
Appendix A.

Temperature control program coded with the Arduino IDE for the

microcontroller ArduinoUNO® and the SEEED® relay shield v2.1.

// Include libraries for one wire, Dallas temp, SD card and real time clock

#include <OneWire.h>

#include <DallasTemperature.h>

#include <SD.h>

#include <DS3231.h>

// spi settings

// MOSI, MISO, SCLK Set by default

//port 10 assigned to chip select (slave select)

int pinCS = 10;

float refresh_rate = 0.0;

int powPin = 8;

int relay1 = 5;

int relay2 = 7;

// Init the DS3231 using the hardware interface

DS3231 rtc(SDA, SCL);

 // Data wire is plugged into port 2 on the Arduino

#define ONE_WIRE_BUS 2

#define TEMPERATURE_PRECISION 9

// Setup a oneWire instance to communicate with any OneWire devices (not just //Maxim/Dallas temperature ICs)

OneWire oneWire(ONE_WIRE_BUS);

// Pass our oneWire reference to Dallas Temperature.

DallasTemperature sensors(&oneWire);

// arrays to hold device addresses

DeviceAddress insideThermometer, outsideThermometer;

void setup(void)

{

 //relay1 y relay2 salida "output"

 pinMode(relay1,OUTPUT);

 pinMode(relay2,OUTPUT);

 // start serial port

 Serial.begin(9600);

 // Initialize the rtc object

 rtc.begin();

 Serial.println("Iniciando tarjeta");

 //CS pin is an output

 pinMode(pinCS, OUTPUT);

 //Card will draw power from pin 8, so set it high

 pinMode(powPin, HIGH);

 digitalWrite(powPin, HIGH);

 //check if card is ready

 if(!SD.begin(pinCS))

 {

 Serial.println("Error, verifica que hay tarjeta...");

 return;

 }

 Serial.println("Acceso otorgado");

 //read configuration information (COMMANDS.txt)

 File commandFile = SD.open("COMMANDS.txt");

 if (commandFile)

 {

 Serial.println("Leyendo archivo");

 float decade = pow(10, (commandFile.available() - 1));

 while(commandFile.available())

 {

 float temp = commandFile.read() -('0');

 refresh_rate = temp*decade+refresh_rate;

 decade = decade/10;

 }

 Serial.print("Ciclos de = ");

 Serial.print(refresh_rate);

 Serial.println(" ms");

 commandFile.close();

 //Serial.println("Temperatura *C");

 }

 else

 {

 Serial.println("Error no se puede leer el archivo de comandos.");

 return;

 }

 File logFile = SD.open("log.csv",FILE_WRITE);

 if(logFile)

 {

 logFile.println(" ");

 String header = ("Fecha, Hora, Temp 1, Temp 2");

 logFile.println(header);

 logFile.close();

 //Serial.println(header);

 }

 else

 {

 Serial.println("Error");

 }

 // Start up the library

 sensors.begin();

 // locate devices on the bus

 Serial.print("Localizando dispositivos...");

 Serial.print("Dispositivos encontrados ");

 Serial.print(sensors.getDeviceCount(), DEC);

 Serial.println(" dispositivos.");

 // report parasite power requirements

 Serial.print("parasite current: ");

 if (sensors.isParasitePowerMode()) Serial.println("ON");

 else Serial.println("OFF");

 // method 1: by index

 if (!sensors.getAddress(insideThermometer, 0)) Serial.println("Unable to find address for Device 0");

 if (!sensors.getAddress(outsideThermometer, 1)) Serial.println("Unable to find address for Device 1");

 // show the addresses we found on the bus

 Serial.print("Dispositivo 0 direccion: ");

 printAddress(insideThermometer);

 Serial.println();

 Serial.print("Dispositivo 1 direccion: ");

 printAddress(outsideThermometer);

 Serial.println();

 // set the resolution to 9 bit

 sensors.setResolution(insideThermometer, TEMPERATURE_PRECISION);

 sensors.setResolution(outsideThermometer, TEMPERATURE_PRECISION);

 Serial.print("Dispositivo 0 Resolucion: ");

 Serial.print(sensors.getResolution(insideThermometer), DEC);

 Serial.println();

 Serial.print("Dispositivo 1 Resolucion: ");

 Serial.print(sensors.getResolution(outsideThermometer), DEC);

 Serial.println();

 Serial.println(" Fecha , Hora , Temp1 Temp2");

}

// function to print a device address

void printAddress(DeviceAddress deviceAddress)

{

 for (uint8_t i = 0; i < 8; i++)

 {

 // zero pad the address if necessary

 if (deviceAddress[i] < 16) Serial.print("0");

 Serial.print(deviceAddress[i], HEX);

 }

}

// function to print the temperature for a device

void printTemperature(DeviceAddress deviceAddress)

{

 float tempC = sensors.getTempC(deviceAddress);

}

// function to print a device's resolution

void printResolution(DeviceAddress deviceAddress)

{

 Serial.print("Resolucion: ");

 Serial.print(sensors.getResolution(deviceAddress));

 Serial.println();

}

// main function to print information about a device

void printData(DeviceAddress deviceAddress)

{

 Serial.print("Dispositivo Direcccion: ");

 printAddress(deviceAddress);

 Serial.print(" ");

 printTemperature(deviceAddress);

 Serial.println();

}

void loop(void)

{

 sensors.requestTemperatures();

 float Temp1 = sensors.getTempCByIndex(0);

 float Temp2 = sensors.getTempCByIndex(1);

 String dataString = (String(rtc.getDateStr()) + " , " + String(rtc.getTimeStr())+" , "+ String(Temp1) + " , "

+ String(Temp2));

{

 Serial.println(dataString);

}

 //Serial.println("DONE");

File logFile = SD.open("log.csv", FILE_WRITE);

 if(logFile)

 {

 logFile.println(dataString);

 logFile.close();

 }

 else

 {

 Serial.println("Error");

 }

 //Si la temperatura está arriba de 28 abre interruptor general

 if (Temp2 < 28)

 digitalWrite(relay2, HIGH);

 else

 digitalWrite(relay2, LOW);

 // Si la temperatura está por debajo de 40 C enciende la bomba de agua

 if (Temp1 < 40)

 digitalWrite(relay1, HIGH);

 else

 digitalWrite(relay1, LOW);

 delay (10000);

}

