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Editorial

The specialized architecture and microanatomy allows the small
sinoatrial node to pace the large atria efficiently by maintaining a
balanced and controlled relationship. The sinoatrial node automaticity
and conduction depends on certain important factors, namely, the
unique heterogeneous distribution of intracellular ion channels,
Ca’+ handling proteins, and autonomic receptors within the sinus
node."? The normal sinus rhythm may be interrupted when there is
an association of diffuse atrial remodeling characterized by structural
change, with accompanying conduction abnormalities, and increased
dispersion of atrial refractoriness. When there are less depolarized
myocardial cells and more interstitial fibrosis as the atrial substrate
leading to decreasing local voltage, then conduction block and low
electrogram amplitude may occur. These atrial changes may lead to
reentrant rhythms and especially atrial fibrillation (AF) which can be
targeted by catheter ablation.>

Complex fractionated atrial electrograms (CFAE) and high
dominant frequency (HDF) sites recorded by 3 dimensional
electroanatomical mapping (3D EAM) theoretically represent
abnormal substrates. However, sinus rhythm voltage recorded at the
CFAE sites has been shown to be normal.®® It has also been shown
that most CFAE and HDF sites identified during AF do not correspond
with HDF sites or low voltage areas identified during sinus rhythm.*'?
However, for terminating persistent AF, extensive ablation, including
ablation at sites of CFAE and HDF and/or multiple linear ablations
may also be necessary.>

It has been shown that abnormal human atrial myocardium has
certain electrophysiological changes, namely, elevated resting
membrane potential, depressed maximal amplitude of the action
potential, and decreased upstroke velocity.'>"> These electrical
abnormalities are histologically correlated to degenerative changes
of the atrial muscle structure.'® Investigations based on the recording
of abnormally prolonged and fractionated atrial local electrograms
during sinus rhythm by catheter endocardial mapping have provided
important knowledge about the electrophysiological properties of
the pathological atrium.'*'® Human atrial tissues, where fractionated
electrograms are recorded, consist of muscle fibers that are widely
separated and their orientation distorted by connective tissue. These
histological changes of the atrial tissue derive in decreased intercellular
connections, which might increase resistance to current flow, and
thereby slow conduction. Therefore, abnormally prolonged and
fractionated atrial electrograms recorded during sinus rhythm result in
an irregular atrial conduction.”?! This irregularity is characterized by
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a non-homogeneous local electrical activity, related to an anisotropic,
non-uniform and delayed conduction through a pathological atrial
myocardium. In such altered atrial substrate arrhythmias may develop
due to reentry."” The 3D electroanatomic mapping revealed anatomic
and structural atrial abnormalities that were associated with a change
in the nature of sinus pacemaker activity. In addition, there were loss
of the normal multi-centric pattern of onset of sinus impulse, shift of
the pacemaker complex to low crista terminalis sites, and the presence
of abnormal and circuitous conduction around lines of conduction
block??

Detailed and quantitative pathological studies performed in patients
with AF have demonstrated extensive atrial myocardial fibrosis in
the vicinity of the sinus node and internodal tracts.”® Therefore, an
abnormally prolonged and fractionated atrial endocardial electrogram
could translate a localized and non-homogeneous electrical activity
related to a delayed, non- uniform and anisotropic conduction through a
pathological atrial myocardium.'*! In additional histological studies,
it was observed that the tissues where the abnormally prolonged
and fractionated electrograms originate present fibro-degenerative
processes.>* When the atrial walls are markedly altered by fibrosis, the
depolarization wave must frequently change direction with respect to
the longitudinal orientation of the myocardial fiber. This would cause
unidirectional block, slow conduction, and dispersion of the refractory
periods in certain places, generating the fundamental elements of the
re-entry mechanism.'®?!

Centurion OA et al.” designed a study to evaluate the relationship
between certain electrophysiological parameters obtained by
programmed atrial stimulation that would indicate increased atrial
vulnerability in patients with susceptibility to develop AF. Among
the electrophysiological indicators of increased atrial vulnerability
were studied the fragmented atrial activity, atrial conduction delay,

”IIII Submit Manuscript | http://medcraveonline.com

J Cardiol Curr Res. 2020;13(1):7-9.

7

@ @ @ ©2020 Centurion et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which
oy NG permits unrestricted use, distribution, and build upon your work non-commercially.


https://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.15406/jccr.2020.13.00463&domain=pdf

The association of complex fractionated atrial electrograms, high dominant frequency sites and atrial

fibrillation

repetitive atrial firing and sustained atrial fibrillation, all induced by
programmed atrial stimulation with single extra-stimulus. We aimed
to clarify the importance and significance of the recording of abnormal
atrial electrograms (AAE) during sinus rhythm in patients with sinus
node dysfunction susceptible to developing atrial fibrillation. We
showed that patients who had AAE had a significantly increased atrial
vulnerability, compared to those with normal electrograms. Abnormal
atrial electrograms showed a very good specificity and positive
predictive value when evaluating the induction of sustained AF. The
specificity demonstrated was 94% with a positive predictive value
of 93%.% In this latter study>® we have found a significantly longer
conduction time of sinus impulses in our patients who possess AAE
within the right atrium, as compared to those patients with who do not
have AAE. No significant difference was observed in the functional
or effective refractory periods of the atrium among patients with or
without AAE. In this regard.

