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Nomenclature: CD, cyclodextrin; Tryp, Tryotophan; Val, 
Valin

Introduction
Alzheimer disease (AD) is a neurodegenerative disorder and is 

associated with accumulation of amyloid and tau depositions in the 
brain.1–3 If we succeed in blocking fibrillogenesis, we must first 
block the aggregation of amyloid Aβ42, targeting as far as chemists 
residues responsible for folding. Several studies have been carried 
out to identify the minimum sequence necessary for the fibrillation of 
the Aβ peptide. The Aβ19-28 sequence is sufficient to form amyloid 
fibers.4 As for the first 17 residues of the N-terminal part of the 
Aβ peptide are not necessary for the formation of amyloid fibers.5 
Their elimination makes it possible to amplify the fibrillation. The 
Aβ16-20 sequence, KLVFF (Figure 1), is designated as necessary 
for the interaction between Aβ peptides.6,7 Many inhibitors have 
been developed in recent years, most of which are of peptide nature 
or are peptide mimics. A large part of the inhibitors is based on the 
hydrophobic core of the β sheet of the N-terminal domain: the LVFF 
sequence (Aβ17-20).8–20

Figure 1 Structure of Aβ40 and Aβ42 that is involved in fibril formation.21

Materials and methods
All the reactions with dry solvents were carried out under dry 

nitrogen. THF was dried over sodium /benzophenone and freshly 
distilled before use; CH2Cl2 was distilled and dried over phosphorus 
pentoxide (P2O5). I.R spectra were collected from a Mattson Genesis 

II FTIR. NMR spectra were recorded in CDCl3 on a Bruker 300MHz 
instrument, using tetramethylsilane (TMS) as an internal standard. 
Chemical shifts are given in β (ppm) and coupling constant (J) values 
in Hertz (Hz). ESI-MS data were recorded in the positive ion mode 
on a quadrupole instrument (Waters-Micromass ZQ). Melting points 
were determined on an Electrothermal T1A F3.15A instrument. 
Column chromatography was performed on silica gel 230-270 mesh 
(Merck) using CH2Cl2, MeOH and ether. Elemental analysis was 
performed only for solids on a LECO CHN 900 instrument.

Results and discussion
Synthesis of β-Sheet breakers A and B

Our approchconsist todevelopp-sheet breaker peptides. 
Several derivatives peptides have been synthesized. The amyloid 
deposition could be stopped by synthetic peptides partially 
homologous to the Ahydrophobic region and containing residues 
disrupting -sheet formation (Figure 2). Our synthetic pathways 
to our target aziridines 6a-e are presented in Schemes 1 and 2. The 
synthesis of tosylate aziridine 4, was achieved by the O-protection 
of glycidol 1 with p-toluenesulfonyl chloride (TsCl). And was 
treated with ammonium chloride and sodium azide to give the azido 
alcohol 3, which was reacted in the next step with a solution of 
triphenylphosphine (PPh3). The biological activity of aziridines is 
highly related to the establishment of covalent bond with DNA.22 
In a previous investigation of our group we noted the synthesis of 
aziridinyl that had antitumor activities against breast cancer cells 
(Figure 3).23,34

Figure 2 Structure of of β-sheet breakers A with aziridine moiety as 
disrupting group.
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Abstract

The amyloid Aβ-42, a peptide involved, following a conformational change in β sheets in 
the pathology of the main neurodegenerative disorder of Alzheimer’s disease, is targeted 
in our study, the latter of which reports the synthesis of two Inhibitors linked to a specific 
recognition sequence synthesized during this work (Tryp-Val-Val-COOH), one linked to an 
aziridine and the other to a methylated β-CD in order to be able to stop the aggregation of 
the peptide involved. 
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Figure 3 Synthesis of aziridin-2ylmethylbenzensulfonate 4.

We have, already reported the synthesis of several aziridines,25–27 
that moiety of amino acids phtaloyl group with a phosphonate, 
surprisingly, the biological activity of seri of phosphonates aziridines 
shifted from antiviral to an antibacterial one.28–31 For the second 
inhibitor, we choose β-cyclodextrine (-CD) as disrupting group 
coupled with the same specific recognition sequence of tripeptid (Try-
Val-Val) (Figure 4).

Figure 4 Structure of β-sheet breakers B with (β-CD) mioty as disrupting 
group.

Cyclodextrins (CDs) are compounds that are produced by the 
enzymatic degradation of starch. The three most common CDs have 6, 
7, and 8 glucopyranose units in the cyclic and are named α-CD, β-CD, 
and γ-CD, respectively.32 Whereas the depth of the cavity for these 
CDs is8 Å, the sizes of the cavity are different for α-CD, β-CD, and 
γ-CD, being6, 8, and 10 Å, respectively (Figure 5).33–44

Figure 5 Schematic representation of approximate dimensions of α-CD, 
β-CD, and γ-CD.

So our idea to incorporate a cyclodextrine for improvement of 
vectoraziation of tripeptid in vivo and to insert a large disturbing 

group between the b-sheet of Aβ agragation which will imply the 
rupture of the hydrogen bonds. In addition, the intra-inclusion study 
of chain Try-Val-Val or inclusion of (Aβ-42) inside the cavity of CD 
can improve the interaction and blocked the Amyloid Fibrillogenesis. 

Tripeptid Try-Val-Val 5 was reacted either with thionyl chloride 
in the presence of TEA to yield, an acyl chloride that was reacted 
with aziridine 4 to give breakers A, or coupled in the presence of 
dicyclohexylcarbodiimide (DCC) as coupling agent with CD at room 
temperature, giving the breakers B in medium yield (50-65%) (Figure 
6).

Figure 6 Coupling of aziridines 4 and CD with trypeptid 5.

Primary result of study of interaction of breakers A 
with Aβ42

The study by MOE docking showed that structure of brekears A 
with only aziridine moiety group was the best interaction than B with 
Aβ42 (Figure 7). Only biological evaluation in vivo can give wish are 
the best inhibitors (Figure 8). 

Figure 7 Structure of amyloide Aβ42 with sequence KVLFF (16-17-18-19-20).

Figure 8 Best interaction of beta sheet breakers with aziridine as disrupting 
group with amyloide Aβ42.
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Conclusions 
To conclude we can say that eradicating Alzheimer’s disease 

in a radical way, we are not yet there but the fact to look into this 
problem by studying the issue of beta amyloid (Aβ-42) remains a 
fairly studious approach. We developed two inhibitors A and B with 
aziridine or CD as disrupting group to be able to stop the fibrillar 
aggregation, a way still remains to be done to really develop them. 
in order to ensure their effectiveness, it is necessary to confirm their 
biological activity. At least in terms of synthesis, the method followed 
is simple; conventional peptide couplings, which can be improved.
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