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Introduction
Cefoperazone  is   sodium (7R)-7-((R)-2-(4-ethyl-2 ,3-

dioxopiperazin-1 ylcarboxamido)-2-(4-hydroxyphenyl) acetamido)-
3-((1-methyl-1H-tetrazol-5-yl) thiomethyl)-3-cephem-4-carboxylate. 
Its molecular weight is 667.6 and its molecular formula is 
C25H26N9NaO8S2. Cefoperazone is a third generation cephalosporin 
antibiotic, beta-lactam and inhibitor of cell wall synthesis. 
Cefoperazone (CPZ) is commonly used for infections caused by 
Gram-negative bacteria.1,2 Literature survey reveals that CPZ was 
determined in pure form, pharmaceuticals and biological fluids using 
spectrophotometric,3-12 voltammetric,13-16 chromatographic17-21 and 
fluorimetric22 methods (Figure 1).

Figure 1 Structure of Cefoperazone Sodium. Mwt 667.6

The rationales of this work were to:

a.	 Develop simple and accurate methods for determination of CPZ 
in presence of its alkaline degradation product.

b.	 Show the effect of variable selection (GA) and data compression 
(PCA) methods on enhancing the prediction power of different 
chemometric models.

Neural networks
ANN is a kind of information processing chemometrical technique. 

It simulates some properties of human brain i.e. the way the input data 
are treated by the artificial (computer simulated) neuron is similar 
in action to a biological neuron exposed to incoming signals from 
neighboring neurons. In the computer the neurons are represented 
as weight vectors. Artificial Neural Network (ANN) applied in the 
field of regression or classification. In this manuscript ANN has 
been applied to establish a correlation between relationship between 
inputs and outputs. ANNs are composed of some units (input, hidden 
and output) and connection weights between the units. The neural 
networks where information flows from the input to the output layer 
are frequently termed ‘feed-forward’ ANNs (i.e. the type of ANN 
used in this manuscript is feed-forward network trained with the back 
propagation of errors learning algorithm). It is called feed-forward 
ANN as information passes one way through the network from the 
input layer, through the hidden layer and finally to the output layer. 
The outputs (predicted concentrations), are compared with targets 
(actual concentrations), and the difference between them is called 
error.23

Optimization of ANN parameters
The transfer functions

There are two transfer functions used in ANN; one between input 
and output of a node in the hidden layer and the other is applied in 
output layer. The use of these functions depends on relationship 
between the inputs and the outputs. Tansig-purelin transfer functions 
are commonly used for non-linear systems,24 while purelin-purelin 
functions are used for linear ones.25

Hidden neurons number (HNN)

It is related to the converging performance of the output error 
function during the learning process.
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Abstract

Several chemometric models were used for the determination of cefoperazone sodium in 
presence of its alkaline degradation product. The methods are either traditional (Partial 
Least Squares) or advanced (Artificial Neural Network). Partial Least Squares method 
was used with and without variable selection (Genetic Algorithm GA). Artificial Neural 
Network (ANN) was used with and without variable selection procedure (Genetic 
Algorithm GA) and data compression procedure (principal component analysis PCA). 
The chemometric methods used are PLS-1, GA-PLS-1, ANN, GA-ANN and PCA-ANN. 
The methods were used for the determination of cefoperazone sodium in bulk powder and 
pharmaceutical preparation. A 2-factor 5-level experimental design was built leading to 25 
mixtures containing different ratios of cefoperazone sodium and its alkaline degradation 
product. Thirteen mixtures were used as a training set and the other twelve were used as a 
validation set.
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Number of neurons

Unfortunately, there are no fixed rules as to how many neurons 
should be included in the hidden layer. If there are too few nodes 
in the hidden layer the network may have difficulty generalizing to 
problems it has never encountered before. On the other hand, if there 
are too many nodes in the hidden layer, the network may take an 
unacceptably long time to learn anything of any value.

Lc, Lcd and Lci

The learning coefficient (Lc) controls the degree at which 
connection weights are modified during the learning process. The 
learning coefficient decrease (Lcd) and learning coefficient increase 
(Lci) control the variation of Lc value. It varies as a function of 
performance of the ANN.

Experimental
Materials and reagents

a.	 Cefoperazone sodium was kindly supplied by Egyptian 
International Pharmaceutical Industries Company (EIPICO), 
10th of Ramadan City, Egypt; its purity was certified to be 99.9 
± 0.5.

b.	Pharmaceutical Preparations: “Cefozon” vial: (batch 
number1408881A) containing 1000 mg of cefoperazone sodium 
per vial.

c.	 Solvent: distilled water.

