

L-methioninase: a mini review

Abstract

L-Methioninase (MGL) is a pyridoxal phosphate-dependent enzyme that catalyzes the conversion of L-methionine to α -ketobutyrate, methanethiol, and ammonia. Due to its ability to deplete methionine, MGL has gained attention for its therapeutic potential, particularly in cancer treatment, as cancer cells exhibit high methionine dependence. While MGL is widely produced by bacteria, fungal sources offer advantages such as extracellular secretion, reduced immunogenicity, and higher substrate specificity. Beyond oncology, MGL has applications in food industries, biosensors, and gas odorants due to its role in methanethiol production. Recent research explores novel formulations, including PEGylation and recombinant oral administration, to enhance its therapeutic efficacy. This review highlights the sources, mechanisms, and diverse applications of MGL while emphasizing its potential as a promising biotherapeutic agent.

Keywords: L-Methioninase, methionine depletion, cancer therapy, enzyme biotechnology, fungal MGL, methanethiol production, recombinant methioninase

Volume 13 Issue 1 - 2025

Anjana K Vala

Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, India

Correspondence: Anjana K Vala, Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001, India

Received: March 1, 2025 | **Published:** March 17, 2025

Introduction

L-Methioninase (L-Methionine- γ -lyase; EC 4.4.1.11; MGL), also known as methionase, L-methionine- γ -demethylolase, and L-methionine methanethiol-lyase (deaminating) is a pyridoxal phosphate dependent enzyme that catalyzes conversion of L-methionine to α -ketobutyrate, methanethiol, and ammonia by α , γ -elimination reaction.^{1,2} MGL has gained much attention as a therapeutic enzyme for treatment of malignancies as most cancer cells have increased methionine dependence.

Sources of MGL

Occurrence of MGL has been reported in prokaryotes as well as eukaryotes. Mohkam et al.³ reported production of MGL from soil bacteria *Alkaligenes* sp. Genera *Streptomyces*, *Aeromonas*, *Achromobacter*, *Arthrobacter*, *Bacillus*, *Citrobacter*, *Brevibacterium*, *Pseudomonas*, etc. have exhibited production of MGL⁴⁻⁹ Anaerobic bacteria *Porphyromonas gingivalis*¹⁰ and *Treponema denticola*¹¹ have also been identified as source of MGL. Yeasts and filamentous fungi both have been reported to produce MGL.^{2,12} MGL is produced intra cellularly by bacteria and extracellularly by fungi. Fungal MGLs have been suggested to impart fewer immunogenic and allergic reactions, have high substrate specificity and display less problems during tumor therapy.^{13,14} Due to extracellular nature of fungal MGL, their downstream processing could be more cost-effective. Despite wide applications of MGL, advantages of using fungal MGL, and limitations associated with its bacterial sources, MGLs from fungi have been comparatively less studied.¹⁵ Fungi from marine habitats have been reported as a source of anti-cancer enzyme L-asparaginase,¹⁶ however, Occurrence of MGL from such fungi demands attention. Goyer et al. carried out functional characterization of MGL in plant *Arabidopsis*. Huang et al.¹⁷ reported presence of MGL in potatoes. MGL is not found in mammals.²

Applications of MGL

MGL has diverse applications. Several workers have reported MGL as promising anticancer agent.^{2,18,19} Addiction of cancer cells to methionine is a fundamental and general hallmark of cancer. This hallmark, known as "the Hoffman effect" is apparent because of overuse of methionine for elevated levels of aberrant trans

