The de winter electrocardiographic pattern

Introduction

Chest pain continues to be a major reason for consultation in the emergency room, with heterogeneity in the clinical presentation that ranges from cardiogenic shock or cardiorespiratory arrest to until non-cardiac benign conditions; thus, electrocardiogram (ECG) is a valuable tool for diagnosis and risk stratification. Although it is known that the management of ST-elevation myocardial infarction (STEMI) requires urgent reperfusion, there are other ECG high-risk findings that are associated with adverse outcomes or imminent acute myocardial infarction (AMI); for this reason, the performance of a prompt coronary angiography is beneficial.

Clinical case

47-year-old man, athlete, with a history of dyslipidemia in oral lipid-lowering medication and family history of AMI in first-degree relatives at age 50. He presented to another institution for burning discomfort in thorax; ECG, in presence of chest pain, evidenced high, symmetrical T waves from V2 to V5 with ascending ST depression in V2 to V5, as well as ST elevation in AVR (Figure 1). The patient was referred to our service; serial ECGs were taken without pain, with absence of dynamic changes (Figure 2); ultrasensitive troponin was positive (2592; 0.0-26.4). With the elevation of this biomarker, myocarditis was suspected; a second troponin to perform a curve was requested, along with an echocardiogram. Control biomarker at 3 hours was 7352, and the echocardiogram was reported without pathological findings. In a reanalysis, the initial ECG was interpreted as ST equivalent with the de Winter’s pattern; an urgent coronary angiography was performed, finding two lesions in anterior descendent (AD) artery, 80% each. D1 with 95% injury and distal circumflex lesion of 80%. The patient completed his attention in high-dependency unit, revascularized with two coronary stents, and dual anti aggregation for 18 months on an outpatient basis.

Discussion

Acute coronary syndrome (ACS) is the main cause of mortality in our midst. Its diagnosis is based on the probability given by the clinical history, physical examination, electrocardiographic changes and biomarker. ST-segment elevation in the first ECG taken is present in one third of the patients the other variations correspond to fluctuations in the T wave, ST-segment depression, branch blocks or normal ECGs. It is estimated that approximately 30% of ACS
diagnoses are lost or delayed by a misunderstanding of high-risk patterns warranting emergency coronary angiography. These patterns are: posterior wall infarctions, left bundle branch block with Sgarbossa criteria, Wellens syndrome, ST-segment depression in 8 derivatives associated with ST elevation in aVR (suggesting possible trunk or three vessel disease), hyper acute T waves in early infarctions, and the de Winter pattern, being highlighted by the presentation and therapeutic implications in the patient described.

The cardiologist Robbert J de Winter describes as a pathognomonic sign of coronary artery disease (CAD) a ECG pattern that corresponds to proximal occlusion of the DA artery, evidenced by ST-depression from 1 to 3 mm in precordial derivatives V1 to V4, with high and symmetrical T waves in the same derivatives, associated with ST elevation in AVR; these changes are physiologically attributed to a variation in the Purkinje conduction fiber system that leads to a delay in intraventricular conduction; with potential wall ischemia, there is an alteration in ATP-dependent potassium channels that contributes to J point depression with prominent T waves in anterior wall. Other authors suggest that it is due to subendocardial ischemia that leads to a change in transmembrane action potential with progress to the subepicardium, showing a J point depression and slow rise in T wave in the ECG.

Winter et al. in 2008 described this electrocardiographic pattern in a series of 1532 patients; of these, 2% who underwent coronary angiography, exhibited proximal obstruction of DA; Verouden et al., reported the same pattern with the same percentage of the findings in the coronary angiography, and the following electrocardiographic criteria were established: ST depression greater than 1 mm at J point in precordial derivatives with continued prominent and symmetrical T waves, ST elevation from 0.5 to 2 mm in aVR, absence of another ST elevation that guides to a coronary anatomy.

It is important to recognize that there are patterns that, even without ST elevation, entail imminent to STEMI, demanding emergent intervention; similarly, subjects with the de Winter pattern tend to be men, with ages between 30 and 40 years and associated hypercholesterolemia. There are reports with evidence of ECG progression to anterior wall STEMI with DA occlusion.

Whether interpreted as a high-risk pattern or a ST equivalent, it is well known that the de Winter pattern is associated with a proximal lesion of DA. Even though little is known about this pattern, these ECG changes in a patient with suspicion of ACS should lead to consideration of urgent coronary angiography and appropriate intervention.

Acknowledgments

None.

Conflicts of interest

The author declare

References

1. DANE. Defunciones por grupos de edad y sexo, según departamento, municipio de residencia y grupos de causas de defunción (lista de causas agrupadas 6/67 CIE-10 de OPS).

Citation: Moncayo G, Arroyave T, Abreo D. The de winter electrocardiographic pattern. J Cardiol Curr Res. 2018;11(5):204-205. DOI: 10.15406/jccr.2018.11.00400