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Introduction
WNT1-inducible signaling pathway protein 1 (WISP1), also 

known as CCN4, is a member of the cysteine-rich CCN family 
of growth factor proteins. Cysteine-rich angiogenic protein 61 
(CYR61/CCN1), connective tissue growth factor (CTGF/CCN2), 
and nephroblastoma over expressed protein (NOV/CCN3) were the 
first discovered proteins in the family, so the acronym CCN stems 
from them; together with three WNT-induced secreted proteins, they 
comprise the CCN family of matricellular proteins.1,2

The CCN protein family includes:

CCN1= CYR61 (cysteine-rich angiogenic protein 61)3

CCN2= CTGF (connective tissue growth factor)4

CCN3= NOV (nephroblastoma overexpressed)5

CCN4= WISP1 (WNT1-inducible signaling pathway protein-1)2

CCN5= WISP2 (WNT1-inducible signaling pathway protein-2)6

CCN6= WISP3 (WNT1-inducible signaling pathway protein-3)7

The CCN protein family secrets extracellular matrix (ECM)-
associated proteins and is related to a variety of important cell 
function pathways, including mitosis, chemotaxis, adhesion, 
migration, survival, and differentiation, as well as cartilage formation, 
angiogenesis, tumor formation, and wound healing. CCNs have 
also been implicated in many human diseases.8-10 WISP1/CCN4 is 
a member of the CCN protein family. Abnormalities of the WISP1 
signaling pathway lead to a variety of pathological phenomena, such 
as fibrosis, osteoarthritis, and even cancer. Many respiratory diseases, 
such as pulmonary fibrosis, lung cancer, pulmonary inflammation, 
and ventilator-induced lung injury (VILI), are also associated with the 
WISP1 protein. The role of WISP1 in the occurrence and development 
of disease are reviewed.11,12 Here, we focus on the impact of WISP1 in 
pulmonary disease and summarize recent studies in which WISP1 has 
been shown to hold promise as a diagnostic marker and/or therapeutic 
target.

Structure
A classical CCN protein contains an N-terminal secretory signal 

peptide and four functional domains: 

a.	 An insulin-like growth factor binding protein-like module 
(IGFBP); 

b.	 A von Willebrand factor type C repeat module (VWC); 

c.	 A thrombospondin type-1 repeat module (TSP-1); and 

d.	 A cysteine-knot-containing module (CT) (Figure 1).2

Figure 1 CCN protein structure.

A full length WISP1 consists of four modules: insulin-like growth 
factor binding domain (IGFBP) in red, von Willebrand factor C repeat 
(VWC) in blue, thrombospondin type-1 repeat (TSP-1) in yellow, 
and cysteine knot (CT) in green. The protein is split into two halves 
separated by a variable ‘hinge’ region. Different binding partners of 
each module are also depicted: insulin-like growth factors (IGFs); 
bone morphogenic protein 4 (BMP4); transforming growth factor 
β (TGF-β); LDL receptor protein 1 (LRP-1); and heparin sulphated 
proteoglycans (HSPGs).13

Variation in CCN protein structure is related to the loss of one or 
more domains; the loss of different domains will result in different 
biological functions and ultimately lead to diseases.2 A full length 
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Abstract

Emerging evidence have demonstrated that WISP1, a member of CCN protein family, plays 
an important role in the manifestation and development of many respiratory diseases, such 
as lung cancer, pulmonary fibrosis and asthma as well as ventilator-induced lung injury. 
The production of WISP1 and the following activation of WISP1-mediated Wnt signaling 
pathways may facilitate and even amplify the pathological processes of the diseases. Toll-
like receptors and integrins are also participated in the signaling pathways. This review 
focuses on the impact and mechanism of WISP1 in pulmonary diseases and proposes that 
WISP1 holds promise as a diagnostic marker and/or therapeutic target.
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WISP1 consists of four modules. Some studies have confirmed that 
invasive scirrhous gastric carcinoma14 and cholangiocarcinoma15 are 
related to the deletion of a module named VWC, reduced by alternative 
splicing of exon 3; WISP1 without the VWC module is referred to 
as WISP1v. Furthermore, besides full-length WISP1 and WISP1v, 
loss of more domains can be found in two hepatocellular carcinoma 
cell lines and a human chondrosarcoma-derived chondrocytic cell 
line, including ex 3-4 deltaWISP116 and WISP1vx.17 Models of all 
described WISP1 variants are shown in (Figure 2).18

Figure 2 Normal and abnormal molecular structures of CCN proteins: full 
length CCN4/WISP1 and truncated variants.