methylation. Because of methionine restriction, the cell cycle of cancer cells is arrested in the S/G2 phase leading to suppression of tumor growth.²⁰ Methionine restriction also enhances effectiveness of cytotoxic chemotherapeutic drug. As methionine is present in all foods it's not easy to limit it by diet alone. This is the base of rationale behind use of L-methioninase (MGL), which catalyses conversion of L-methionine to α -ketobutyrate, methanethiol, and ammonia by α , γ -elimination reaction, depriving cancer cells of circulating methionine leading to cell death. Kubota et al.²¹ have proposed combining current therapy to methionine restriction for all cancer types as the next disruptive generation of cancer chemotherapy. Abo Qoura et al.²² recently reviewed potential of MGL for cancer treatment and suggested PEGylation, encapsulation in RBCs and site-directed mutagenesis in overcoming the issues related to poor *in vivo* stability of MGL, high immunogenicity as well as enzyme-induced inactivating antibodies. Effective oral administration of MGL has been a big breakthrough. Miyake et al.²³ observed the combination of 5-fluorouracil and oral recombinant methioninase (o-rMETase) promising for transformative therapy for poorly differentiated gastric cancer in the clinic. Miyake et al.²⁴ reported recombinant methioninase to have future as potent therapeutic for colorectal cancer liver metastasis. Sato et al.²⁵ reported that a low-dose Trastuzumab deruxtecan (T-DXd) combined with oral recombinant MGL and a low methionine diet exhibited a rapid decrease in breast cancer biomarkers to normal levels in a patient with HER 2-positive recurrent stage IV metastatic breast cancer. Regression of metastatic lesions was also observed. They suggested recombinant MGL to be effective in cancer treatment due to its ability to target methionine addiction.

MGL is useful for other therapeutic purpose also. Hoffman and Han²⁶ suggested usefulness of oral recombinant MGL in coronavirus treatment. The authors proposed to restrict availability of methionine by treatment of patient with oral recombinant MGL. Restricting methionine availability helps in tackling coronavirus by multiple ways.

MGL is important in food industries as well. Products formed by methionine degradation are important in cheese flavor. Various cheese types contain volatile sulfur compounds. MGL imparts a distinctive aroma to some fermented foods by degrading L-methionine and releasing volatile sulphur compounds.²⁷

Over the years, methanethiol has received much attention due to its commercial applications ranging from in gas odorants, jet fuel additives, in preparation of modified gold biosensors, manufacturing of plastics and pesticides and as a precursor for the production of dimethyl trisulfide, S-methylthio-esters and 2,4-dithiapentane.^{4,28} Microbial production of methanethiol could be more promising than its chemical synthesis.²⁹

Acknowledgements

None.

Conflicts of interest

The author declares that there is no conflicts of interest.

