A Prospective View of Therapeutic Strategy of Atherosclerosis in Cardiovascular Diseases

Keywords: Atherosclerosis; Mitochondria dysfunction; Lipids metabolism; Cardiovascular diseases; Clinical research; Drug discovery; Immunotherapy; Epigenetic gene markers; Collaboration

Letter to Editor

Atherosclerosis is chronic autoimmune inflammation; combining with accumulation of abnormal lipid metabolites taking place in tissue of vessels wall. In the past two decades; Dr. Wang Yongjun’s cerebrovascular diseases research team has been studying for reducing morbidity and mortality of cardiovascular diseases caused by atherosclerosis through clinical research on stroke. This team studied the correlation between atherosclerosis and acute outbreak of stroke at the first time in China with imagine technology (CT and TCD) as early as in 1995 [1]. Then the team accessed and compared the four stroke evaluation scales that generally used in Europe; USA; Japan and China with acute stroke inpatients; which was the first time to bring the bridge of clinical research about stroke between China and the rest of world [2]. Knowing the significant of rehabilitation in outcome of stroke; Beijing Tiantan Hospital built stroke units setting for inpatients to satisfy the world standard of clinical research of stroke; and performed the therapeutic effects and prospective study of intervention and antiplatelet agents (Clopidogrel combining with Aspirin) application to atherosclerosis and stroke patients [3]; which provided the fundamental data for the guideline of primary and secondary prevention of cerebrovascular diseases in China. According to their achievement; an innovative system; Chinese Ischemic Stroke Subclassification (CISS) was created and spreadingly employed within hundreds hospitals offering standard and accurate classification for clinical information of stroke in China [4]. ACURE Biotechnology; INC.; backed with extensive basic and translational research in neuroscience; lipids metabolism; cell microenvironment; angiogenesis and infectious diseases; holds 5 patents in therapeutic and preventive strategies for vascular diseases. A novel gene with same N-terminal motif to G-couple proteins was originally discovered by this company’s founder as early as in 2001; had been demonstrated that is play important role in immune and brain associating with lipid rafts [5]. The founder later discovered that the intracellular accumulation of ceramide; the original backbone for most rafts [1-6-8] protein is targeted to postsynaptic lipid rafts by its N-terminal myristoylation and palmitoylation; and interacts with a; but not b; subunit of Ca2+/calmodulin-dependent protein kinase II. J Neurochem 92(3): 647-659.

References

5. Wang X, Tian QB, Okano A, Sakagami H, Moon IS, et al. (2005) BAALC 1-6-8 protein is targeted to postsynaptic lipid rafts by its N-terminal myristoylation and palmitoylation; and interacts with a; but not b; subunit of Ca2+/calmodulin-dependent protein kinase II. J Neurochem 92(3): 647-659.