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Abbreviation: Ocs: Osteoclasts; IGF: Insulin Growth Factors; 
TGF-β: Transforming Growth Factor-β; FGF: Fibroblast Growth 
Factors; OBs: Osteoblasts; BMU: Basic Multicellular Unit; SRE: 
Skeletal Related Events; IL-6: Interleukin-6

Introduction
Bone is a frequent site for distant metastasis and more 

prevalent in breast cancer patients. In advanced breast cancer, 
more than two thirds of patients will develop high rates of relapse 
in bone [1,2]. During the bone metastatic phase of breast cancer 
disease, nearly 50% of patients will be affected by skeletal related 
events (SRE) including pathologic fracture, bone surgery, spinal 
cord compression, and palliative radiation therapy to bone, and 
hypercalcemia of malignancy [3]. Bone-targeted therapies such as 
denosumab or potent biophosphonates are currently a standard 
approach in treatment of patients with bone metastases reducing 
skeletal morbidity from metastatic cancer [4,5]; nonetheless their 
capacity to neither prevent formation of bone metastasis nor 
improve overall survival in these patients is still controversial 
and these medical therapies are at best considered palliative. In 
order to improve the treatment of bone metastatic disease and 

increase disease free survival rates, a full-scale comprehension 
of multiple interactions among breast cancer cells and bone 
microenvironment have generated considerable recent research 
interest .

Bone Microenvironment and Homeostasis Disturbance

Bone micro environmental features 

Bone preserves the integrity and stability of skeletal system, 
acts as a protective shield for hematopoietic marrow, as well 
as serves as a storage site for calcium, phosphate [6] and many 
growth factors such as insulin growth factors (IGF), transforming 
growth factorβ- (TGF-β), fibroblast growth factors (FGF) and 
other cytokines, insuring its role as vital organ in maintaining 
a healthy body. Originally bone homeostasis was thought to be 
preserved by a constant forward-feedback mechanism, also 
known as remodeling process among two main cell-types stored 
in that environment: osteoclasts (OCs) and osteoblasts(OBs), 
but much study in the recent years have radically redefined this 
concept. Nowadays bone remodeling process is carried out by 
the deep crosstalk interaction between components of the basic 
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Abstract

Bone metastasis affects more than 70% of advanced breast cancer patients and is 
the leading cause of breast cancer-related deaths, incapable of being controlled, 
still very unpredictable. As a consequence, this has led to increased mortality and 
worsen quality of life in these patients by causing severe complications such as 
excruciating bone pain, hypercalcemia and spinal cord compression, pathological 
fractures also known as skeletal related events (SRE). Vast majority of breast 
cancer patients with relapses in bone are asymptomatic during the course of the 
disease, hence making it difficult to diagnosis and detect the spread of the breast 
cancer cells to the bone prior to appearance of bone pain complains issued by this 
category of patients. 

Due to increased frequency of bone metastases in breast cancer during the recent 
years, understanding cross-communications between tumor cells and bone cells 
accompanied by the action of various growth factors, proinvasive cytokines, 
chemokines released upon bone destruction are essential to help improve the 
development of new effective therapeutic interventions. The pathogenesis of 
bone metastases in breast cancer depends on the bidirectional tight interaction 
among breast cancer cells and various stromal cells also being identified as the 
“vicious cycle”, which modulates the bone niche resulting in continuous activation 
of bone resorption process. One of the major important pathways involved in 
the development and progression of bone metastases in breast cancer is RANK-
RANKL-OPG cascade, where a positive shift towards RANKL-RANK axis favors 
proliferation, activation and survival of osteoclasts, thus promoting tumorigenesis 
and metastasis in the bone. In this context, disturbance of RANKL-RANK interplay 
should be an effective method to prevent the survival and growth of the breast 
cancer cell in the bone microenvironment.

Keywords: Osteocyte; Osteoblast; Osteocyte; RANKL; RANK; OPG; Bone 
metastasis; Breast cancer 
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multicellular unit (BMU), a compact anatomical cohort formed by 
oscteoblasts(OBs), bone lining cells , osteocytes and osteoclasts 
(OCs) [7,8]. 