References

1. Tanaka H, Esaki N, Soda K. Properties of L-methionine γ -lyase from *Pseudomonas ovalis*. *Biochemistry*. 1977;16(1):100–106.
2. Sharma B, Singh S, Kanwar SS. L-methionase: a therapeutic enzyme to treat malignancies. *Biomed Res Int*. 2014;2014:506287.
3. Mohkam M, Taleban Y, Golkar N, et al. Isolation and identification of novel L-methioninase producing bacteria and optimization of its production by experimental design method. *Biocatal Agri Biotechnol*. 2020;26:101566.
4. Amarita F, Yvon M, Nardi M, et al. Identification and functional analysis of the gene encoding methionine- γ -lyase in *Brevibacterium linens*. *Appl Environ Microbiol*. 2004;70(12):7348–7354.
5. Nakayama T, Esaki N, Lee WJ, et al. Purification and properties of L-methionine γ -lyase from *Aeromonas* sp. *Agri Biol Chem*. 1984;48(9):2367–2369.
6. Herrera JR, Starkey RL. Dissimilation of methionine by *Achromobacter starkeyi*. *J Bacteriol*. 1970;104(3):1286–1293.
7. Selim M, Elshikh H, El-Hadedy D, et al. L-Methioninase from some *Streptomyces* isolates I: isolation, identification of best producers and some properties of the crude enzyme produced. *J Genet Eng Biotechnol*. 2015;13(2):129–137.
8. Singh P, Kharayat B. Statistical optimization of reaction condition of L-methioninase from *Bacillus subtilis*. *Res Rep*. 2018;2:e1–e9.
9. Sundar WA, Nellaiah H. A rapid method for screening of methioninase producing *Serratia marcescens* species from soil. *Int J Pharm Pharmaceut Sci*. 2013;5(2):426–427.
10. Yoshimura M, Nakano Y, Yamashita Y, et al. Formation of methyl mercaptan from L-methionine by *Porphyromonas gingivalis*. *Infect Immun*. 2000;68(12):6912–6916.
11. Vala AK, Dave BP. Explorations on marine-derived fungi for L-Asparaginase-enzyme with anticancer potentials. *Curr Chem Biol*. 2015;9(1):66–69.
12. Huang T, Joshi V, Jander G. The catabolic enzyme methionine gamma-lyase limits methionine accumulation in potato tubers. *Plant Biotechnol J*. 2014;12(7):883–893.
13. Fukamachi H, Nakano Y, Okano S, et al. High production of methyl mercaptan by L-methionine-deamino-mercaptomethane lyase from *Treponema denticola*. *Biochem Biophys Res Commun*. 2005;331(1):127–131.
14. Kebeish RM, El-Sayed AS. Morphological and molecular characterization of L-methioninase producing *Aspergillus* species. *Africa J Biotechnol*. 2012;11(87):15280–15290.
15. Abu-Tahon MA, Isaac GS. Purification and characterization of new alkaline L-methioninase from *Aspergillus ustus* AUMC 1051 grown under solid-state fermentation conditions. *Egypt J Bot*. 2016;56:785–798.
16. Hawkins DS, Park JR, Thomson BG. Asparaginase pharmacokinetics after intensive polyethylene glycol-conjugated L-asparaginase therapy for children with relapsed acute lymphoblastic leukemia. *Clin Cancer Res*. 2004;10(16):5335–5341.
17. El-Sayed ASA. Microbial L-methioninase, molecular characterization, and therapeutic applications. *Appl Microbiol Biotechnol*. 2010;86(2):445–467.
18. Salim N, Santhiagu A, Joji K. Purification, characterization and anticancer evaluation of L-methioninase from *Trichoderma harzianum*. *3 Biotech*. 2020;10(11):501.
19. Hendy MH, Hashem AH, Suleiman WB, et al. Purification, characterization and anticancer activity of L-methionine γ -lyase from thermo-tolerant *Aspergillus fumigatus*. *Microb Cell Fact*. 2023;22(1):8.
20. Hoffman RM. Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. *Expert Opin Biol Ther*. 2014;15(1):21–31.
21. Kubota Y, Han Q, Aoki Y, et al. Synergy of combining methionine restriction and chemotherapy: the disruptive next generation of cancer treatment. *Cancer Diagn Progn*. 2023;3(3):272–281.
22. Abo Qoura L, Balakin KV, Hoffman RM, et al. The potential of methioninase for cancer treatment. *Biochim Biophys Acta Rev Cancer*. 2024;1879(4):189122.
23. Miyake M, Miyake K, Han Q, et al. Synergy of oral recombinant methioninase (rMETase) and 5-fluorouracil on poorly differentiated gastric cancer. *Biochem Biophys Res Commun*. 2023;643:48–54.
24. Miyake K, Han Q, Murakami T, et al. Colon–cancer liver metastasis is effectively targeted by recombinant methioninase (rMETase) in an orthotopic mouse model. *Tissue Cell*. 2023;83:102125.
25. Sato M, Han Q, Mori R, et al. Reduction of tumor biomarkers from very high to normal and extensive metastatic lesions to undetectability in a patient with stage IV HER2-positive breast cancer treated with low-dose trastuzumab deruxtecan in combination with oral recombinant methioninase and a low-methionine diet. *Anticancer Res*. 2024;44(4):1499–1504.
26. Hoffman RM, Han Q. Oral methioninase for covid-19 methionine-restriction therapy. *In Vivo*. 2020;34(3 Suppl):1593–1596.
27. Cuer A, Dauphin G, Kergomard A, et al. Flavour properties of some sulphur compounds isolated from cheeses. *Lebensmittelwiss Technol*. 1979;12:258–261.
28. Chin HW, Lindsay RC. Mechanisms of formation of volatile sulfur compounds following the action of cysteine sulfoxide lyases. *J Agri Food Chem*. 1994;42(7):1529–1536.
29. El-Sayed AS, Shindia AA. Characterization and immobilization of purified *Aspergillus flavipes* L-methioninase: continuous production of methanethiol. *J Appl Microbiol*. 2011;111(1):54–69.