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Introduction
The density of fish (kg per rearing unit volume) varies during 

hatchery rearing.1 While fish production is maximized at high rearing 
densities, growth is negatively impacted if rearing tank carrying 
capacity is exceeded.2,3 High rearing densities can also affect the 
health and physiological functions of fish.4,5 Numerous studies have 
reported poorer water quality at higher rearing densities, along 
with decreased fish growth, impaired fin condition, and lower feed 
conversion ratios.5–10 Higher rearing densities can also negatively 
impact the post-stocking survival of hatchery-reared fish.1,11–15 

The effects of rearing density and stress in fish have not been well 
studied. In general, physiological stress responses in fish increase 
during periods of intense crowding during netting and routine fish 
culture.16–19 The two studies specifically examining stress and rearing 
density have produced different results. Iguchi et al.,9 reported 
increasing cortisol levels in ayu (Plecoglossus altivelis) with increasing 
rearing densities. Contrarily, Freestone et al.4 did not observe any 
effect on glucose as a measure of stress in a short-term study with 
rainbow trout (Oncorhynchus mykiss). However, the Freestone et al.,4 
study lasted only 14 days, only evaluated two different densities, and 
also incorporated feeding and starvation treatments. 

The longer-term effects of high rearing densities on rainbow 
trout have not been evaluated. It is possible that physiological 
stress is contributing to the impaired fish health, decreased post-
stocking survival into natural environments, and undesirable 
behaviors observed in fish reared for long periods of time at higher 
densities.5,6,8–10,14,15 Thus, the objective of this study was to document 
the stress response of juvenile rainbow trout, as indicated by blood 
glucose levels, subjected to long-term changes in rearing density.

Materials and methods
This experiment was conducted at McNenny State Fish Hatchery, 

rural Spearfish, South Dakota, USA over a 111-day period between 25 
May 2021 and 14 September 2021. De-gassed and aerated well water 
(11 °C; total hardness 360 mg/L CaCO3; alkalinity as CaCO3, 210 

mg/L; pH 7.6, total dissolved solids 390 mg/L) was used throughout 
the experiment. Eighteen, 1.8-m diameter, fiberglass circular tanks 
contained juvenile Shasta strain rainbow trout (Oncorhynchus mykiss) 
(mean±SE; initial weight: 6±0 g; initial length: 82±1 mm) at three 
different densities (n=6). Initial densities in the low, medium, and 
high-density tanks were 4.48 kg/m3 (9.1 kg/tank, approximately 1,500 
fish), 5.96 kg/m3 (12.1 kg/tank, approximately 2,000 fish), and 7.49 
kg/m3 (15.2 kg/tank, approximately 2,500 fish), respectively. All tanks 
were near-fully covered20 with four aluminum angles (each side 2.5-
cm wide x 57.15-cm long) vertically-suspended for environmental 
enrichment21 (Figure 1).

Figure 1 Schematic of a covered 1.8-m diameter circular tank with a 
suspended array of four aluminum angles for environmental enrichment, with 
the peak of the angle facing in the direction of the water flow.

Feed amounts were calculated using the hatchery constant method22 
with a projected feed conversion rate of 1.1. Tanks were projected 
at a growth rate of 0.07 cm/day from May 25 to June 15, and then 
all growth rates were increased to 0.075 cm/day for the remainder 
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Abstract

High rearing densities (kg of fish per rearing unit volume) can impact fish health and 
growth. This study evaluated the stress levels (as indicated by blood glucose) and growth of 
juvenile Shasta strain rainbow trout (Oncorhynchus mykiss) reared at three densities in 1.8-
m diameter circular tanks for 111 days. Initial and final rearing densities for each treatment 
were: low (4.48 and 47.56 kg/m3), medium (5.96 and 60.60 kg/m3), and high (7.49 and 
72.42 kg/m3). Throughout the experiment, blood glucose levels from individual fish were 
not significantly different among the three density treatments. At the end of the experiment, 
total tank weights and gain were significantly greater in the high-density treatment than 
the medium-density treatment, which in turn was significantly greater than the low-density 
treatment. However, percent gain was significantly greater in the low-density treatment. 
Feed conversion ratio was significantly lower in the high-density treatment compared 
to the low-density treatment, with the ratio in the medium-density treatment similar to 
the other two treatments. The results of this study indicate that higher rearing densities 
do not negatively impact juvenile Shasta strain rainbow trout stress or hatchery rearing 
performance.
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of the study. Total feed amounts per tank were 76.06 kg, 101.32 kg, 
and 126.73 kg, for the low, medium, and high-density treatments, 
respectively. Fish were fed 1.5 mm, extruded floating feed (Protec, 
Skretting USA, Tooele, Utah, USA) every 15 minutes during daylight 
hours using automatic feeders. Moribund fish were removed, counted, 
and recorded weekly.

