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Introduction
Since the advent of pure culture technique innovated by Robert 

Koch in 1882, microbiologists were attracted towards the robust 
and selective study of microorganisms in pure culture. Most of the 
knowledge that fills modern microbiology textbooks is derived from 
the organisms maintained in pure culture. Much of the knowledge in 
microbial physiology and genetics in the last century were largely 
based upon readily cultured model organisms. The fact that microbes 
and their products had been found to be useful for mankind attracted 
industrialists to set up several microbes based industries throughout 
the world. Microbes had been isolated from diverse ecological 
niche/climatic zone and various culture media were successfully 
developed for selective isolation, maintenance and overproduction of 
desired product. However, due to inappropriate simulation of growth 
conditions like, lack of necessary symbionts, nutrients, surfaces, 
excess inhibitory compounds, incorrect combinations of temperature, 
pressure, or atmospheric gas composition, accumulation of toxic 
waste products from their own metabolism, etc, majority of the 
community members were unable to grow under laboratory conditions 
and were referred to as unculturable microbes. Hence several culture 
independent studies were undertaken in the late twentieth century. 
The most common culture independent studies were nucleic-acid 
based, which includes analyses of whole genome or selected genes 
like 16S rRNA. Different culture-independent techniques have been 
developed after Pace el al. (1985) who proposed direct cloning of 
environmental DNA. These techniques can be used both for partial and 
whole community analysis. For the partial community analysis, PCR-
based methods are used where the total DNA/RNA extracted from the 
environmental sample is used as a template for the characterization 
of the microorganisms. The whole community analysis involves non-
PCR based techniques like hybridization, G+C content estimation, 
whole genome sequencing etc. 

Microbes strongly interacting with each other in a microenvironment 
comprise a local community.1 This complex interaction among 

themselves and with their abiotic environment is key to several 
significantly important activities like biogeochemical cycling of 
elements2 and cycling of organic compounds. This influences above-
ground ecosystems by contributing to plant nutrition,3 plant health,4 
soil structure5 and soil fertility.6 

The fact that less than 1% of the total microbes in the environment 
are cultivable lead to the development of culture independent 
molecular study commonly referred to as metagenomics. As 
defined by Schloss and Handelsman in 2003, metagenomics refers 
to meta-analysis of genetic composition of microbial community 
in environmental samples. There are other terms used for the same 
approach as community genomics, environmental genomics, and 
population genomics. In the last decade of the twentieth century and 
the beginning of twenty first century, microbial ecologists, shifted 
their research towards culture independent molecular techniques. 

For molecular based analysis, genomic and trascriptomic materials 
are required to be isolated by in situ lysis of microbes followed by 
extraction. It suffers from several challenges like difficulty in 
separating DNA/RNA released from the cell from soil matrix7 and 
co-extraction of humic contaminants that might inhibit downstream 
processing of DNA/RNA like Taq polymerase/reverse transcriptase 
catalyzed PCR amplification, restriction digestion or cloning.8,9 

Robust research work has been carried out in the field of 
metagenomics in last two decades, that has changed our knowledge 
base and outlook to a more community based study of microbial 
ecology. Studies carried out on diverse ecosystem from the extreme 
environments to agricultural soils, from wastewater to compost 
had enlightened us about the importance of microbial interaction at 
community level. Effect of biotic and abiotic factors on the community 
structure hence function has also been extensively elucidated. 

For last few years, microbial ecological research has shifted 
towards molecular elucidation of functional characterization of 
microbial communities based on RNA analysis. Metagenomic DNA 
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Abstract

Research on microbial ecology in recent years had shifted methodologically from 
traditional culture based techniques to culture independent molecular techniques. This 
is due to the fact that it has already been established that less than 1% of microbes 
in environmental samples are cultivable. In recent years, metagenomics research 
has developed into analyzing partial or complete genomes as well as other types of 
molecules in environmental samples, including RNA (transcripts), proteins (translated 
transcripts), and metabolites (metabolic intermediates and final products). While the 
analyses of DNA sequences in environmental samples can provide evidence about 
the diversity and function of specific groups of organisms in the analyzed ecological 
niches, the relative importance of those genes in environmental functions cannot be 
determined from DNA sequences alone. To understand which genes are expressed 
under a specific ecological condition, the analysis of transcripts from the communities 
is often needed. 
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based studies provided information about the genotypic composition 
of the microbial community, intern depicts the functional potentiality 
of a community. But actual soil functioning depends on the expression 
of those genes. Mere presence of a gene in a community doesn’t 
implies its expression since it is majorly governed by several biotic 
and abiotic factors. Overall activity of a specific soil population should 
not be regarded as an indication of a specific function. But, overall 
activity of a specific soil population should not be regarded as an 
indication of a specific function. Analysis of mRNA transcripts could 
be one of the approach for determining specific microbial activities in 
soil. Due to the short half-life of mRNA transcripts, regulation of their 
synthesis can subsequently affect synthesis of specific protein and the 
function it carries out. Therefore, analysis of gene expression would 
help us in investigating specific microbial process in real time in situ. 

