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Introduction
Pharmaceutical researchers and biotechnology companies are 

devoted to developing medicines, such as: therapeutic proteins, 
human insulin, vaccines for hepatitis, food grade protein, chymosin 
detergent enzyme, and cryophilic protease. This allows patients to 
live longer, heathier, and more productive. However, in recent years, 
there has been an increased interest development of systematic 
method for the design of batch process in chemicals, food products, 
and pharmaceutical industries. Basically, batch plants are composed 
of items operating in a discontinuous way, where each batch then 
visits a fixed number of equipment items, as required by a given 
synthesis sequence so called production recipe. Many works in the 
literature on batch process design are based on expressions that relate 
the batch sizes linearly with the equipment sizes.1–10 The number 
required of volume and size of parallel equipment units in each stage 
is to be determined. Nevertheless, the design of batch plants requires 
involving how equipment may be utilized. However you look at it the 
optimal design of a multiproduct batch chemical process involves the 
production requirement of each product and the total production time 
available for all products has been considered. The number and size 
of parallel equipment units in each stage as well as the location and 
size of intermediate storage are to be determined in order to minimize 
the investment cost. 

The aim of this work was to solve the multiproduct batch plant 
design problem using (PSA) and (GAs), respectively. The model 
presented is general, it takes into account all the available options to 
increase the efficiency of the batch plant design: unit duplication in-
phase and out-phase and intermediate storage tanks. 

We have found out that PSA performed effectively and gave a 
solution, but we would like to solve the problem more effectively, 
that’s why we proposed to apply GAs, an intelligent problem-

solving method that has demonstrated its effectiveness in solving 
combinatorial optimization problem, and satisfactory results have 
been obtained.

Materials and methods 
System description and experimental data

The case study, taken from the literature, is a multiproduct batch 
plant for the production of proteins.11 This example is used as a test 
bench since it provides models describing the unit operations involved 
in the process. The batch plant involves eight stages for producing four 
recombinant proteins, on one hand, two therapeutic proteins, human 
insulin (A) and vaccine for hepatitis (B) and, on the other hand, a 
food grade protein, chymosin (C), and a detergent enzyme, cryophilic 
protease (D). Figure 1 is the flowsheet of the multiproduct batch 
plant considered in this study. All the proteins are produced as cells 
grow in the fermenter. It is hardly necessary to say that the number of 
intermediate storage tanks is an important constituent of our process: 
Three tanks have been selected: the first after the fermenter, the second 
after the first ultrafilter, and the third after the second ultrafilter.

Vaccines and protease are considered to be intracellular. The first 
microfilter is used to concentrate the cell suspension, which is then sent 
to the homogenizer for the second microfilter, which is used to remove 
the cell debris from the solution proteins. The first ultrafiltration 
step is designed to concentrate the solution in order to minimize the 
extractor volume. In the liquid–liquid extractor, salt concentration 
(NaCl) is used as solution in order to minimize the extractor volume. 
In the liquid–liquid extractor, salt concentration (NaCl) is used to first 
drive the product to a poly-ethylene-glycol (PEG) phase and again 
into an aqueous saline solution in the back extraction. The second 
ultrafiltration is used again to concentrate the solution. The last stage 
is chromatography, during which selective binding is used to better 
separate the product of interest from the other proteins.
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Abstract

This work deals with the problem of the optimization of multiproduct batch plant 
design (MBPD) found in a chemical engineering process. The aim of this work is to 
minimize the investment cost and find out the number and size of parallel equipment 
units in each stage. For this purpose, it is proposed to solve the problem in two 
different ways: the first way is by using particle swarm algorithms (PSA) and the 
second way is by genetic algorithms (GAs). This paper presents the effectiveness 
and performance comparison of PSA and GAs for optimal design of multiproduct 
batch plant. The calculation results (investment cost, number and size of equipment, 
computational time, CPU time and idle times in plant) obtained by GAs are better than 
PSA. This methodology can help the decision makers and constitutes a very promising 
framework for finding asset of good solutions.
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Figure 1 Multiproduct batch plant for protein production.

Table 1 Product prices and demands

Product Name Production (kg/year) Price (dollar/kg)

1 Insulin 1500 8000

2 Vaccine 1000 7500

3 Chymosin 3000 1000
4 Protease 6000 500

Insulin and chymosin are extracellular products. Proteins are 
separated from the cells in the first microfilter, where cells and 
some of the supernatant liquid stay behind to reduce the amount of 
valuable products lost in the retentate, extra water is added to the cell 
suspension. The homogenizer and the second microfilter for cell debris 
removal are not used when the product is extracellular. Nevertheless, 
the first ultrafilter is necessary to concentrate the dilute solution prior 
to extraction. The final step of extraction, second ultrafiltration, and 
chromatography are common to both the extracellular and intracellular 
products. In Table 1 we make an estimation of production targets and 
product prices.12–14

Problem statement

The model formulation for DMBP’s problem approach adopted 
in this section is based on Montagna el al.15 It considers not only 

treatment in batch steps, which usually appear in all types of 
formulation, but also represents semi continuous units that are part of 
the whole process (pumps, heat exchangers, etc). A semi-continuous 
unit is defined as a continuous unit alternating idle times and normal 
activity periods. Besides, this formulation takes into account mid-
term intermediate storage tanks, the obligatory mass balance at 
the intermediate storage stage, which is one of the most efficient 
strategies to decouple bottlenecks in batch plant design. They are 
just used to divide the whole process into subprocesses in order to 
store an amount of materials corresponding to the difference of each 
sub-process productivity. In this section we describe the unit models 
from a conceptual standpoint and also the procedure to derive the 
data needed for solving the mathematical model. These data are 
summarized in Table 2 & Table 3.

