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Abbreviations: ASD, autism spectrum disorder; DSM5, 
diagnostic and statistical manual; PDDs, pervasive developmental 
disorders; CNS, central nervous system

Introduction
Autism Spectrum Disorder (ASD) is a range of neuro 

developmental disorders that demonstrate the triad of impairments: 
difficulties in social and emotional understanding, difficulties in 
communication, and repetitive, stereotyped behaviours and/or 
interests.1 As a diagnostic term, ASD has in the fifth edition of the 
Diagnostic and Statistical Manual (DSM5) replaced what DSM-IV 
classified as Pervasive Developmental Disorders (PDDs), a group 
of disorders that encompassed five defined disorders: Asperger’s 
disorder, Autistic disorder, Rett’s Disorder, Childhood Degenerative 
Disorder, and Pervasive Developmental Disorder Not Otherwise 
Specified.1 Each of the PDDs display different behavioural, motor, 
or intellectual abnormalities but are nonetheless centered around the 
triad of impairments. Current understanding attributes ASD to the 
influence of both genetic and environmental factors, where genetic 
predisposition is highly affected by external variables, such as 
epigenetics.2

ASD manifests itself as a wide range of symptoms. Patients with 
ASD not only display the classic triad of impairments, but may 
also present psychological abnormalities such as attention deficits, 
sensory hyper- and/or hypo-sensitivities, and behaviours that may be 

aggressive or self-harming in nature.3,4 Patients with ASD may have a 
higher prevalence of seizures, insomnia, and ear infections.3 Notably, 
an increased prevalence of GI symptoms such as constipation, 
diarrhoea, bloating, abdominal pain, reflux, vomiting, and flatulence 
are also characteristic of ASD.5

The pathophysiological factors that have been associated with 
ASD symptoms include structural brain differences, chronic neuro-
inflammation, oxidative stress, mitochondrial dysfunction, and gut 
permeability.6–13 Many studies have demonstrated that brain regions 
associated with functions that are impaired in ASD have altered 
activation, reduced or altered connectivity, and distinct integration 
between different brain areas.14,15 Additionally, several biomarkers and 
endo-phenotypes have been associated with ASD such as biomarkers 
for oxidative damage, blood cytokine levels, and metabolites of 
mitochondrial functions.16,17 However, it is important to note that the 
external validity of many studies is limited by small sample sizes, 
reproducibility challenges and the heterogeneity of genetic pathways 
to ASD.

Studies show that over 70% of ASD patient currently experience 
or have a history of gastrointestinal (GI) complications, suggesting a 
link between ASD and gut abnormalities.18 Patients with ASD often 
have altered microbial compositions, such as increased Clostridium 
(p=0.0393), Desulfovibrio (p=0.011), and Bacteroides (p=0.044), as 
well as decreased Bifidobacteria (p=0.050).19,20 The colonization of 
Clostridium due to decreased Bifidobacteria has been associated with 
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Abstract

Autism spectrum disorder (ASD) is a term that encompasses neuro developmental 
disorders characterized by behavioural, communication, and social deficits. In 
addition to this triad of impairments, changes related to cellular processes including 
gut permeability, neuro anatomical alterations and neuro-inflammation have also 
been identified in individuals with ASD. Patients with ASD also demonstrate altered 
proportions of bacteria in the gut. Since the gut microbiome has a significant impact 
on many physiological processes including those beyond the gut, dysbiosis observed 
in ASD has been the subject of recent research investigating its implications in the 
aforementioned pathways. This review will explore the specific cellular processes 
drawn from this research. The specific dysbiosis observed in ASD will be defined 
and linkages will be drawn to relate bacterial processes to the aberrant cell processes 
in ASD. Microbiota-related treatments will also be outlined based on the current 
understanding of the dysbiosis-ASD relationship. Finally, the evidence reviewed here 
will outline areas of ambiguity and provide a foundation for further research into 
specific pathways. 
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higher risks of GI complaints, suggesting that gut dysbiosis is a link 
between human ASD and comorbid gut abnormalities.21 There are 
several means by which gut dysbiosis can influence central nervous 
system (CNS) activity, raising the hypothetical possibility of neuro 
developmental pathogenesis through alterations in normal brain-
gut signaling.22 The pathogenic microbiota may increase immune-
mediated inflammation, compete for binding sites on enteric walls 
with commensal bacteria, or regulate pathways via production 
metabolites.23 One of the main mechanisms that we will examine 
is how bacterial products may enter systemic circulation and pass 
through the blood-brain barrier to alter neurobiology. Specifically, 
we will be discussing how heightened gut permeability and neuro 
immune dysregulation may be implicated in the etiology of ASD, as 
well as the viability of probiotic treatment.