The full length WISP1 protein consists of 367 amino acids with a 
predicted molecular mass of 40 kDa and has 38 conserved cysteine 
residues and four potential N-linked glycosylation sites.11,19 In 
fact, observations have shown that WISP1 is glycosylated, and the 
glycosylation patterns of WISP1 differ between types of cancer cells 
and healthy fibroblasts.20 In addition, due to the lack of mammalian 
post-translational modifications, over expressed WISP1 in mammalian 
cells and recombinant WISP1 produced in Escherichia coli produce 
different biological effects on cells.21 Based on these results, post-
translational modifications seem to affect WISP1 function.

WISP1v is WISP1 with deletion of a VWC module reduced by 
alternative splicing of exon 3.14 WISP1vx lacks VWC and TSP1 
domains and part of the IGFBP domain (23 bp shorter than the full-
length exon). The IGFBP/CT fusion coding frame is not translated 
properly after the alternative splice site because of a frame-shift. The 
protein product is a single IGFBP module, in which eight C-terminal 
amino acid residues are removed, and an extra 14 residues are added 
in their place.17 WISP1Δex3-4 splice variant is a product of joining 
exons 2 and 5 with a frame shift that leads to a premature stop. As 
a result, the predicted protein has only the first module.16 SP: signal 
peptide, IGFBP: insulin growth factor binding protein, VWC: von 
Willebrand Factor C, TSP1: thrombospondin type 1 repeat, CT: 
C-terminal domain.

Expression of WISP1 in disease 

WISP1 exists in many tissues and organs, such as epithelial tissue 
and the heart, kidney, lung, pancreas, placenta, ovary, small intestine, 
spleen, and brain,22 so it is related to the occurrence and development 
of many diseases. Cerneaet al.23 stated that WISP1 can be used as 
a new target gene for bone morphogenetic protein -3 (BMP3), and 
it was found that the BMP3/WISP1signaling pathway plays an 
important role in the proliferation of mesenchymal stem cells and the 
process of lipid formation.23

WISP1 has also been demonstrated as a possible target gene to 
treatesophageal squamous cell carcinoma. Zhang and his team found 
that WISP1 can enhance its own expression in response to radiation 
and form a positive feedback loop through which cancer cells increase 
their ability to resist radiation. So it can be considered a potential 
target for improving the sensitivity of esophageal cancer patients to 
radiotherapy.24

Concurrently, the expression of WISP1 has been found to be higher 
in breast cancer cells that in normal breast tissue, and over expression 
of WISP1 inhibited the breast cancer tumor suppressor gene NDRG1.25 
WISP1 also plays a role in the growth and metabolism of bone. 
WISP1is a negative regulator of osteoclast differentiation, which 
plays multiple roles in controlling bone homeostasis.26 Subsequently, 
WISP1expression was found in osteoblasts and in the perichondrial 
mesenchyme by using a combination of in situ hybridization and 
immunohistochemistry.27 We may consider WISP1/CCN a prognostic 
marker in certain diseases such as pancreatic ductal adenocarcinoma 
and lymph nodemetastasis in oral squamous cell carcinoma.28,29

WISP1has also been found to play a role in many pulmonary 
diseases. Gavin BJ et al.30 first reported WISP1in the lungs in 1990.30 
WISP1was then also found in various tissues and organs and was 
found to be expressed in various types of cells; thus, studies on 
WISP1have attracted increasing attention.19 Diseases with increased 
morbidity and mortality such as pulmonary fibrosis and lung cancer 
are still hot topics in respiratory disease research.