Table 2 Size factors Sij (r, retentate; p, permeate)

Stage (j)  Sij (m
3/kg)

  Unit Insulin Vaccine Chymosin Protease
1 Fermenter 1.25 0.625 0.415 0.3125

2
Microfilter I

r:1.25 r:0.625 r:0.415 r:0.3125

  p:2.5 p:no p:0.830 p:no

3 Homogenizer No 0.155 No 0.08

4 Microfilter II No
r:0.155 No r:0.08
p:0.31   p:0.16

5 Ultrafilter I 2.5 0.31 0.83 0.16

6 Extractor 0.4 0.2 0.14 0.1

7 Ultrafilter II 0.4 0.2 0.14 0.1

8 Chromatographer 0.05 0.05 0.05 0.05
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Table 3 Time factors Tij[Bi(kg)]

Stage Tij (h)
j Unit Insulin Vaccine Chymosine Protease
1 Fermentor 24 24 24 24
2 Microfilter I 12.5 A-1Bi 2.5 A-1Bi 4.15 A-1Bi 1.25 A-1Bi

3 Homogeneizer no 0.465 cap-1Bi  no 0.24 cap-1Bi

4 Microfilter II no 3.1 A-1Bi no 1.6 A-1Bi

5 Ultrafilter I 105A-1Bi 5.5 A-1Bi 35 A-1 Bi 3 A-1Bi

6 Extractor 1.5 1.5 1.5 1.5
7 Ultrafilter II 18A-1Bi 8 A-1Bi 4.75 A-1Bi 3 A-1 Bi

8 Chromatographer 0.5 0.5 0.5 0.5

Most of the separation processes information are taken from 
Asenjo and Patrick.,16 the posynomial modeling approach is taken 
from Salomone and Iribarren.,17 The general batch process literature 
as reported in,18 describes batch stages j  through a sizing equation 
and a cycle time that are applied for a product i  as follows:

	   			 
 	 (1)

Where jV  is the size of stage j , e.g., 3m of the vessel, iB  is 
the batch size for product i , e.g., kg  of product exiting from the 
last stage, ijS  is the size factor of stage j  product i , i.e., the size 
needed at stage j to produce 1 kg of final product i  and ijT  is the 
time required to process a batch of product i  in stage j

 
considering 

the fermentor and the insulin product as an example. If we estimate 
a final concentration of 50 kg

 
dry 3biomass / m , that 0.4 of this 

biomass is proteins and 0.05 of these proteins is insulin, and an overall 
yield estimate of the process of 0.8 (0.8 of the insulin produced in the 
fermenter exits the chromatographic column), then the size factor for 
the fermenter for producing insulin can be estimate as

		
1.25

50kg 0.4 0.05 0.8× × ×

3
3m

m
ij

S = =  	     (2)

Similarly, vaccine, chymosine, and cryophilic protease were 
estimated to be 0.1, 0.15, and 0.2 of total proteins of the biomass, 
respectively. The batch stage description is completed by estimating 
a processing time ijT  for stage j when producing product i . For the 
fermenter, we estimate ijT = 24 h  for all products, which includes 
time for charging, cell growth, and discharging.

This model of batch stages given by constraint (1a) is the 
simplest one. Its level of detail suffices for the fermenter and the 
extractor. These units are truly batch items chat hold the load to 
be processed and whose operations are governed by kinetics, and 
hence, the operating time does not depend on the batch size. The first 
approximation for the extractor, we take a phase ratio of (1b) for all 
products. Therefore, the required extractor volume is twice the inlet 
batch volume, while the inlet and outlet aqueous saline batches are 
of the same volume. It is also assumed, as a result of preliminary 
balances, that this operation reduces the total amount of proteins to 
about twice the amount of the target protein. with respect to the kinetic 
effects we take as first estimates19 the following times: 15 min stirring 
to approach phase equilibrium, 30 min settling to get almost complete 
disengaging of the phases, and 20 min for charging and discharging. 
A special consideration must be done in the case of the microfiltration, 
homogenization, and ultrafiltration stages. Although the mathematical 
model considers them batch stages, their corresponding equipment 
consists of holding vessels and semicontinous units that operate on 
the material that is recirculated into the holding vessel. The batch 

items are sized as described before. For example, for the homogenizer 
processing cryophilic protease, we estimated that the fermentor 
broth is concentrated 4 times up to 3200 kg / m  at microfilter 1 
and considered a yield of 1 because the intracellular protease is fully 
retained at the microfilter. Then the size factor of the homogenizer 
vessel is 4 times smaller than the fermenters, i.e., 3

ijS =0.08m / kg
protease. The sizing equation for semicontinuous items can also be 
found in the general batch processes literature:20

			 

i
j ij

ij

B
R D

è
=  		  (3)

Where jR  is the size of the semicontinuous item k , usually a 
rate of processing. For example, in the case of the homogenizer, it is 
the capacity in cubic meters of suspension per hour, but in the case 
of the filters jR  is their area of filtration ( )2

jA m . iB  is again 
the batch size, ijè is the operating time that the semicontinuous item
j needs to process a batch of product i , and ijD is the duty factor (a 

size factor for semicontinuous items), i.e., the size needed at stage 
j to process 1kg of product i  in 1h. For example, if we adopt three 

passes through the homogenizer, its duty factor is the vessel size 
factor 30.08 m / kg× 3 , i.e., 3

ijD =0.24 m / kg.  The meaning of 
a capacity of 30.24 m / h

 
is that it allows 1 kg  of final product 

cryophilic protease to be processed in 1h .