Gut permeability
ASD is comorbid with many gastrointestinal complications 

involving increased gut permeability.24–27 The physical integrity of the 
luminal barrier is often assessed through the sugar permeability test, 
which involves simultaneous oral delivery of the saccharides lactulose 
and mannitol, followed by measuring the urinary lactulose:mannitol 
ratio.28,29 Unlike mannitol, lactulose is too bulky to traverse the 
luminal mucosa via aqueous pores of the intestinal epithelium.30,31 
For serum lactulose molecules to arise, lactulose must travel in 
between epithelial cells at areas of cell extrusion.30,32 Through the 
sugar permeability test, D’Eufemia et al.,24 reported a significantly 
elevated urinary lactulose: mannitol ratio in 43% of patients with 
ASD.24 Increased serum lactulose suggests the presence of leaky tight 
junctions linking together adjacent intestinal epithelial cells.24,32,33 
This destabilization of the luminal epithelium allows entry of certain 
food antigens that induce ASD-related antigenic responses34 and 
neurological dysfunction.35 The propagation of the immune response 
further damages the mucosa through zonulin-mediated positive 
feedback.36,37

Zonulin modulates intercellular tight junctions involved in 
transportation of macromolecules from the lumen into intestinal 
tissue.36–38 It is therefore necessary to the regulation of immune 
responses and tolerance.36,39 Both intestinal and extra-intestinal 
inflammatory disorders can arise when the zonulin pathway is 
deregulated in genetically susceptible individuals.36,40 

Food-derived opioid-like peptides can be referred to as exorphins 
due to their structural and functional similarities with endorphin, a type 
of opioid hormone.41,42 Prolonged opiate exposure in animal models is 
shown to yield behavioural symptoms comparable to those in children 
with ASD, namely, repetitive actions and social disengagement.43 
Noting the implications of diet on schizophrenia, studies speculated 
that a faulty intestinal barrier allows neuro active food derivatives 
or exorphins to travel into the blood and later the cerebrospinal fluid 
where they then directly interact with cells of the central nervous 
system.44,45 Although there is conflicting evidence concerning whether 
endogenous endorphins are elevated in autism. In addition to entry 
of incompletely digested foods, increased gut permeability has also 
allowed the increased levels of serum pathogenic compounds arising 
from gut dysbiosis.46,47 Specifically, we will be examining propionic 
acid, a short-chain fatty acid produced during bacterial fermentation, 
as well as the release of lipopolysaccharides from the membrane of 
gram-negative bacteria. Through blood circulation, these compounds 
are able to travel from the gut lumen to the CNS where they interfere 

with cellular respiration, microglia regulation, and other pathways 
that may be related to the neurobiology of ASD.48,49

Maternal immune activation (MIA) murine 
models and bacteroides fragilis treatment

Experiments on mice have shown that infections leading to maternal 
immune abnormalities during pregnancy can lead to symptoms 
equivalent to those seen in ASD, providing further evidence that some 
environmental factors altering maternal and fetal immune systems 
may lead to fetal predisposition to ASD.50,51 Applying the findings 
from observational studies on human ASD, an ASD murine model 
was constructed through maternal immune activation, where pregnant 
mice were injected with immune-activating polyinosinic:polycytidylic 
acid (poly I:C) to produce offspring that served as phenotypic models 
of ASD.52–54 Offspring of MIA mice exhibit ASD-like pathologies and 
symptoms, such as defects in intestinal integrity, alterations in the 
microbiome composition, intestinal cytokine levels and metabolome 
profiles analogous to that subsets in the human ASD population.54,55 
Symptomatic similarities between human ASD and MIA offspring 
suggest that the MIA offspring serve as reliable models of ASD. Most 
of ASD-associated behavioural and metabolic symptoms in these 
mice were ameliorated through oral treatment of Bacteroides fragilis, 
a bacterial species shown effective against colitis.52 MIA-induced 
microbiome had mild elevations in Clostridia and Bacteroides 
populations.55 In the same study researchers noted that although there 
was insignificant difference in the relative abundance of Clostridia 
(p=0.8340) and Bacteroidia (p=0.9943) between MIA offspring 
and controls, the microbial species that experienced slightly greater 
proliferation within the MIA offspring than within the controls 
belonged to one of the two classes. The altered microbiome in ASD 
model mice aligns with studies reporting elevated Clostridium levels in 
the fecal matter of ASD individuals.56–58 The exception to the increase 
in certain Bacteroides (12.02±1.62% control, 13.48±0.75% MIA) 
and Clostridium (1.00±0.25% control, 1.58±0.34% MIA) species 
was B. fragilis, which was notably decreased in MIA offspring.52 
Supplementation of B. fragilis back into the intestinal environment 
of MIA offspring modified the microbiome composition such that 
it was comparable to that of the controls.52 There was however no 
significant effect on the overall gut microbial abundance or diversity 
(microbiome density p=0.2980, species diversity p=0.5440) upon B. 
fragilis treatment.52