The most challenging therapeutic regimen issues could be solved 
if a biomarker could be found to represent a potential downstream 
mediator for therapeutic intervention in pulmonary fibrosis. Recently, 
studies on WISP1in pulmonary fibrosis has increased. Stephan Klee 
et al.31 reported that WISP1expression was regulated by several 
profibrotic growth factors and that canonical signaling and ALK4/5/7 
play critical roles in WISP1expression induced by TGFβ.31 Also, in 
the course of pulmonary fibrosis, the expression of WISP1induced 
by TGF-β1 is regulated by miR-92a.32 Different types of lung cells 
will produce different effects under recombinant WISP1pretreatment. 
Pretreatment of type II airway epithelial cells (AECs) led to increased 
proliferation of type II AECs and epithelial-mesenchymal transition, 
whereas treating fibroblasts enhanced the deposition of the ECM.33,34 
Interestingly, neutralizing monoclonal antibodies specific for 
WISP1attenuated bleomycin-induced lung fibrosis in mice.33

Several WNT signaling proteins, including WNT1, WNT2, and 
WNT7A, are differentially expressed in lung cancer cells. WNT1 
is related to lung cancer.35,36 He et al.36 reported that cancer cells 
expressing WNT1 are resistant to apoptotic therapies.36 In contrast, 
anti-WNT1 monoclonal antibodies can suppress tumor growth 
in vivo.35 As a WNT1 wingless pathway target gene, alterations of 
WISP1have been reported in lung cancer specimens.20,37,38 Usually, 
tumor progression has been associated with WISP1expression; 
expression of WISP1in lung cancer cells was significantly higher 
compared with healthy lung tissues. Chen et al.37 and Yang et al.39 
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found that the expression of WISP1in lung adenocarcinoma was 
significantly higher than that in healthy lung tissues, but they did not 
find a correlation between WISP1level and prognosis.37,39 The gene 
polymorphism of WISP1may also be used in the study of patients with 
lung cancer. Chen et al.40 recruited 556 patients with lung cancer and 
254 healthy controls and their results showed that several genotypes 
of WISP1were associated with susceptibility to lung cancer and 
several WISP1genotypes were significantly related to the efficacy of 
platinum-based chemotherapy in lung cancer patients. This finding 
can be used to predict the toxicity of platinum-based chemotherapy 
in lung cancer patients.41 The emergence of various studies39,40-42 
on WISP1may reveal it to be a novel and useful biomarker for the 
diagnosis and treatment of lung cancer.

Asthma is a chronic inflammatory disease. Previous research has 
focused on pro-survival and pro-fibrogenic signaling pathways, which 
are closely related to the remodeling of airway tissue. Along with 
further research, the WNT signaling pathway has been considered 
promising to further explore the molecular mechanism of organ 
fibrosis and tissue remodeling. Trischler et al.43 reported that activation 
of the WNT signaling pathway, especially WISP1, is related to the 
airway remodeling process.43 Both Sharma and Yang reported that 
WISP1expression was correlated with asthma airway remodeling.44-46

WISP1is also involved in acute lung injury (ALI). The extensive 
use of anesthesia ventilators has contributed to an increase in VILI. 
The gene-encoding proteins of the CCN family, especially WISP1, 
are extremely sensitive to changes in the environment including 
mechanical stretch,2 however, the specific mechanism of the protein 
in various stretch-induced lung injury is not clear. Li and colleagues 
demonstrated that WISP1/CCN4, identified by a genome-wide 
approach, acts as a cellular accessory molecule that leads to VILI 
in mice.47 Alveolar-capillary permeability, which can be used to 
determine the extent of lung injury, is actually proportional to 
WISP1secreted in vivo after high tidal volume ventilation. Heise48 
found that WISP1is significantly up-regulated in stretched type II 
epithelia in a hyaluronan-and MyD88-dependent fashion; meanwhile, 
the epithelial mesenchymal transition in stretched cells can be 
prevented by using WISP1antibody. Faisyet al.49 have also identified 
that stretch led to significantly higher mRNA levels of WISP1.

In addition to the correlation between WISP1and pulmonary 
disease, the expression of WISP1has been observed during lung 
development. Sharma et al.45 confirmed that the WISP1gene was 
associated with intrauterine airway development.