The general batch processes literature considers semicontinuous 
units to work in series with batch units so that their operating time 
are the times for filling or emptying the batch units. However, in the 
process considered, pumps are the only semicontinuous units, which 
transfer batches between the units. As the pumps cost does not have a 
relevant impact on the plant design, they were not explicitly modeled. 
The times for filling and emptying batch items were estimated and 
included in the batch cycle times. On the other hand, the process 
does have special semicontinuous units with an important economic 
impact on the cost. They are the homogenizer and ultrafilters, but their 
operating time is the batch processing time of the respective stage. 
The mathematical model depends on both the batch size and the size 
of the semicontinuous item are as follows:

		

			   j ij iV S B≥ 		  (4a)

			 
Β0 i

ij ij ij

j

1T =T +T
R

		

 		
						      (4b)

Β≥j ij iV S
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Where jR refers to the size of the semicontinuous item that 
operates on the batch size at stage j . 0

ijT
 
and 1

ijT
 
are appropriate time 

factors that take into account contributions to the total cycle time of 
the stage that are either fixed amounts of time or proportional to the 
batch size and inversely proportional to the size of the semicontinuous 
item. For the homogenizer, jR  is its capacity, 1

ijT
 
the duty factor 

of the homogenizer itself, and 0
ijT includes the estimated times for 

filling and emptying the homogenizer holding vessel. In the case 
of ultrafilters, a fixed permeate flux model was considered with a 
rate of 220 L / m of membrane area/h. In this case, the size of the 
semicontinuous item jR  is the filtration area. 0

ijT is again the time for 
filling and emptying the retentate holding vessel, and 1

ijT is the inverse 
of the permeate flux times the ratio ( )3m permeate / kg . This ratio 
is estimated from a mass balance taking into account that the ultrafilters 
are used for a water removal from solutions up to 50 g / L  of total 
proteins. Ultrafilters are used to reduce the volume required at the 
liquid extractor and the chromatographic column. The upper bound 
on concentration is a constraint that avoids protein precipitation. The 
microfilter model is quite similar to that of the ultrafilter, but there are 

two batch items associated to them instead of one, the retentate and 
the permeate vessels, plus the semicontinuous item area of filtration. 
For microfilter 1 a fixed permeate flux of 2200 L / m h  is adopted. 
For extracellular insulin and chymosin, we estimate a total permeate 
(feedwater plus make up water) twice the feed, while for intracellular 
protease and vaccine we estimate it in 75% of the feed (the retentate is 
concentrated four times). For microfilter 2 a fixed permeate flux model 
is also used. In this case, the flux is smaller than the one in microfilter 
1 because the pore size to retain cell debris is smaller than the one 
for whole cells. As a first estimation we take 2100 L / m h  and a 
total permeate (feed plus make up water) twice the feed. With respect 
to the chromatographic column, an adsorptive type chromatography 
is considered, with a binding capacity of 320kg / m  of column 
packing. The size factor of this unit is the inverse of that binding 
capacity. As a first approximation, a fixed total operating time of 
0.5h  was estimated for loading, eluting, and washing regeneration.

Finally, the stage model is completed with a cost model that expresses 
the cost of each unit as a function of its size, in the form of a power 
law. These expressions are summarized in Table 4, with most of the 
cost data.20

Table 4 Cost of equipment (U.S. Dollars)

Unit Size Cost

Fermenter Vj (m
3) 63400V0.6

Micro and ultrafilters Vretentate (m
3) 5750Vr

0.6

Homogenizer Vholding (m
3) 5750V0.6

Cap (m3/h) 12100cap0.75

Extractor Vextr (m
3) 23100V0.65

Chromatography Vchrom (m3) 360000V0.995

Model equations 

The mathematical optimization model for designing the 
multiproduct batch plant is described in this section. The model 
includes the stage models described in the previous section plus 
additional constraints that are explained in this section. The plant 
consists of M  batch stages (in our case 8 batch stages). Each stage 
j

 
has a size ( )3

jV m , and more than one unit can be installed 
in parallel. They can work either in-phase (starting operation 
simultaneously) or out of phase (starting times are distributed equally 
spaced between them). The duplication in phase is adopted in case 
the required stage size exceeds the specific upper bound. In this case 

jG units are selected, splitting the incoming batch into jG  smaller 
batches, which are processed simultaneously by the jG

 
units. After 

processing, the batches are added again into a unique outgoing batch. 
Otherwise, duplication out-of-phase is used for time-limiting stages, 
if a stage has the largest processing time, then it is a bottleneck for the 
production rate. Assigning jM  units at this stage, working in out of 
phase mode, reduces the limiting processing time and thus increases 
the production rate of the train. For this case, the batches coming from 
the upstream stages are not split. Instead, successive batches produced 
by the upstream stage are received by different units of stage j , 
which in turn pass them at equally spaced times onto the downstream 
batch stage. The allocation and sizing of intermediate storage has been 
included in the model to get a more efficient plant design. The goal is 
to increase unit utilization. The insertion of a storage tank decouples 
the process into two subprocesses: one upstream from the tank, and 

the other downstream. This allows the adoption of independent batch 
sizes and limiting cycle times for each subprocess. 