Meta transcriptomics involves high-throughput detection and 
analysis of sequence diversity and associated functions of the 
transcripts (RNA molecules) extracted from samples with heterogenous 
microbial genotypic composition. Transcriptomic profiling of samples 
containing such multiple cell types, species or operational taxonomic 
units (OTUs), complements the metagenomic approach by focusing 
on the expressed subset of genes (meta transcriptome), thus reducing 
the complexity of the data to be analysed.10 

Meta transcriptomics involves study of all the RNA transcripts 
(rRNA, mRNA, miRNA, and tRNA) produced by the biota in a 
sampled soil. Microbial response to soil management can be studied 
by analyzing RNA which reflects portion of the soil microbial 
community that is active at the time of sampling.11 RNA based soil 
community analysis account way back to the early nineties.12,13 Aneja 
et al.,14 carried out random arbitrarily primed PCR (RAP-PCR) on the 
meta transcriptome of plant litter degrading microbial community and 
differential expression was successfully observed at various stages of 
degradation. Active populations of both eukaryotes and prokaryotes 
had been successfully identified by meta transcriptome based 
reverse transcription and sequencing of rRNA (RNA-Seq).15 Meta 
transcriptomics based study allows detection of sequences associated 
with a particular environmental condition that may not be so readily 
identified in metagenomic studies and increases the chance of detecting 
ecologically relevant active functions. The discovery of functions 
being induced in a sample as a response to a certain environmental 
condition (exerted pressure) also gives insight into processes of 
adaptation and enriches our understanding of communities.10 Since 
majority of bacteria exhibit transcriptional gene control that enables 
rapid adaption to altered environmental conditions, meta transcriptome 
based approaches would be useful in deciphering immediate microbial 
gene regulatory responses to changed environment at the time of 
sampling.16 Composition of microbial communities as determined by 
RNA based studies differed from that obtained by DNA based studies, 
indicating that the active microbial community is just a subset of the 
potentially active microbial community.17,18 Similar observations were 
also observed in metagenomes and meta transcriptomes of marine or 
soil environments.19,20 

Technically, meta transcriptomic approach of studying microbial 
ecology involves extraction, reverse transcription, amplification, 
and sequencing of prokaryotic mRNA transcripts, which was once 
thought to be impossible. A major drawback of carrying out meta 
trascriptomic based study is the inherent instability of RNA molecules 
that have short cellular half life (seconds to minutes) when compared 

to more stable DNA (used in metagenomics) or proteins (used in meta 
proteomics).10 Also, very low quantitative recovery of transcripts 
from environmental samples and co-extraction of humic inhibitors are 
critical methodogical considerations required to be addressed for meta 
transcriptomic studies. 

However, due to extensive research on meta transcripts and 
technological advancements, it has now been possible to successfully 
isolate RNA from ecological samples.21,22 Several commercial kits 
have been made available for extracting RNA from diverse ecological 
samples as summarized by Wang et al.15 Of these, MoBio RNA Power 
Soil Total RNA Isolation Kit has been widely used.23–25 Functional 
mRNA accounts to only 5% of the total RNA extracted from an 
ecological sample.26 Hence analysis of the functional activity of a 
gene in a community requires to enrich mRNA from the total extracted 
RNA samples. Presence of 3’ Poly(A) tail in eukaryotic mRNA favors 
direct cDNA preparation by using Oligo(T) primers. Prokaryotic 
mRNA lacking such Poly(A) tail requires alternative approach. He 
et al.,26 compared two methods of removing rRNA, i) rRNA-specific 
exonuclease treatment and ii) rRNA hybridization capture-based 
protocols for removal of rRNA as an approach of enriching mRNA 
prior to cDNA preparation. Comparison of two commercial kits, based 
on i) subtractive hybridization of rRNA (Ambion MICROB Express 
bacterial mRNA enrichment kit) and ii) rRNA specific exonuclease 
(Epicenter mRNA-ONLY prokaryotic mRNA isolation kit) were also 
compared.22 Both of them observed and concluded that rRNA removal 
by subtractive hybridization yielded a better result with respect to 
degree of rRNA removal and quantitative mRNA yield. 