OBs’s bone absorption and Ocs’s bone resorption activity 
achieves a precisely balanced interaction which maintains the 
strength and vitality of bone mass also known as “coupling” 
[9,10] an extensive process not only refering to the BMU 
interrelationships but also impacted by the action of many 
factors such as :sphingosine-1-phosphate, semaphorins, ephrins, 
interleukin-6 (IL-6) family cytokines and marrow-derived 
factors [11]. OCs firm attachment to the underlying bone matrix 
activates a chain of digestive mechanisms through the release of 
proteolytic enzyme, cathepsin K and hydrochloric acid onto the 
bone [11,12], which disintegrates the trabeculae and cortical 
bone filled cavities, followed by OBs covering these gaps with 
new bone matrix termed osteoid. The mechanism underlying 
constant bone renewal is a compact safe grounded system that 
still attracts widespread interest among scientists, but a more in-
depth understanding of processes underlying OCs formation and 
function can unwind some of its potential applications.

Bone cells 

Osteoclasts

OCs differentiate from myeloid lineage of hematopoietic 
mononuclear precursor cells and their function is extended 
beyond bone resorption, also including maintenance of 
hematopoietic niche [13] ,induction of angiogenesis via platelet-
derived growth factor-BB (PDGF-BB) [14], bone formation 
activity [15] and safekeeping of endocrine function of bone 
though production of osteocalcin [16], a bone matrix protein. 
The importance of osteoclast-mediated bone formation has 
been demonstrated by investigating and finally recognizing the 
term clastokines, also known as osteoclast derived coupling 
factors, (Tartrate resistant acid phosphatese (TRAcP), S1p, 
BMP6, Wnt10b, hepatocyte growth factor (HGF), collagen triple 
helix repeat-containing protein 1(CTHRC1), PDGF BB) [17], a 
particular set of substances derived from osteoclasts which have 
the capacity to specifically induce osteogenesis . As Drissi H & A 
Sanjay [18] wondered in their brief paper many questions have 
started to intrigue scientists regarding clastokines, among them 
the most decisive ones include: whether all osteoclasts-mediated 
factors posses the same equal ability to induce bone formation? 
Can indeed clastokines be considered a supplementary route to 
the action exhibited by the bone matrix released factors? This 
needs further comprehensive investigation to achieve a more 
profound knowledge regarding the tightly interaction between 
osteoclast and osteoblast leading to dissimilar degrees of bone 
remodeling in different parts of the bone! 

Osteoclast precursors(OCPs)are allured to the blood circulation 
by a bioactive sphingolipid, sphingosine-1 phosphate (S1P) 
secreted by red blood cells and platelet which adjust the ability 
of OCPs to move spontaneously and actively from bone marrow 
into the bloodstream and later on differentiate into osteoclasts 
[19]. OCs formation and activation is a perplex process initiated 
primarily by receptor activator of NF-κB ligand (RANKL), a crucial 

cytokine, commonly found on the surface of osteoblasts ,osteocytes 
, and other cells such as T and B lymphocytes, which after binding 
to its receptor activator of nuclear factor κB (RANK) induces 
osteoclastogenesis through NF-κB signaling cascade [19-22]. 
Another essential signaling molecule required for differentiation 
of osteoclasts progenitors into precursors is macrophage-colony 
stimulating factor (M-CSF), an integral osteoclast differentiation 
factor, which after binding to its receptor, c-fms, mediates OPC’s 
proliferation and differentiation through MAP kinases and 
extracellular signal -regulated (ERKs) kinases [23]. 

Osteoblasts

OBs , cuboidal cells compromising 4-6% of all bone cells, 
commonly known as the cells which absorb bone descend 
from the pluripotent mesenchymal stem cells (MSC) [12,24].
Osteoblastogenesis ,as a very specific multistep process, is driven 
by the expression of several osteoblastic-specific transcription 
factors including: Runt-related transcription factor 2(Runx2), 
Distal-less homeobox 5(Dlx5), Osterix (Osx) and synthesis of 
Wingless (Wnt), lipoprotein receptor-related protein 5 and 
6 (Lrp5/6), and bone morphogenetic proteins (BMPs), all 
required for the commitment of MSC to mature osteoblasts 
[23,25]. Runx2 has been identified as the master gene responsible 
for osteoblast differentiation, as indicated by absence of bone 
tissue or osteoblasts in Runx2-deficient mice [26]. Osteoblasts 
express high levels of Runx2 in vivo and in vitro. Additionally 
Runx2 has been demonstrated to be up-regulated by BMPS 
via Smads [27], indicating a very intricate relationship among 
various transcription factors and genes responsible for osteoblast 
differentiation, therefore further research is required to asses 
these ties and their clinical importance .