Instruments

SHIMADZU dual beam UV-visible spectrophotometer (Kyoto/ 
Japan), model UV-1650 PC connected to IBM compatible and 
aHP1020 laser jet printer. The bundled software, UV-Probe personal 
spectroscopy software version 2.1 (SHIMADZU) was used. The 
spectral band was 2 nm and scanning speed is 2800 nm/min and 1 nm 
data interval.

Software

All chemometrics methods were implemented in Mat lab 8.2.0.701 
(R2013b). PLS, GA-PLS, ANN, GA-ANN and PCA-ANN were 
carried out using PLS toolbox software version 2.1 in conjunction 
with Neural Network toolbox. The t-test and F-test were performed 
using Microsoft Excel.

Procedures
Standard solutions

a.	 Standard stock solution of CPZ 1100 µg/mL in distilled water.

b.	Standard working solutions of CPZ were prepared from stock 
solutions by appropriate dilutions with distilled water.

c.	 Preparation of the degradation product (DCPZ): 1M NaOH 
solution (50mL) was added to pure cefoperazone sodium 
(100mg) in a flask for 20 minutes at room temperature. 1M 
HCL solution was added to the degraded solution till pH about 
7. Then the solution was evaporated slowly in rotavapor just to 
dryness. The residue was dissolved in methanol, filtered into 100-
mL measuring flask and completed to volume with the distilled 
water.12 Complete degradation was confirmed by using TLC. 
Working solution of degradate (100 μg/mL) was obtained by 
dilution of the stock solution with water. These solutions were 
scanned over a range of 200-400 nm and stored in the computer.

Spectral characteristics of CPZ and its degradate

The zero order (D0) absorption spectra were recorded against 
distilled water as a blank over a range of 200-400nm.

Experimental design for chemometric methods

A 5-level, 2-factor design was performed using 5 concentration 
levels for the drug and its alkaline degradate to be analyzed. The 
design spans the mixture space fairly well; where there are 5 mixtures 
for each compound at each concentration level, resulting in 25 
mixtures.26 The central level of the design is 10µg/mL for both. Table 
1 represents the concentration design matrix. The regions from 200 
to 210nm and from 300 to 400nm were rejected. Thirteen mixtures 
of this design were used as a calibration set and the other 12 mixtures 
were used as a validation set to test the predictive ability of the 
developed multivariate models.

Analysis of Cefozon® by the proposed methods

Contents of 5 Cefozon®  vials (1000mg/vial) were mixed well. 
An accurately weighed amount equivalent to 10mg of cefoperazone 
sodium was transferred into 100-mL volumetric flask. Cefoperazone 
sodium is dissolved in about 50mL distilled water, sonicated for 15min, 
diluted to the mark with distilled water mixed well and filtered; the 
first portion of the filtrate was rejected. The solution labeled to contain 
100 μg/mL of cefoperazone sodium. Repeat the general procedure 
using aliquots covering the working concentration range. Determine 
the content of the vials from the corresponding regression equation. 
The spectra of these solutions were scanned from 200 to 400nm, 
stored in the computer and analyzed by the proposed methods.

Table 1 The 5-level, 2-factor experimental design shown as concentrations 
of mixture components in μg/mL

Mix. No Cefoperazone Degradate
1a 10 10
2 10 8
3 8 8
4 8 12
5 12 9
6 9 12
7 12 10
8 10 9
9 9 9
10 9 11
11 11 12
12 12 11
13 11 10
14 10 12
15 12 12
16 12 8
17 8 11
18 11 8
19 8 10
20 10 11
21 11 11
22 11 9
23 9 8
24 8 9
25 9 10

aShadowed rows represent the calibration set.

Results and discussion
Figure 2 shows the zero order UV absorption spectra of cefoperazone 

and its alkaline degradation product. The spectral overlapping of the 
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drug and its degradation product prevents resolution of the mixture by 
the direct spectrophotometric measurements.

Table 2 Parameters of the genetic algorithms

Parameter Value
Population size 20
Maximum generations 38
Mutation rate 0.005
The number of variables in a window(window width) 2
Per cent of population the same at convergence 100
%Wavelengths used at initiation 50
Crossover type double
Maximum number of latent variables 2
Cross validation Random
Number of subsets to divide Data into for cross validation 4
Number of iterations for cross validation at each generation 2

The aim of this study was to develop accurate and simple 
chemometric methods for determination of CPZ in presence of its 
degradate and to show the effect of data compression and variable 
selection on improving the predictive power of PLS and ANN models.