Therefore, the previously unique iB is changed to batch sizes ijB
defined for product i in stage j . Appropriate constraints adjust the 
batch sizes among different units. The objective is to minimize the 
capital cost of the plant. The decision variables in the model are as 
follows:

At each batch stage the number of parallel units in phase and out 
of phase and their size, and the installation or absence of intermediate 
storage between the batch stages and their size. The plant is designed 
to satisfy a demand of ( )iQ kg  of each product i , for the P product 
considered, within a time horizon ( )H h . 

In summary, the objective function to be optimized is

	  

	
∑ ∑
M Má çj j

j j j j j
j =1 j=1

MinCost M G a V VT= + 	    (5)

Where ja  and α
j

, 
j

c and η
j
 are appropriate cost coefficients 

that depend on the type of equipment being considered. 
j

VT is the size 
of the storage tank allocated after stage j . The size of each unit has to 
be large enough to be able to process every product:
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∀ ∀≥ = =ij ij

j
j

S B
V i 1, . . . ,P ; j 1, . . . ,M

G
	  (6)

Where 
ij

S is the size factor for product i  in stage j . In case of 

parallel units working in phase, the division of ijB by the number 
of units jG

 
takes into account the reduction in the batch size to be 

processed by these units. The operation time 
ij

T  to process product i
at stage j has the general following form:

	
	

∀ ∀= = =ij0 1

ij ij ij
j

B
T T T i 1, . . . ,P ; j 1, . . . ,M

R
+

 
	  (7)

Where 0
ijT and 1

ijT are appropriate constants that depend on both 
the product and the stage. Expression 7 accounts for a fixed and 
variable contribution to the total operating time. The last term in Eq 7 
depends on both the batch size and the size of the semicontinuous item 
associated to this batch stage, as was already discussed previousely.

The limiting cycle time for product i  in the subprocess h , hTL , 
is the largest processing time in this production train:

		

∀ ∀ ∈ ∀≥ =ijh

i j
j

T
TL i 1, . . . ,P ; j J ; h

M
 
	   (8)

Where 
h

J  is the set of units which conform the subprocess h  the 
division by the number of units in parallel working out of phase, 

j
M  

takes into account the reduction in the cycle time of this stage due to 
the operation of

j
M  units that alternatively process the consecutive 

batches. To avoid accumulation of material, the processing rate of 
both subprocess downstream and upstream of the storage tank must 
be the same:

		

∀
   
   = =
   

  

d u

i i
ud

ii

B B
i 1, 2, . . . ,P

TLTL
 
 	  (9)

The constraints 9 equalizes the production rate upstream and 
downstream of the storage tank. To express 9 in a simple form, the 
inverse of the production rate of product ( )i

i E , is defined as

		
∀ ∀ ∈ ∀= =

h

i

i h
ij

TL
E i 1, 2, . . . ,P ; j J ; h

B
   

(10)

Expression 10 is used to replace n
i

TL in constraint 8, dropping 
constraint 9. The production constraint is posed as follows: during the 
time horizon H the plant must produce the target production quantities 

i
Q of each product i . The number of batches of each product i  to be 

produced during time H  is i

i

Q

B
, and the production of each batch 

demands a time 
i

TL , The following constraints holds:

			   i ii
≤∑

P

=1
Q E H

	  
	  (11)

The size of the storage tank 
j

VT , allocated after batch stage j , is 

given by the following expression:25

	
∀ ∀ ≥ = 

 j ij ij ij+1
VT S T B + B i 1, . . . ,M; j 1, . . . ,M -1=

 
    (12)

Where 
ij

ST  is the size factor corresponding to the 
intermediate storage tank, with identical definition to the batch 
stages. As no a priori tank allocation is given, binary variables 

j
y  are used to select their allocation. The value of variables 

j
y is 1 if a tank is placed in position j , or zero otherwise. 

Constraint 12 is generalized to size the tank only if it exits:

∀ ∀   ≥ = =   
   j ij ij ij+1 j j

VT S T B + B F 1 - y i 1, . . . ,P ; j 1, . . . ,M 1- -
 
(13)

Where 
j

F  is a constant value sufficiently large such that when 
j

y
is 0 ( the tank does not exist), the constraint is trivially satisfied for 
any value of 

j
VT . 