As mentioned above, osteoblasts posses the ability to interfere 
with bone degradation as the main contributors of RANKL 
expression followed by embedded osteocytes and stromal cells. 
Even though many studies discovered that osteocytes indeed 
synthesize high quantity of RANKL, nonetheless their assistance 
in osteoclast formation is lesser than that of osteoblasts due to 
the presence of RANKL as a soluble molecule transferred to OCPs 
through cytoplasmic projections of osteocytes [28]. On the other 
hand, Osteoblastic RANKL is primary located in lysosomes and 
only the interaction with RANK beads can initiate the adequate 
stimulatory-dependent signals to dispense these cytokines to the 
cell surface and subsequently instigate osteoclastogenesis [29].

Osteocytes 

Oscteocytes are the preeminent type of cell seen in the bone, 
representing more the 90% of the total bone cells and besides 
that, are the cells which have the longest lifespan within the 
bone matrix, up to 25 years [30,31]. Osteocytes are derived 
from MSC lineage through osteoblast differentiation, when 
at the end of osteoblastogenesis,a subdivision of osteoblasts 
undergoes noticeable morphological and ultra structural 
changes and becomes embedded into the bone matrix as newly 
transformed osteocytes. This process includes 4 distinctive 
phases: osteoid-osteocyte or type I preosteocyte, preosteocyte 
or type II preosteocyte , young osteocyte or type III preosteocyte 
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and mature osteocytes [32]. During the oscteocytogenesis , 
precursor osteoblast round appearance gradually is changed and 
reduced in size into a stellar shaped cell and numerous cytoplasm 
projections (up to 50 per each cell in normal human bone )start to 
emerge from each osteocyte body influenced by the expression of 
membrane-associated protein E11/gp38 (podoplanin) [33]. The 
number of organelles gradually declines, whereas the nucleus-
to-cytoplasm ratio inclines. As the mineralization of osteoid 
proceeds, specifically in type III preosteocyte, the endoplasmic 
reticulum and Golgi apparatus are significantly reduced compared 
to type I and II preosteocytes, thus resulting in the decrease of 
protein synthesis and secretion [7,34].

Osteocytes extend their cytoplasmic projections within 
the canaliculi of the lacuna, forming the lacunar-canalicular 
system, where they establish a virtual network of funtional 
innercommunications,not only with other neighbouring 
osteocytes,but also with other bone cells such as: osteoblasts, 
osteoclast and bone lining cells [35]. These direct cell-to cell 
interactions are achieved by two main routes:

1. Gap junctions formed by connexin 43 Cx43 (abundant) but 
connexin 46 is also present, which facilitate the intercellular 
transport of small signaling molecules such as prostaglandins 
and nitric oxide [36].

2. Interstitial fluid which fills the space between osteocytes 
dendrites and canaliculi and transports osteocytes’s 
products to their target site (proteins ranging from 70Kda-
7nm in diameter) [37]. 

 Sclerostin, the product of SOST gene, is selectively expressed 
by matrix encased mature osteocytes and represent the key factor 
throughout osteocytes settle their role as a main orchestrator in 
bone remodeling [38]. Sclerostin inhibits bone formation through 
means of counteracting the connical wingless (Wnt) signaling by 
binding to a Wnt co-receptor family , the lipoprotein receptor-
related proteins (LRP5/6),even at some extent with LRP4,thus 
restricting the interaction between Wnts and their co-receptor 
Frizzled(Frz) [39]. Human conditions related to lack of Sost gene 
expression in humans (Van Buchem’s disease) [40] or decreased 
in the function of Sost gene (sclerosteosis) [41,42] are two types 
of skeletal sclerosis diseases which have a hyperactive Wnt 
signaling, hence corresponding to a high bone mass and increased 
bone strength. The above findings have generated a growing 
interest regarding the effect of sclerostin in the regulation of bone 
formation, as a new potential blockage axis to be exploited for 
the further treatment of osteoporosis and osteoporosis-related 
comorbidities that requires a more personalized approach 
[42,43].

Moreover osteocytes exhibit another important function 
that of being the essential coordinators of the bone adaption 
process during consistent mechanical stress. They display an 
extremely sensitive side towards stimuli caused by the fluid shear 
stress or hydrostatic changes, thereby representing the primary 
mechanosensory cells in the bone [44,45].

Bone lining cells

Bone lining cells form a monolayer covering the bone 
surface in a quiescent state where neither bone destruction nor 
osteogenesis occurs [46]. Bone lining cells are considered to be 
very important elements in the activity of BMU, nevertheless their 
functions aren’t entirely understood.

Homeostasis Disturbance
A more in depth understanding of the intricate interactions 

between tumor cells and bone cells, two major players in the bone 
niche, may shed more light into the mechanism required for the 
development of so called “vicious cycle”’ during bone metastasis. 
A “vicious cycle” represents a tumor-osteoblast-osteoclast 
network which under the influence of cancer -induced factors 
provides a homing soil for disseminated cancer cells to proliferate 
into osteolytic, osteoblastic or mixed bone lesions. 