The first step in model building, involves constructing the 
calibration matrix for intact and its degradate. In this study the model 
was optimized with the aid of the 5-level 2-factor design26 resulting in 
25 sample mixture. Table 1 shows the composition of the 25 sample 
mixtures. These 25 sample mixtures were divided to 13 training 
mixtures (for building the models) (odd numbers) and 12 validation 
mixtures (for measuring predictive power of the models) (even 
numbers).

The quality of multi component determination depends on the 
wavelength range and spectral mode used.27 The wavelengths used 
were in the range 221-350nm. Wavelengths less than 221 nm were 
rejected due to the noisy content. Wavelengths more than 350nm 
were not used because they were uninformative (no absorption is 
mentioned in these regions).

Figure 2  Zero order absorption spectrum of 24μg/mL cefoperazone and 
24μg/mL its alkaline degradation product using distilled water as blank.

Variable selection: genetic algorithm (GA)

GA is used for optimization and for other applications such 
as wavelength selection in spectroscopy. Molecular spectroscopy 
has been greatly improved by the use of variety of multivariate 
statistical methods.28,29 Methods such as Partial Least Squares (PLS) 
or Principal Component Regression (PCR), allow taking into account 
the whole spectrum without performing variable selection.30 It has 
been recognized that an efficient variable selection can be beneficial 
to improve the predictive ability of the model and to reduce its 

complexity.31 Several techniques devoted to variable selection in PLS 
models applied to spectral data have been presented.32,33 It has already 
been shown that genetic Algorithms (GAs) can be successfully used 
as a variable selection technique.34,35 The architecture of a GA can 
be divided into five components: Initiation, Evaluation, Exploitation, 
Exploration and Mutation. An important issue of successful GA 
performance is the adjustment of GA parameters.36

Figure 3a The optimum number of LV for cefoperazone sodium and it’s 
degradate concentration prediction from raw data.

Figure 3b The optimum number of LV for cefoperazone sodium and it’s 
degradate concentration prediction from GA model.

Variable selection can be seen as an optimization problem. 
Among the different variable selection algorithms available, Genetic 
Algorithms (GA) are the most commonly employed. The main idea 
behind the use of GA in numerical optimization is the mathematical 
translation of the biological concept of the ‘survival of the fittest’. 
The fitness values were used as response variables. Mutation rate 
was 0.005 in all cases as when it increased above this value, no 
convergence occurred between average fitness and best fitness values 
and model stop. The adjustment of the GA parameters is shown in 
Table 2.

Each solution (chromosome) is evaluated using the PRESS 
value reached in the calibration. The genetic algorithm searches for 
the minimum PRESS in the space of all the possible chromosomes 
without establishing, a priori, the latent structure of the calibration.

                          ( )2
pred truePRESS Y Y= −∑

Where predY and trueY are predicted and true concentrations in µg/
mL, respectively. The GA was run for 129 variables (in the range 
221- 350) for cefoperazone. The selected variables (86) were used for 
running of PLS model and ANN. GA reduced absorbance matrix to 
about 34-36 % of the original matrix.
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Table 3 Optimized parameters of ANNs

Method ANN GA-ANN PCA-ANN
Drug Cefoperazone Cefoperazone Cefoperazone
Hidden Neurons Number 10 10 10
Transfer Functions Purelin-Purelin Purelin-Purelin Purelin-Purelin
Learning Coefficient 0.01 0.01 0.01
Learning Coefficient Decrease 0.1 0.1 0.1
Learning Coefficient Increase 100 100 100

Table 4 Determination of Cefoperazone sodium and its degradate in validation set by the proposed chemometric methods

Concentration (μg/mL) PLS-1
GA-PLS ANN GA-ANN PCA-ANN

Cefoperazone Degradate Recovery %a

10 8 99.4 101.9 101.1 101 102
8 12 101.13 101.88 99.25 98.88 98
9 12 101.36 101.33 98.89 99.89 97.78
10 9 101.16 99.1 98.71 99.5 98.7
9 11 100.51 98.78 98.39 99.89 98.33
12 11 98.51 98.92 98.83 99.92 98.83
10 12 101.95 99.9 98.61 99 98.6
12 8 98.81 99.17 98.33 99.95 98.33
11 8 99.82 101.11 101.13 100.19 101.27
10 11 98.05 101.6 101.06 100.6 101.6
11 9 98.11 99.16 99.91 99.91 97.18
8 9 98.02 99.38 99.38 99.75 98.75

Mean 99.74 100.19 99.47 99.87 99.11
RSD% 1.45 1.261 1.08 0.59 1.604
RMSEPb 0.141 0.12 0.1195 0.0544 0.1769

aAverage of three determinations.
bRoot mean square error of prediction.