At approximately three-week intervals and at the end of the 
experiment, three fish from each tank were randomly removed from 
each tank and euthanized using a lethal dose of 200 mg/L of tricaine 
methane sulfonate (MS-222; Tricaine-S, Syndel, Ferndale, WA, USA). 
They were then immediately measured (total length) to the nearest 
mm, weighed to the nearest g, and n blood was collected via caudal 
fin severance. Glucose (mg/dL) measurements were obtained using a 
blood glucose monitor (AccuCheck Aviva Plus; Roche Diabetic Care, 
Indianapolis, Indiana, USA).

At the end of the experiment all the fish in each tank were weighed 
to the nearest 0.1 kg. The following equations were used: 
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Data were analyzed using the statistical program SPSS (24.0; 
IBM; Armonk, New York, USA) with significance predetermined at p 
<0.05. Percentage data were log transformed prior to analysis.23 If one-
way analysis of variance (ANOVA) indicated significant differences 
among the treatments, Tukey’s post-hoc means testing procedure 
was conducted. Because the tanks (and not individual fish) were the 
experimental unit, individual fish data (length, weight, glucose) were 
first averaged by tank, and the averages used for subsequent analysis

Results
Blood glucose was not significantly different among the rainbow 

trout reared at the three density treatments (Table 1). Final tank weight, 
gain, percent gain, and feed conversion ratio were all significantly 
different among the treatments (Table 2). Final tank weights and 
gain were significantly greater in the high-density treatment than 
the medium-density treatment, which in turn was significantly 
greater than the low-density treatment. However, percent gain was 
significantly greater in the low-density treatment. Feed conversion 
ratio was significantly lower in the high-density treatment compared 
to the low-density treatment, with the ratio in the medium-density 
treatment similar to the other two treatments. 

At the end of the experiment, no significant differences were 
observed in individual fish length, weight, specific growth rate, 
or condition factor among the treatments (Table 3). Mortality was 
negligible at less than 0.1% in all of the tanks. Mean final densities 
for the low, medium, and high-density treatments were 47.56, 60.60, 
and 72.42 kg/m3.

Table 1 Mean (±SD) blood glucose (mg/dL) levels from rainbow trout reared at one of three densities in 1.8-m diameter circular tanks (n=6)

  Density
p

  Low Medium High
Day 0 (initial) 86 ± 9 86 ± 9 86 ± 9
Day 26 103 ± 6 102 ± 5 105 ± 8 0.950
Day 52 113 ± 8 103 ± 5 115 ± 4 0.316
Day 63 72 ± 4 96 ± 8 80 ± 6 0.054
Day 83 90 ± 34 85 ± 4 90 ± 5 0.616
Day 111 (Final) 72 ± 4 70 ± 3 72 ± 6 0.973
Overall 90 ± 4 92 ± 4 91 ± 3  

Table 2 Mean (±SD) weights, gain, percent gain, and feed conversion ratio (FCR) of tanks of rainbow trout reared at one of three densities. Means in a row 
followed by different letters are significantly different (n=6)

  Density
p

  Low Medium High
Initial weight (kg) 9.1 ± 0.0 x 12.1 ± 0.0 y 15.2 ± 0.0 z 0.001
Final weight (kg) 96.6 ± 2.1 x 123.1 ± 2.0 y 147.1 ± 2.1 z 0.001
Gain (kg)1 87.5 ± 2.1 x 111 ± 2.0 y 132 ± 2.1 z 0.001
Gain (%)2 96.1 ± 2.3 z 91.7 ± 1.6 zy 86.7 ± 1.4 y 0.009
FCR3 1.15 ± 0.03 y 1.10 ± 0.02 zy 1.04 ± 0.02 z 0.010