Bone metastasis refers to the dissemination of the malignant 
tumor cells from the primary site into the distant bone where a 
secondary tumor will aggressively colonize and thrive in the bone 
microenvironment .Foremost breast cancer tumor cells need to 
grow strong, enhance their malignancy and expand within the 
primary site microenvironment aided initially by epithelial to 
mesenchymal transition (EMT) [47], and hypoxia [48,49], thereby 
gaining the ability to break free from the local site and infiltrate 
the proper vessels to navigate into the bloodstream. EMT 
promotes carcinogenesis through transformation of epithelial 
cells into motile and invasive mesenchymal cells followed by loss 
of epithelial cells markers such as CK or EpCAM and in reverse 
the expression of transcriptional factors characteristic for 
mesenchymal cells is enhanced such as Vimentin, Fibronectin, 
TWIST, Akt2, Snail, Slug, PI3Kalpha, ZEB1, ZEB2, FoxC2 and 
others [50,51]. In breast cancer cells, two downstream signaling 
pathways were found to modulate the gateway of cancer cells 
from the primary tumor and their translocation into the bone: 
TWIST1 stimulates EMT via expression of metastatic inducer 
miR-10b and hypoxia-inducible factor 1α (HIF-1α and HIF-2α) 
which illicit a positive feedback to SNAIL1 and SLUG via NOTCH 
activation of EMT resulting in cadherin shifting ,loss of E-cadherin, 
overexpression of N-cadherin and cytoskeletal alterations (e.g., 
expression of vimentin) [48, 52, 53].

As soon as the migrating cancer cells undergo a drastic 
alternation and detach from the primary site, they are known 
as circulating tumor cells (CTCs), a novel promising insight 
into relapses of primary carcinomas to the distant sites, whilst 
malignant cells which extravagate from the circulation and 
colonize the bone are called disseminated tumor cells (DTCs) [54, 
55]. Presence and persistent detection of CTCs in bloodstream 
followed by DTCs in bone marrow may indicate an alteration in 
the phenotype of these malignant cells resulting in an increased 
resistance towards selected adjuvant therapy, therefore CTCs 
are considered as an early negative prognostic factor for the 
clinical management of metastatic breast cancer patients [56-
58]. Malignant tumor cells upon populating the bone undergo a 
rapid mechanism of constructive adaption under the influence 
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of various growth cytokines released by the bone matrix, which 
promote cancer cells differentiation and proliferation [59], 
hence providing a fertile soil for cancer cells to flourish in the 
bone microenvironment. It has been suggested that stromal 
cells, descendents of mesenchymal cells especially via vascular 
cell adhesion molecule1 (VCAM-1) mediated interactions with 
breast cancer cells signal these malignant cell to further enhance 
their aggressiveness and proliferate in the bone habitat. Another 
important proinvasive factor is TGF-β ,liberated upon bone 
degradation, extensively contribute to the growth and prosperity 
of bone metastasis especially in breast cancer by upregulating 
the production of parathyroid hormone-related peptide (PTHrP), 
resulting in an enhanced activity of bone resorption process, 
accelerating even more the “vicious” cycle [60]. Moreover TGF-β 
and Notch signaling release of IL-6 stimulated by tumor-mediated 
Jagged1 are believed to act as of conjugated pathway and 
accentuate the strong tendency of metastatic breast cancer for 
spreading to the bone [61], thus providing a challenging area to be 
explored that may lead to improved diagnosis and development 
of new therapeutic options for bone metastasis. Under these 
circumstances humanized, Jagged1-blocking antibodies have 
generated promising results in preclinical trials.

To sum up, the whole process of the bone metastasis in breast 
cancer can be divided into five coordinated and progressive 
stages: 1) Detachment from the primary tumor; 2) Intravasation 
of the bloodstream ; 3) Surviving in the circulation and being 
motile within it; 4) Colonizing of the bone and 5) Prospering in 
the bone [63]. In each of these steps, this process initiated by 
invasive malignant tumor cells is incessant and aggressive. 