Table 5 Statistical comparison for the results obtained the proposed methods and reported method16 the analysis of cefoperazone sodium in cefozon® vial

  PLS-1 GA-PLS ANN GA-ANN PCA-ANN Reported Method
Mean 100.8 100.14 100.38 100.07 100.54 100.22
N 5 5 5 5 5 5
SD 1.131 0.821 0.675 0.791 1.241 1.679
Variance 1.278 0.676 0.455 0.625 1.541 2.821

Student's t Test
0.641 0.093 0.191 0.186 0.339
-2.306 -2.306 -2.306 -2.306 -2.306

F Value
2.206 4.172 6.195 4.519 1.831
-6.388 -6.388 -6.388 -6.388 -6.388  

Table 6 One-way ANOVA test for the different proposed methods used for the determination of cefoperazone sodiumin Cefozon® vials

Drug Source DF Sum of Squares Mean of Squares Value F

Cefoperazone sodium
Between exp 5 1.83 0.367

0.302 (2.621)
Within exp 24 29.2 1.216

The values between parentheses are the theoretical F values.
The population means are not significantly different.

Partial least squares (PLS-1)

The purpose of PLS method is to build a calibration model between 
the concentration of the components under study (CPZ and DCPZ) 
and the latent variables of the data matrix.37,38 Two different aspects 
can be used in Partial Least Squares called PLS-1 and PLS-2. PLS-2 
uses the whole information about the concentration of all components 
to form latent variables (LVs), while PLS-1 uses only the information 
about the concentration of one component to create the LVs used by 
the model.38

Including extra LVs in the model increases the possibility of the 
known problem of over fitting. On the other hand, if the number of 

LVs was too small meaningful data that could be necessary for the 
calibration might be discarded. Therefore, optimization of number of 
the LVs is a critical issue in PLS method. Leave one out (LOO) cross 
validation and the bootstrap39 can be applied to predict the optimum 
number of PLS components. PLS-1 calibration on 12 calibration 
spectra was performed and, using this calibration, the concentration 
of the sample left out during the calibration process was predicted. 
This process was repeated 13 times until each training sample had 
been left out once.40 The predicted concentrations of the components 
in each sample were compared with the actual concentrations in this 
calibration samples and the root mean squares error of cross-validation 
(RMSECV) was calculated as follows:
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( )2
pred t

test

Y Y
RMSECV

I
−

=
∑

Where I is the number of objects in the calibration set, Yt  is 
the known concentration for sample, and Ypredt  is the prediction 
concentration of sample.

The RMSECV was used as a diagnostic test for examining the 
error in the predicted concentrations. It indicates both of the precision 
and accuracy of predictions.

Appropriate selection of the number of factors to be used to 
construct the model is a key to achieve correct quantitation in 
PLS-1 calibration. The most usual procedure for this purpose 
involves choosing the number of factors that result in the minimum 
RMSECV. However, this criterion is subjected to some constraints 
since, occasionally; the RMSECV does not reach a sharp minimum, 
but decreases gradually above a given number of factors. For this 
reason, the method developed by Haal et al.28 was used for selecting 
the optimum number of factors, which involves selecting that model 
including the smallest number of factors that results in an insignificant 
difference between the corresponding RMSECV and the minimum 
RMSECV (Figure 3a & 3b).