In particular, the cost minimization will drive 
j

VT 0=
. When the tank exists  

 
 j
y 1= the term with 

j
F  vanishes, 

and the original constraint (12) holds. If the storage tank does 
not exist between two consecutive stages, then their batch 
sizes are constrained to be equal. Otherwise, this constraint is 
relaxed. This effect is imposed by the following constraints: 

( ) ∀ ∀
 

+ ≤ ≤ φ = = φ 
ij

j j
ij+1

B1
1 -1 y 1 + -1 y i 1, . . . ,P ; j 1, . . . ,M -1

B
  

14)

Where Φ  is a constant value corresponding to the maximum ratio 
allowed between two consecutive batch sizes.

In summary, the multiproduct plant design model that includes the 
options of parallel units in-phase and/or out of phase and provision of 
intermediate storage, consists of the objective function 5 subject to 
constraints 6, 8, 11, 13, and 14, plus the upper and lower bounds that 
may apply. An important feature of the model is that both the objective 
function and the constraints are posynomial expressions that possess 
a unique local (and thus, global) solution.20 This basic model has 
been adapted to handle the particular feature of the composite stages 
(homogenizer, ultrafilters, and microfilters). In this case, constraint 6 
is applied not to a general batch stage size but to each of the items that 
compose it. So in the case of microfilters, constraint 6 applies to both 
the retentate and the permeate vessels. A new parameter 

ij
SR  was 

introduced to represent the size factor of the retentate vessel, while 

ij
S was left for the permeate vessel. Also in this case, the objective 
function must account for all the stage components. The notation 

j
a  

and α
j

 were left for the cost coefficients of the permeate vessel, 
j

b
and 

j
â

 
for the retentate vessel, and 

j
d and γ

j  
for the filtration area. 

A similar approach was implemented for the ultrafilters (retentate 
vessel and ultrafiltration area) and homogenizer (holding vessel and 
the homogenizer itself).
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Methodology
Between 1960s and 1970s witnessed a tremendous development 

in the size and complexity of industrial organizations. Administrative 
decision-making has become very complex and involves large 
numbers of workers, materials and equipment. A decision is a 
recommendation for the best design or operation in a given system 
or process engineering, so as to minimize the costs or maximize the 
gains.21 Using the term “best” implies that there is a choice or set of 
alternative strategies of action to make decisions. The term optimal 
is usually used to denote the maximum or minimum of the objective 
function and the overall process of maximizing or minimizing is called 
optimization. The optimization problems are not only in the design of 
industrial systems and services, but also apply in the manufacturing 
and operation of these systems once they are designed. Including 
various methods of optimization, we can mention: MINLP, Particle 
Swarm Optimization and Genetics Algorithms.

Particle swarm algorithms

The PSA is a population-based optimization algorithm, which was 
inspired by the social behavior of animals such as fish schooling and 
birds flocking, it can solve a variety of hard optimization problems. 
It can handle constrains with mixed variables requiring only a few 
parameters to be tuned, making it attractive from an implementation 
viewpoint.22 In PSA, its population is called a swarm and each 
individual is called a particle. Each particle flies through the problem 
space to search for optima. Each particle represents a potential solution 
of solution space, all particles form a swarm. The best position passed 
through by a flying particle is the optimal solution of this particle 
and is called pbest, and the best position passed through by a swarm 
is considered as optimal solution of the global and is called gbest. 
Each particle updates itself by pbest and gbest. A new generation is 
produced by this updating. The quality of a particle is evaluated by 
value the adaptability of an optimal function. In PSA, each particle 
can be regard as a point of solution space. Assume the number of 
particles in a group is M, and the dimension of variable of a particle 
is N. The ith particle at iteration k has the following two attributes:

a.	 A current position in an N-dimensional search space which 
represents a potential solution:   

 
k k k k

i i1, i,n i,N
X x , . . .x . . .x= , where 

ε  
 

k

n ni,n
x l ,u  is the nth dimensional variable, 1 Nn¡ Ü¡ Ü, 

n
l and 

n
u

are the lower and upper bounds for the nth dimension, respectively.

b.	 A current velocity,   
 

k k k k

i i1, i,n i,N
V v , . . .v , . . .v= , which controls its 

fly  speed and direction. k

i
V is restricted to a maximum velocity  

  
 

k k k k

max max,nmax1, max,N
V v , . . .v , . . .v= . At each iteration, the swarm is  

uploaded by the following equations:
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Where 
i

P
 
is the best previous position of the ith particle (also 

known as pbest) and 
g

P is the global best position among all the 
particles in the swarm (also known as gbest). They are given by the 
following equations:
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s
Where f is the objective function, M is the total number of 

particles. 
1

r and 
2

r are the elements generated from two uniform 

random sequences on the interval [ ]0,1 : ( )r α
1

U 0,1 ; ( )r α
2

U 0,1  

and ω  is an inertia weight30 which is typically chosen in the range 
of [ ]0,1 . A larger inertia weight facilitates global exploration 
and a smaller inertia weight tends to facilitate local exploration to 
fine tune the current search area. Therefore the inertia weight ω is 
critical for the PSO’s convergence behavior. A suitable value for the 
inertia weight ω usually provides balance between global and local 
exploration abilities and consequently results in a better optimum 
solution. Initially the inertia weight was kept constant. However, 
some literatures indicated that it is better to initially set the inertia to a 
large value, in order to promote global exploration of the search space, 
and gradually decrease it to get more refined solutions. 

1
c and 

2
c are 

acceleration constants which also control how far a particle will move 
in a single iteration.

