and acid-resistance of the F-L-treated enamel surface.
These results were consistent with other in vitro studies that have
shown that combined laser-fluoride have beneficial effects on enamel
microhardness.>®!¢2 This re-hardening effect could be attributed to
the physico-chemical changes that have been shown to take place
after F-L treatment in several studies as increased micro-porosities in
tooth structure, increase in deposition of calcium fluoride on surface,
partial conversion of hydroxy apatite to fluoro apatite which becomes
trapped in the surface and subsurface enamel and crystal growth
related to the temperature change.'

The two applications of F-L treatment did not show significant
difference compared to one-time application. However, SMH
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numerical values of the F-L2 group were greater than those in the
F-L1 group. This might suggest a beneficial value of repeated
application and may be increased hardness of the soft WSL. This
might be attributed to the possibility that post lasing the surface twice
there was a greater affinity for calcium, phosphate, and fluoride ion
and an enhanced accumulation of these minerals.!

In this study, the internal comparison between the experimental
treatment and the respective control carried out here in helped
eliminate experimental variability with regard to the employed human
enamel substrate. One limitation is that it is not possible to predict the
further effect of acid attacks since we cannot reflect on the long-term
durability of this therapy.

Conclusion

In this vitro study the synergistic effect of fluoride and CO, laser
was confirmed. It showed the ability of the fluoride-laser sequence to
treat, re-harden the WSL, and increases the resistance to further acid
dissolution. Further studies that simulate the clinical conditions are
needed to test optimal frequency and longevity of applications of this
combined treatment for the WSL.
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