ANN

An ANN is a set of interconnected neurons (also termed nodes, 
cells, units or process elements) distributed in a specific arrangement, 
usually termed architecture. In general, neurons are organized in 
layers. The most common neural nets, the feed-forward nets, are fully 
connected, i.e. each node is connected to all the nodes in the next layer. 
The information we want to enter in the ANN (e.g. the spectra) is given 
to the ‘input layer’, which is the set of neurons that receive directly the 
information from the external world of the net. In inverse calibration, 
the inputs could be the absorbances at various wavelengths and the 
output could be the concentrations of one or more analyte. The ANN 
consists of three layers; two layers with connections to the outside 
world (an input layer where data are presented to the network and an 
output layer which holds the network response to given inputs ) and 
one hidden layer (optimized afterwards). Reduce the number of input 
variables without losing relevant information leads to time saving. 
A powerful tool to carry out such a reduction in the dimensionality 
of the original data was principal components analysis (PCA). We 
can consider that the scores of (PCs) alone represent the calibration 
standards. So, instead of using the full original absorbance variables to 
train the ANN, only a reduced number of PC scores can be used. Also, 
genetic algorithm was used to select the best wavelengths to represent 
each compound. This means that, the absorbance matrix was reduced 
either by Genetic Algorithm (variable selection procedure) to about 
34% of the original matrix or Principal Component Analysis (PCA) 
(variable compression procedure) to three principal components. 
Thus, three ANNs (ANN, GA-ANN and PC-ANN) were applied 
in our work. The output layer is the concentration matrix of one 
component. The hidden layer consists of just single layer which has 
been considered sufficient to solve similar or more complex problems. 
Moreover, more hidden layers may cause over fitting.25

Optimization of ANN parameters is of a great importance for 
a proper modeling. These parameters are HNN, Lc, Lci. Placket- 
Burman design was used for Optimization as shown in Table 3. The 
choice of the proper transfer function depends on the nature of data.

After optimization of parameters and architectures of the ANNs 
the training step is preceded. In other words, learning is the process 

by which an ANN modifies its weights and bias terms in response to 
the input information (spectra and concentration values). The error 
correction learning is known as back-propagation. This learning mode 
compares the outputs of the ANN with the true concentration values. 
The error derived from such a comparison will control the ANN 
training. The errors can be used to adjust the top weights directly by 
means of a predefined algorithm. Error-correction learning algorithms 
attempt to minimize error on each iteration. TRAINLM32 was thus 
preferred as it is time saving.

Since relationship between absorbance and concentration is linear, 
purelin-purelin (as a transfer function between input and hidden layer; 
and between hidden layer and outer layer) was found to give best 
results in our work.

The network is trained using the training set: in the calibration 
example the ANN would calculate concentrations for each member 
of the training set, and any discrepancies between the network’s 
output and the known concentrations would be used to adjust internal 
parameters in the network. These prediction and adjustment steps are 
repeated until the required degree of accuracy, evaluated with a test 
set, is achieved. Since the training and test sets are bound to differ to 
some extent, it is important not to over-fit the training set, otherwise 
the network may perform less well with the test set, and subsequently 
with ‘unknown’ samples.

ANNs are useful when the mathematical model is unknown or 
uncertain because they do not assume any mathematical relationship 
between the input and output variables. The proposed chemometric 
methods were run on the calibration data using optimal parameters. 
The concentrations of the drug and it’s degradate in the calibration 
set (13 mixtures) were calculated. In order to validate the proposed 
methods, the validation set (12 mixtures) was analyzed with the 
proposed methods (Table 4).

The proposed PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN 
methods were successfully used for the determination of CPZ in 
Cefozon vial, Table 5.

The results obtained for the analysis of CPZ in Cefozon vial by the 
suggested methods were statistically compared with those obtained by 
applying the reported second derivative method12 and no significant 
difference between the results was obtained as shown in (Table 5). 
Using one-way ANOVA test, the obtained results by applying these 
methods showed no significant differences among all of them as 
shown in Table 6.

GA reduced the optimal number of latent variables of PLS-1 model 
for CPZ from three into two factors. Also, recoveries and RMSEP 
(Root Mean Square Error of Prediction) were decreased indicating a 
better resolution power of GA-PLS model than PLS-1 model (Table 
4).

The comparison shows that GA-ANN is more suitable for the 
determination of cefoperazone because GA allows the use of less 
number of neurons (so shorter training time) for cefoperazone than 
those used in the networks utilized raw. While PCA-ANN did not 
show any improvement than ANN, even the results were worse 
(Table 4). These results indicate that variable selection models (GA) 
are more suitable than data compression procedure (PCA), when 
preceding ANN, for the analysis of this binary mixture. This result 
may be attributed to the fact that GA introduces the most relevant 
wavelengths to the drug concentration.

ANN is better than PLS-1 (Table 4), which may be due to the fact 
that ANN is a type of artificial intelligence and that in ANN there is no 
chance for over fitting that may occur in PLS calibrations.
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Conclusion
In conclusion, the described chemometric methods gave accurate 

and precise results for determination of cefoperazone in presence of 
its alkaline degradation product without prior separation and can be 
applied for routine analysis.
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