Leier CV" reported a significant prolongation of the mean
right intra-atrial conduction time at 50ms, and the mean interatrial
conduction time at 92ms in 21 patients with atrial flutter. In our study®
the mean intra-atrial (54 ms) and the mean interatrial conduction
time (100ms) of sinus impulses were significantly longer in the AAE
(+) Group. This prolongation in conduction time of sinus impulses
through a diseased atrial muscle may be related to a lengthening of
the pathway to be traversed, and/or slowing of conduction velocity. In
addition, AAE also proved to be a useful marker in separating patients
with more extensive atrial electrical disease who are more likely to
have inducible atrial fibrillation from others. AAE may indicate an
inhomogeneous local electrical activity related to a delayed and non-
uniform anisotropic conduction through a diseased atrial muscle.' !
When atrial walls are markedly altered and distorted by fibrosis, the
propagating depolarization is required to change direction frequently
with respect to fiber orientation, creating sites for potential block
leading to AF. The potential clinical significance is that detection of
AAE during sinus rthythm in patients with sinus node dysfunction may
help to identify those with greater atrial conduction defects and higher
incidence of induced and spontaneous episodes of AF.%

3D electroanatomic bipolar voltage mapping is a diagnostic
auxiliary method that has been utilized in clinical electrophysiological
studies for substrate description in atrial arrhythmias. Recent
advances in 3D EAM systems have facilitated catheter manipulation
within the atrium at reduced fluoroscopy exposure time. Using this
3D EAM system low bipolar endocardial voltage can be identified
and localized for guiding catheter ablation. The electrical information
obtained can be used in different ways to record different information.
For example, certain map points recorded can be utilized for the
color-coded display of the electrical activation sequence known as
activation mapping. In addition, the display of post-pacing intervals
known as entrainment mapping can be recorded, as well as, the display
of unipolar/bipolar electrograms as part of fractionation or voltage
mapping.?® These mapping systems are based on non-fluoroscopic
visualization of mapping catheters and a 3D reconstruction created by
the manipulation of a mapping catheter.

Complex fractionated atrial electrograms (CFAEs) are regarded
as surrogates of non- homogeneous and anisotropic conduction
of myocyte bundles through a diseased fibrotic atrial myocardium.
CFAEs are defined as atrial electrograms with low voltage
(<0.15mV) signals with >2 deflections/perturbations of the baseline.
It has continuous deflection of a prolonged activation complex; and/
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or a very short cycle length (<120 milliseconds), with or without
multiple atrial potentials.’”*® The mechanisms of CFAEs generation
have been related to factors which maintain and perpetuate AF.
However, the mechanism of development of CFAEs has also been
considered to be passive consequences of near-by rapid AF drivers.?®
CFAE may designate atrial sites with delayed conduction or block,
wave-front collision or anchor points for reentry. AF ablation studies
reported improved outcomes using the technique of CFAE ablation in
addition to PVI ablation.”” However, an important limitation is that
CFAE are largely identified by subjective visual inspection. Hence, it
relies on operator judgement. The STAR AF trial*® demonstrated that
PVI plus CFAE ablation had the highest freedom from AF vs. PVI
or CFAE ablation alone in high-burden paroxysmal/persistent AF.
However, STAR-II AF showed contrasting results in only persistent
AF patients.>' This latter trial contradicted the results of the STAR
AF finding no difference in freedom for AF at 1 year in the three
groups studied, namely, between PVI alone, PVI plus ablation lines,
or PVI plus CFAE ablation strategies, a finding with 3D EAM studies
subsequently reproduced by other investigators.’? Therefore, there are
conflicting and controversial data on the importance of CFAE ablation
for a better clinical outcome.

Although these EAM systems have been very valuable and reliable
for the navigation of AF ablation, they have some limitations prone
to make mistakes. For example, the integrated automated mapping
algorithms are susceptible to annotation and interpolation errors.
This requires a manual point-by-point verification of annotated
points which is a time-consuming process. The need to overcome
these disadvantages and to improve illustration of the underlying
AF mechanisms has led to the development of advanced mapping
systems for substrate ablation which have a higher resolution focusing
on improving signal quality acquisition. It also improves processing
time with lower noise, precision of annotation, and development of
automated algorithms that visualize electrophysiological information.
Advanced mapping systems emerged from the need to better
understand and ablate complex tissue substrates, and representative
maps with CFAE and HDF locations. These new systems tried
to overcome the spatiotemporal and processing limitations of
contemporary EAM systems. In addition, it focused on higher quality
signals improving acquisition and illustration of electrophysiological
data. The improved electrical signals produced by advanced narrow-
spaced catheters, and the automated high-density mapping may also
enhanced techniques for scar-based ablation strategies. Future mapping
systems would allow detailed visualization of the atrial anatomy and
pathophysiology in a MRI-like fashion in order to individualize and
monitor lesion formation in a real-time fluoroscopy-free environment.
Novel imaging modalities may improve our understanding of what is
really necessary or distrustful for improving clinical outcome in AF
ablation.
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