Genetic Algorithms

GA, proposed in this paper based on the work of Wang et al.,22 
are related to the mechanics of natural selection and natural genetics. 
They combine the survival of the fittest among string structures with 
a structured yet randomized information exchange to form search 
algorithms with some of the innovative flair of human search. In 
every generation, a new set of individuals (strings) is created using 
bits and pieces of the fittest of the old individuals; while randomized, 
a GA are no simple random walk. They efficiently exploit historical 
information to speculate on new search points with expected improved 
performance.23 According to Wang et al.,23 the canonical steps of the 
GA can be described as follows:

a.	 The problem to be addressed is defined and captured in an objective 
function that indicated the fitness of any potential solution.

A population of candidate solutions is initialized subject to certain 
constraints. Typically, each trial solution is coded as a vector X
, termed a chromosome, with elements being described as solutions 
represented by binary strings. The desired degree of precision would 
indicate the appropriate length of the binary coding.

Each chromosome 
i

X , i =1, 2, . . . ,P , in the population is decoded 
into a form appropriate for evaluation and is then assigned a fitness 
score, ( )µ X  according to the objective.

Selection in genetics algorithms is often accomplished via differential 
reproduction according to fitness. In a typical approach, each 
chromosome is assigned a probability of reproduction, 

i
P , i =1, 2, . . . ,P  

, so that its likelihood of being selected is proportional to its fitness 
relative to the other chromosomes in the population. If the fitness 
of each chromosome is a strictly positive number to be maximized, 
this is often accomplished using roulette wheel selection (Goldberg, 
1989). Successive trials are conducted in which a chromosome is 
selected, until all available positions are filled. Those chromosomes 
with above-average fitness will tend to generate more copies than 
those with below-average fitness.
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According to the assigned probabilities of reproduction, 

i
P , i =1, 2, . . . ,P , a new population of chromosomes is generated by 
probabilistically selecting strings from the current population. The 
selected chromosomes generate “offspring” via the use of specific 
genetic operators, such as crossover and bit mutation. Crossover 
is applied to two chromosomes (parents) and creates two new 
chromosomes (offspring) by selecting a random position along the 
coding and splicing the section that appears before the selected 
position in the first string with the section that appears after the selected 
position in the second string and vice versa. Bit mutation simply offers 
the chance to flip each bit in the coding of a new solution. According 
to our experiments, the parameters used for running GA and PSA are 
showed in Table 5.
Table 5 The parameters used for running GA and PSA

Algorithms Parameters Value

GA

Population size 200

Number of generations 1000

Crossover probability 0.6

Mutation probability 0.4

Elitism 1

PSA

Number of particles 200

Number of generations 1000

Inertial weight 1.00

Acceleration constants 2.00

Statistical analysis methods 

The interest in statistical analysis methods has grown recently in 

the field of computational intelligence. In this section, I will discuss 
the basic and give a survey of a complete set of variance analysis 
procedures developed to perform the comparison between PSA and 
GA, via the use of describing a test of the null hypothesis, which 
applies to independent random samples from two normal populations 
of size 

1
n  and 

2
n are taken from normal population having the same 

variance, it follows F distribution with 
1

1−n  and 
2

1−n degrees of 
freedom, according to this equation:

			    
2

1
2

2

=
S

F  
S

However, The error from the optimal solution is given by:

		

exp

exp

x x

x
cal

-
error% =100 	                     (19)

In this research, 
exp

x  is considered to be the optimal solution founded 

by Montagna (Plant cost $829,500), where the equation (19) is a 
criterion to confirm the optimal values.

Results
The problem could be formulated as the minimization of the 

investment cost for equipment and storage tanks. Given that the 
problem modeled has non linear objective function. For the purpose 
of optimization problem, the model developed has been solved with 
PSA and GAs Matlab Toolbox respectively, which is included in the 
GNU Octave Scientific Programming Language, using the data shown 
in Table 1-4. A horizon time of 6000 h has been considered. However, 
the intermediate storage cost coefficient with size factors is shown in 
Table 6.

Table 6 Intermediate storage cost coefficients and size factors

Unita

STij size factor for product i in stage j

Insulin Vaccine Chymosin Protease

Fermenter 1.25 0.625 0.415 0.3125

Microfilter I 2.50 0.155 0.83 0.08

Homogenizer 2.50 0.155 0.83 0.08

Microfilter II 2.50 0.31 0.83 0.16

Ultrafilter I 0.40 0.20 0.135 0.10

Extractor 0.40 0.20 0.135 0.10

Ultrafilter II 0.05 0.05 0.05 0.05

Chromatography 0 0 0 0

On the other hand, the Table 7 shows the comparison of results for 30 runs between PSA and GA.
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Table 7 Comparison of results for 30 runs between PSA and GA

Values PSA ($) GA ($)
Best 912,450 833,674
Average 948,948 850,319.9401
Worst 976,321.5001 865,492.3154
Standart deviation 9.7558 1.5327

Nevertless, the optimization runs results for the investment cost calculated by PSA and GA during 30 runs is illustrated in Table 8.

Table 8 Optimization runs results for the investment cost founded by PSA and GA during 30 runs

Technique Plant cost ($) %from optimal solución CPU time (s)
PSA 912,450 10 800
GA 833,647 0.5 100

Nonetheless, the equipment structure computed by PSA is showed in Table 9.