Role of RANK-RANKL-OPG Pathway in Breast Cancer 
Metastases to Bone

RANKL is a potent downstream mediator of bone-degrading 
osteoclast differentiation, activation and survival, is expressed 
by stromal cells of osteoblast lineage; binds with its natural 
receptor RANK on the surface of osteoclastic precursors cells 
stimulating OCPs differentiation and bone degradation by mature 
osteoclasts [20,64,65].The RANKL/RANK pathway may directly 
stimulate breast cancer cells to preferentially migrate into bone, 
the must-have demand to initiate colonization of the bone and 
subsequently formation of osteolytic skeletal metastases [66-
68]. Overexpression of RANK in a setting of tumoral and normal 
human mammary cells stimulates the expression of breast 
cancer stem in human mammary epithelial cells by rising the 
cohort of CD44 (+) CD24 (-) cells, inducing stemness and EMT 
[69]. EMT represents the pivotal step to activate extravasations 
and migration of malignant breast cells into the bone marrow in 
a metastatic setting. RANKL activates NF-kB pathway [68] and 
stimulates the expression of Snail and TWIST, altering the breast 
cells morphology, increasing the expression levels of vimentin, 
N-cadherin, and down regulating the levels of E-cadherin [70]. In 
consequence, activation of RANK/RANKL pathway by inducing 
development of mammary stem cells and breast cancer promotes 
breast tumorigenesis, tumor growth, CTCs migration and 
metastasis in human breast epithelial cells. In addition, several 
studies reported elevated expression of RANKL as detected 
by immunohistochemistry in breast cancer patients that had 
metastasis to the bone compared to those breast cancer patients 

without bone metastasis [71,72]. High expression RANK levels in 
primary breast tumors have been correlated with poor survival 
rates and higher risk of developing bone metastases [65]. 

Moreover RANK/RANKL interplay plays an essential role in the 
control of proliferation and differentiation of mammary epithelial 
cells during pregnancy [73]. Pregnancy further enhances the 
RANKL expression at transcriptional levels in both normal 
mammary gland and primary tumor [74]. Studied conducted on 
RANK/RANKL-null mice demonstrated severe impairment in 
ductal-side branching and alveologenesis due to decreased rates 
of proliferation and enhanced apoptosis of mammary epithelial 
cells which lead to the development of lactating defects [73].
Later on was discovered that in humans, RANKL expression is 
significantly 3 times higher between the 17th and 26th day of 
the menstrual cycle than in other days correlated with serum 
progesterone levels [73]. RANKL expression is also regulated by 
sex hormones, in particular progesterone, both located in luminal 
epithelial cells, which promotes mammary gland morphogenesis 
via proliferation of mammary epithelial cells [75]. This interaction 
includes two separate signaling pathways: firstly progesterone 
directly acts on progesterone-receptor (PR) cells via cyclin D1-
dependent. Secondly PR-cells proliferate by a RANKL induced 
paracrine mechanism where RANKL-expressing cells initiate 
a signal transduction cascade, inducing changes in nearby PR-
negative cells leading to proliferation of mammary epithelial PR- 
negative cells [76,77]. 

Whereas osteoprotegerin (OPG), abundantly expressed by 
osteoblast and vascular cells, acts as a decoy receptor for RANKL 
by counteracting the action of RANK, resulting in oppression 
of bone resorption, thus preventing bone osteolysis [78] 
Furthermore, studies have shown that OPG is also expressed by 
breast tumor cells [68,79], so it appears its action is beyond bone 
remodeling and linked directly to breast cancer proliferation 
and progression. Research investigating OPG’s effect on breast 
cancer demonstrated that OPG induces breast carcinogenesis via 
its specific feature as a “decoy” receptor in this case for TRAIL, 
blocking interaction between TRAIL and the Death Receptors, 
thereby preventing TRAIL-mediated apoptosis of breast cancer 
cells, exhibiting an anti-apoptotic action [74]. OPG also promotes 
endothelial cell growth and tube formation, exerting a positive 
effect on angiogenesis, thus increasing breast cancer cells survival 
rates [80]. While OPG has clearly the ability to induce breast cancer 
progression and promote metastasis into the bone, investigation 
into the mechanisms and overall effects outcome on breast cancer 
are of great concern to explore in potential future applications. 

Many extensive studies already have concluded that RANK-
RANKL-OPG axis is not only involved in the normal mammary 
physiology, but also promotes breast cancer cells proliferation via 
progesterone and mediates bone-disseminated breast cancer cells 
relapse in the bone niche. Even though denosumab, a monoclonal 
antibody against RANKL, has become the standard treatment in 
breast cancer patients affected by bone metastases, its benefits 
are at best aimed at improving quality of life and reducing the 
frequency of SREs in this cohort of patients. For this reason 
interference with this pathway will be beneficial in identifying 
novel therapeutic options intended at decreasing disease free 
survival and morbidity of breast cancer homing to the bone.
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