Both PCR and non-PCR based approaches has been used 
to describe in-situ transcription profiling of natural microbial 
communities. PCR based methods are random primer based (RAP-
PCR) or gene specific RT-qPCR27 both of which are performed on 
cDNA obtained from transcripts by reverse transcription. However, 
using this approach, only a small number of genes can be targeted at 
a time, and it difficult to design primers that bind only to orthologs of 
a given gene because, vast nucleotide sequence diversity is observed 
for functional genes in nature.16 Environmental microarray can be 
used to overcome gene number constraint by measuring expression 
levels of hundreds to thousands of genes at a time, but it also suffers 
from several methodological constraints like difficulty in designing of 
microarray probes to address the full diversity of ortholog sequences 
encountered in nature and difficulties in obtaining sufficient mRNA 
for replicated microarray studies with environmental samples.28 

Primer or probe independent meta transcriptomic approaches 
of studying community involves random sequencing of microbial 
community mRNA. In this approach, community gene expression in 
an environmental sample can be monitored as a function of differential 
biotic or abiotic parameter which is useful in understanding the timing 
and regulation of complex microbial processes within communities 
and consortia, as well as microbial adaptability in response to changing 
conditions. Direct sequencing based individual meta transcriptomic 
studies contribute unbiasedly to a growing community database 
unlike RT-qPCR or microarray, that are influenced by parameters such 
as array composition, primer design and hybridization conditions. 
Overcoming the low-throughput (<400 sequences), low coverage, 
and biasness of priming methods encountered during the early 
stages of meta trascriptomic studies, coupling of high-throughput 
sequencing technologies like 454 pyro29 or Ilumina platform based 
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next generation sequencing technologies contributed to a growing 
community database that can be used to address intractable or 
unanticipated questions. 

Real time qPCR data were either analyzed by absolute quatization,30 
which involves study of community transcripts when compared to 
known quantity of mRNA, or by relative quatization,31 wherein a 
crossing threshold (CT) is established at the earliest cycle possible, 
which is subsequently used to generate the relative expression level. 
Functional gene array (FGA), that contains probes from genes with 
known biological functions, efficiently links microbial community 
composition to ecosystem functions. For example, FGA termed 
GeoChip contains >24,000 probes from all known metabolic genes 
involved in various biogeochemical, ecological, and environmental 
processes such as ammonia oxidation, methane oxidation, and 
nitrogen fixation.32 Meta transcriptomic data processing firstly 
involves removal of short or poor quality sequences and error (like 
exclusion of rRNA sequences by comparison to available databses 
and removal of artificial poly (A) reads), correction.19,33 Next, the 
metagenomic sequences are compared to NCBI databases and 
the relative frequencies of genes could be mapped by comparing 
reads with known sequences using the Burrow-Wheeler Aligner 
(BWA, http://bio-bwa.sourceforge.net/) or the Blast-Like Alignment 
Tool.34 Assemblers like Velvet,35 Newbler36 and Genovo.37 Kyoto 
Encyclopedia of Genes and Genomes,38 the Clusters of Orthologous 
Groups (COGs;),39 and the evolutionary genealogy of genes: Non-
supervised Orthologous Groups (egg NOG;)40 databases could be used 
for functional categorization of transcripts by comparing with groups 
of genes that have been assigned to different functional pathways (e.g. 
denitrification or nitrogen fixation) based on the similarity of protein 
orthologs from sequenced isolate microbial genomes. 

Meta transcriptomic approach is now widely used to study 
microbial nutrient cycling in nature. In a recent study on deep sea 
at Gulf of California meta transcriptome assembly of carbon and 
nitrogen cycling microbial community revealed transcriptionally 
active populations of diverse and novel microbial communities at high 
resolution (to the strain level). It also enabled the reconstruction and 
functional characterization of transcripts that would have otherwise 
been overlooked by mapping to reference genomic databases.41 
Differential expression of 81 diffferent genes at various stages of 
plant growth (seedling, vegetative stage, bolting and flowering) in 
their rhizospheric community was observed by meta transcriptomic 
analysis.42 Žifčáková et al.,43 observed change in soil community 
transcription profile of fungi between seasons and observed a decrease 
in fungal contribution from 33% in summer to 16% in winter in total 
community transcription. Meta transcriptomic studies on paddy field 
soils revealed the complex and functionally co-ordinated assemblage 
of microbiomes as a function of the nature of habitat and hierarchical 
importance for community succession.29 

Hence it can be concluded that meta transcriptomics would be a 
new approach to study complex functioning of microbial community 
in ecosystems and their response to change in ecological and seasonal 
parameters. 
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