Table 9 Equipment structure calculated by PSA

Stage 1 2 3 4 5 6 7 8

Vj 24.7456 : 2.1587
:1.0794

p
r

1.1814 : 2.3628
:1.181

p
r

9.922 0.8921 0.6017 0.0825

Rj NA A: 16.2041 Cap: 1.0989 A:8.668 A: 109.3301 NA A: 17.8134 NA

VTj 29.7066 NA NA NA 2.2154 NA 0.3795 NA

Mj 3 3 3 3 3 3 3 3

Gj 3 3 3 3 3 3 3 3

 However, Table 10 shows equipment structure calculated by GA.

Table 10 Equipment structure calculated by GA

Stage 1 2 3 4 5 6 7 8

Vj 22.6085 : 9.0651
: 4.5325

p
r  

1.0794 : 2.1587
:1.0794

p
r  

9.0651 0.8151 0.5497 0.0754

Rj NA A: 14.8047 Cap:1.004 A:7.9194 A: 99.8880 NA A: 6.2750 NA

VTj 27.1410 NA NA NA 2.0241 NA 0.3795 NA

Mj 1 1 1 1 1 1 1 1

Gj 1 1 1 1 1 1 1 1

The idle times in plant calculated by PSA is provided in Table 11.
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Table 11 Idle times in plant calculated by PSA (seconds)

Unit 
Product 1 2 3 4 5 6 7 8
Insulin 0 0 NA NA 0 57.7 NA 67.11
Vaccine 0 54 0 0 60.79 57.7 22.9 67.11
Chymosin 0 17 NA NA 17.54 57.7 27.9 67.11
Protease 0 63 16 15 63.07 57.7 55.03 67.11

However, the idle times in plant calculated by GA is shown in Table 12.

Table 12 Idle times in plant calculated by GA (seconds)

Unit 
Product 1 2 3 4 5 6 7 8
Insulin 0 0 NA NA 0 0.01 0 0
Vaccine 0 1.93 0.04 0 2.91 0 0.17 0
Chymosin 0 0.01 NA NA 0 0 0.31 0.17
Protease 0 2.09 0 0 3.07 0 0.5 0

The results of the statistical analysis are illustrated in Table 13 & Table 14.

Table 13 The results of two algorithms solving MBPD problem

Algorithm N Avg SD Standard
error

95% confidence interval of mean
Min

Max
Min Max

PSA 30 1859.0000 8.48935 2.68743 1833.9205 1845.0795 1828 1857

GA 30 1838.0000 5.49936 2.08701 1828.2733 1837.7201 1828 1845

Table 14 Variance analysis result of MBPD problem

Quadratic sum Free degree Mean
Square F Significance

SDB 2339.676 3 779.895 15.455 0.000

SDI 1814.100 36 50.392 - -

SUM 4154.775 39 - - -

Discussion
It is clear from the summary of the results shown in Table 7, that the 

performance of both PSA and GA produce adequate values regarding 
the cost for equipment and storage tanks. However, GA performs 
better than the PSA in terms of the average and the worst fitness values 
and the standard deviation. Table 7, also, shows the best final solution 
found in the 30 runs of PSA and GA. According to our knowledge, the 
case study about the optimal design of protein production plant has 
been taken from Montagna. However, they solved the problem using 
rigorous mathematical programing (MINLP), their model includes 104 
binary variables and has been convexified using the transformation 
proposed by Kocis and Grossmann. The MINLP model has been 
solved using DICOPT++, which is included in the GAMS optimization 
modeling software. The algorithm implemented in DICOPT++ relies 
on the Outer Approximation/Equality Relaxation/Augmented Penalty 
(OA/ER/AP) method. The OA/ER/AP solution method consists of the 
decomposition of the original MINLP problems into a sequence of 
two subproblems: a non linear programming (NLP) subproblem and a 
mixed integer linear programming (MILP) subproblem also known as 
the Master problem, which is solved to global optimality (minimize 
the caplital cost $829,500). However, in previous work of Montagna 
and other, their model needed a long computational time (more than 
86400 seconds) and require several initial values to the optimization 

variables, they also showed in their paper that the behavior of the 
demand was completely deterministic. 

Whilst, this assumption does not seem to be always a reliable 
representation of the reality, since in practice the demand of 
pharmaceutical products resulting from the batch industry is usually 
variable. Simulations outcomes were then compared with experimental 
data in order to check the accuracy of the method. Table 8 presents 
the results obtained in different optimization runs for multiproduct 
batch plant design. For each simulator run, the average numerical 
effort spent on solving the problem on LINUX System, Intel ® D, 
CPU2.80 GHz, 2.99 of RAM. Table 8 shows plant cost, % from 
optimal solution and CPU time obtaining during 30 runs. PSA and GA 
performed effectively and give a solution within 10 and 0.5% of the 
global optimal $912,450 and $833,647, respectively. Furthermore, the 
important feedback could be taken from Table 8, is the GA results in 
a faster convergence than PSA and the MINLP algorithm. In addition, 
the GA is so close to the global optimal of MBPD (0.5% from optimal 
solution) and provides also an interesting solution, in terms of quality 
as well as of computational time as illustrated in Table 8, while Table 
9 presents the sizes for the units involving a set of discrete equipment 
structure given by PSA. The inconvenience of this configuration is 
just stopped at 6000h with risk of failing to fulfill the potential future 
demand coming from a fluctuation of the market.
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In order to show how the evolution process is going on for both 
PSA and GAs, respectively, the convergence of the best fitness values. 
The convergence rate of objective function values as a function 
of generations for both PSA and GAs where for clarity only 1000 
generations are shown. For the optimization problem considered, GAs 
decrease rapidly and converge at a faster rate (around 500 generations) 
compared to that for PSA (about 800 generations), from which it is 
clear that GAs seem to perform better compared to PSA. So, for the 
present problem the performance of the GAs is better than PSA from 
an evolutionary point of view. 