1Gain (kg) = final tank weight-initial tank weight

2Gain (%) = 100 x (gain/initial tank weight)

3Feed conversion ratio (FCR) = food fed/gain
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Table 3 Mean (±SD) length, weight, specific growth rate, and condition factor from individual rainbow trout reared in 1.8-m diameter circular tanks at one of 
three densities (n=6)

  Density  

  Low Medium High p-value

Length (mm) 176 ± 3 170 ± 7 165 ± 4 0.305

Weight (g) 63 ± 5 57 ± 7 49 ± 4 0.226

SGR1 2.10 ± 0.07 1.97 ± 0.13 1.87 ± 0.07 0.262

K2 1.16 ± 0.04 1.12 ± 0.04 1.09 ± 0.02 0.403

1Specific growth rate (SGR) = 100 × [ln (end weight) – ln (start weight)]/ (number of days)

2Condition factor (K) = 105 × (weight /length3)

Discussion
The results of this study indicate that for relatively-domesticated 

rainbow trout, such as the Shasta strain,24,25 reared at high densities, 
stress is not an issue. Blood glucose, which typically increases 
following a stressor,26 did not differ among any of the three density 
levels. In addition, gain, specific growth rate, feed conversion 
ratio, and other indirect measures of physiological stress also were 
unaffected by density. These results are supported by the observations 
of Freestone et al.,4 who also noted the lack of density effects on 
blood glucose in rainbow trout subjected to one of two densities for 
a very short duration. Papoutsoglou et al.27 also reported no density-
dependent effects on blood glucose. In contrast, Leatherland and 
Cho,28 Trenzado et al.,29 Yarahmadi et al.,30 and Wydoski31 all observed 
a positive relationship between blood glucose and fish rearing density. 
Iguchi et al.9 also found that increased densities during rearing of ayu 
(Plecoglssus altivelis), a non-salmonoid fish, caused elevated stress 
responses. Contrarily, Vijayan and Leatherland32 reported that blood 
glucose decreased with increasing rearing densities. The differing 
results among these studies are likely explained by the differences in 
fish species, genetic strains, sizes, experimental densities used, water 
chemistry, and rearing histories. 

The positive relationship between densities and both gain and final 
tank weights was expected. Tanks containing more fish and being fed 
at the same rate as tanks containing fewer fish will obviously gain 
and weigh more at the end of a rearing period if carrying capacities 
are not exceeded.2 The significant improvement in percent gain at the 
lowest density was also expected. Improved growth at lower densities 
has been well-documented in numerous studies.6,10,33,34 However, the 
relationship between feed conversion ratio and density observed in this 
study was surprising. Increased feed conversion ratios are typically 
observed at higher, in relation to lower, rearing densities. This has 
been reported extensively in salmonids.2,7,11,15,33,35,36 Two studies with 
salmonids reported no relationship between feed conversion ratio and 
rearing density.10,37 This is the first study to document an improvement 
in feed conversion ratio as rearing density increased. This could 
possibly be explained by the densities and feeding rate used in this 
study, particularly if the lower densities tanks of fish were slightly 
overfed. The feed conversion ratios observed in this study are similar 
to those reported by Voorhees et al.38,39 for rainbow trout reared at 
similar densities. 

Individual fish lengths, weights, and specific growth rates at the 
end of this study were not significantly different among the density 
treatments. This is likely because of the small sample sizes resulting 
from tanks as the experimental unit.40 While the mean values for 
all of these individual fish variables follow a pattern of increasing 
with decreasing densities, as was expected, none of these values are 
statistically significantly different. The specific growth rates observed 

in this study were similar to those reported previously for Shasta 
strain rainbow trout.41

Conclusion
The densities used in this study are similar to those typically used for 

growing rainbow trout and other salmonids at production‑scale.38,42,43 
Based off of the results of this study, relatively high densities can 
continue to be used with minimal impacts on fish stress, growth, or 
feed utilization efficiencies. Future research could focus on the effects 
of densities even higher or lower than those used in this study. 
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