Administration of B. fragilis also normalized colonic elevation 
of IL-6 in MIA offspring.59 IL-6 is critical cytokine involved in 
MIA pathways linked to abnormal fetal brain development and 
predisposition of offspring to neuro developmental pathologies.60,61 
MIA offspring also exhibited decreased prepulse inhibition at lower 
decibels, which is reflective of behaviour defects.52 Poor startle 
response, a common trait among autistic patients, is indicative of 
impaired sensorimotor gating.62,63 Behaviour assays also showed 
deficits in duration and frequency of vocalization, sociability, and 
demonstration of repetitive behaviour, which are often considered 
diagnostic symptoms of ASD.52 However, B. fragilis-treated MIA 
offspring experienced improved behavioural, communicative and 
sensorimotor responses despite retaining deficits in sociability and 
exploratory propensity.52 Similarly, risperidone, an antipsychotic 
that is used in the management of irritability and aggression in ASD, 
was unable to correct social disengagement in both ASD individuals 
and genetic murine model for ASD.64–67 From these results, it is 
hypothesized that social behaviour is governed by a complex set of 
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neuronal circuitry,52 which may not entirely overlap with pathways 
modulated by B. fragilis or antipsychotics.

Metabolomic assessments show that MIA has substantial impact 
on 8% of serum metabolites.59 Relative to controls, MIA offspring 
are found to have a 46-fold increase in 4-ethylphenylsulphate (4EPS) 
and a moderate increase in indolepyruvate.52 The striking elevation in 
4EPS led to secondary experiments that showed how increasing 4EPS 
is sufficient in bringing about ASD-related behavioural abnormalities 
in previously naïve mice.52 It is also speculated that 4EPS production 
is exclusively regulated by commensal microbiota since germ-free 
mice only display trace amounts of serum 4EPS.52 These results 
demonstrate how gut microbes may lead to ASD-related behaviour 
through dysregulation of systemic metabolites levels. Interestingly, 
4EPS and indolepyruvate also possess structural equivalents to human 
metabolites p-cresol and indolyl-3-acryloylglycine (IAG).52 Although 
there are conflicting reports regarding whether the increase in IAG 
levels between ASD groups and controls is statistically significant 
p-cresol is postulated to be a urinary biomarker for ASD.68–71 Not 
unlike other MIA-induced symptoms, atypical metabolic profiles were 
normalized by B. fragilis supplementation.52 Overall, the findings 
suggest that probiotic supplementation can be a viable treatment for 
symptoms of through rectifying gut dysbiosis. 

Conclusion and perspectives
Many studies have proposed links between the etiology of ASD 

symptoms and gut dysbiosis. Given the high prevalence of increased 
gut permeability in ASD patients, it is a hypothesized that poor 
luminal integrity is an avenue by which bacterial compounds access 
the central nervous system impair neuronal function. Changes in gut 
microbiota may result in response to oxidative stress, but also further 
propagate it. Chronic neuroinflammation, which characterized by 
neuroglial activation and altered profiles of cytokines, chemokines, 
and growth factors, is also observed in individuals with ASD. The 
association between gut flora and neuro developmental disorders 
is further supported by a maternal immune activation study where 
phenotypic models of ASD displayed decreased colonies of B. fragilis. 
Interestingly, many ASD symptoms were normalized in MIA offspring 
upon recovery of B. fragilis levels through oral administration. These 
findings demonstrate that alterations in the gut microbiome can 
contribute to the development of ASD-associated symptoms.

An examination of all the evidence presented in this review shows 
a probable link between gut dysbiosis and ASD, however, the nature 
of this link should be explored in more depth. Further research is 
required to better establish the specific changes in individuals with 
ASD that are related to gut permeability and neuro-inflammation, 
as well as the mechanisms underlying the interplay between these 
changes and microbiota. The relationship between gut dysbiosis and 
ASD is a field where there are currently a greater number of questions 
than answers: there is a need for studies with larger sample sizes and 
better methods for testing gut dysbiosis in individuals. As treatments 
targeting gut dysbiosis and microbiota-associated pathways are 
being explored as an avenue ASD treatment, this field still provides a 
worthwhile basis for further exploration.
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