To compare the computational time, the swarm/population size is 
fixed to 200 for both PSA and GAs algorithms. Whereas, the generation 
number is varied. Simulation were carried out and conducted on 
LINUX System, Intel (R) D, CPU 2.80GHz, 2.99 of RAM Computer, 
in the GNU Octave environment. Here the result in the form of graph 
is shown in. It is clear from that the computational time for GAs is 
very low compared to the PSA optimization algorithm. Further, 
it can also be observed from hat in case of GAs the computational 
time increases linearly with the number of generations, whereas for 
PSA the computational time increases almost exponentially with the 
number of generations. The higher computational time for PSA is due 
to the communication between the particles after each generation. 
Hence as the number of generations increases, the computational time 
increases almost exponentially.

Table 9 presents the sizes for the units involving a set of discrete 
equipment structure given by PSA. The inconvenience of this 
configuration is just stopped at 6000 hours with risk of failing to fulfill 
the potential future demand coming from a fluctuation changing of 
the market.

On the other hand, the calculation of the structure of equipment 
using GA is illustrated in Table 10. The total production time, also, 
computed by GA is 5491.12 hours to fulfill the eventual increase of 
future demand caused by market fluctuation. In addition, the GAs 
results in a faster convergence. However, the equipment structure 
showed by PSA is very expensive. Furthermore, the PSA approach 
has the disadvantage of long CPU time. 

At the same time as, the GA allow the reduction of the idle time 
to the stage, in any way, Table 11 & Table 12 show the idle times 
obtained by PSA and GA respectively. 

However, some observations about some important aspects in 
our implication of GAs and some problems in practice: the most 
important of all is the method of coding, because the codification is 
very important issue when a genetic algorithm is designed to dealing 
with combinatorial problem, also of the characteristics and inner 
structure of the DMBP. 

The commonly adopter concatenated, multi-parameter, mapped, 
fixed point coding are not effective in searching for the global 
optimum. According to the inner structure of the design problem of 
multiproduct batch that gives us some clues for designing the above 
mixed continuous discrete coding method with a four-point crossover 
operator. As is evident from the results of application, this coding 
method is well fit for the proposed problem.

Another aspect that affects the effectiveness of our Genetic 
Algorithms procedure considerably is crossover.

Corresponding to the proposed coding method, we adopted a four-
point crossover. It is commonly believed that multipoint crossover is 
more effective than the traditional one point crossover method.

It is also important to note that the selection of crossover points as 
well as the way to carry out the crossover should take in account the 
bit string structure, as is the case in our codification.

One problem in practice is the premature loss of diversity in 
the population, which results in premature convergence, because 
premature convergence is so often the case in the implementation of 
GA according to our calculation experience.

Our experience makes it clear that the Elitism parameter can solve 
the premature problem effectively and conveniently.

In order to further explain the effects of these algorithms on solving 
the MBPD problem, the variance analysis was performed. Each of the 
PSA and GA algorithms was run 30 times. The Minitab software was 
used to analyze the results. Therefore, the results are given in Table 
13 & Table 14.

Table 14 indicates that, the mean square deviation between groups 
(SDB) is 779.895. The mean square deviation within groups (SDI) is 
50.392. The test statistic F=15.477. If significance level α=0.05, then 
the critical value 2.92≤ Fα(3.36)≤2.84. Thus, F>Fα(3.36) indicating 
that the difference between the average is significant, that is, the 
performance difference of algorithms is significant.

Nevertheless, these techniques are not a panacea, despite their 
apparent robustness, there are control “parameters” involved in these 
metaheuristics and appropriate setting of these parameters is a key 
point for success.

Conclusion
Techniques such as PSA and GA are inspired by nature, and have 

proved themselves to be effective solutions to optimization problems. 
We applied Genetic Algorithms with an effective mixed continues 
discrete coding method with a four crossover point to solve the 
problem of DMBP. GA perform effectively and give a solution within 
0.5% of the global optimum. Whilst, it is observed that, in terms of 
computational time, the GAs approach is faster. The computational 
time increases linearly with the number of generations for GA, whereas 
for PSA the computational time increases almost exponentially with 
the number of generations, interpreting that, the higher computational 
time for PSA is due to the communication between the particles after 
each generation. Furthermore, the results provided by GA are much 
better with respect to PSA. In this paper, the GA gave us the highest 
efficiency and justifies its use for solving nonlinear mathematical 
models. Therefore, this work provides an interesting decision/making 
approach to improve the design of multiproduct batch plants under 
conflicting goals.
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