WISP1 and the WNT pathway

WISP1has been suggested to act as a putative downstream effector 
of the WNT pathway.19 The WNT signaling pathway is activated via 
two distinct branches: the canonical and non-canonical pathways, 
based on the expression profiles of receptors, co-receptors, and the 
activity of intracellular WNT signaling regulators.50,51 The hallmark 
of the canonical WNT/β-catenin pathway is that it activates the 
transcription factor β-catenin, a downstream effector of the pathway 
that is initiated by WNT ligands to form a Frizzled receptor and low 
density lipoprotein receptor-related protein 5/6 (LRP5/6) co-receptor 
complex that inactivates glycogen synthase kinase-3β (GSK3β) 
to block β-catenin phosphorylation and degradation that leads to 
accumulation of hypophosphorylated β-catenin in the cytoplasm 
and subsequent translocation to the nucleus, where it regulates target 
gene expression through interactions with a family of transcription 
factors.52-54 

Actually, the functional β-catenin/TCF heterodimeric transcription 
factor has been visualized in vivo, where β-galactosidase has been 
placed downstream from promoter elements harboring canonical 
TCF cis elements (e.g., TCF-optimized promoter-LacZ or TOPGAL 
mice).55 These TOPGAL mice have provided a sensitive approach 
for dissecting the role of the canonical β-catenin pathway in lung 
development,56 injury,57 and repair,58,54 as well as airway epithelial 
lineage and stem cell studies.59 Pharmacological approaches to 
dissect the contribution of WNTβ-catenin canonical signaling include 
activation by lithium chloride, a well-known inhibitor of GSK-3β,58 or 
inhibition by using ICG-001, a selective inhibitor of WNTβ-catenin-
dependent transcription.60 Recently, the convergence of WNT/β-
catenin canonical signaling, WISP1, and lung epithelial cell repair 
was demonstrated after inflammatory lung injury.61 Extrapolation of 
the reparative role of WISP1needs to put into context, as reviewed 
by Lawson and Blackwell.62 Li47 noted that WISP1enhances alveolar 
capillary permeability in ALI and Konigshoff et al.63 demonstrated 
that anti-WISP1antibodies attenuated bleomycin-induced lung 
fibrosis. Fewer reagents and progress in the lung with respect to the 
non-canonical pathway is apparent, although detection of hallmark 
regulatory proteins WNT5A or WNT11 suggests this pathway may 
be operative in certain forms of lung cancer.64 Although the original 
observations by Slutsky et al.65,66 concluded that WNTβ-catenin 
signaling is important in VILI, they reported increases in indices of 
activation of both non-canonical (WNT5A) and canonical pathways 
in whole rat lung. Further confirmative studies are required to identify 
which WNT signaling pathway is responsible for WISP1production 
in the lung.

WISP1 and toll-like receptor (TLRs), integrin-mediated 
signaling pathway

Mutual connections between WISP1and TLRs and integrin are 
fairly complicated because of the wide variety of TLRs and integrins. 
The occurrence and development of many diseases are related to these 
connections. WISP1(CCN4) is one of the CCN family proteins; the 
CCN proteins are key signaling and regulatory molecules involved 
in many vital biological functions, including cell proliferation, 
angiogenesis, tumorigenesis, and wound healing.67 

CCN proteins interact with cell surface integrins (e.g. cysteine-rich 
protein 61 (CCN1) via αvβ3,68 CCN3 via αvβ5,69 and WISP1(CCN4) 
via αvβ370 to induce intracellular signaling events.2,8 Integrins appear 
to regulate inflammatory responses such as TNF release.71 Indeed, 
RGD- (Arg-Gly-Asp-Ser peptides) sensitive integrin signaling in 
VILI72 and αvβ3 and αvβ5 in particular have been identified to play 
critical roles in regulating pulmonary permeability in ALI and VILI.73

Sheppard et al.74,75 have demonstrated that β3 is protective (i.e.,β5-
null mice are sensitive) to endotracheal and intraperitoneal LPS and 
cecal ligation and puncture (CLP), whereas Pittet et al. have shown 
that β5 enhances (i.e.,β5-null mice are resistant) to lung vascular leak 
after infection,76 ischemia/reperfusion, or VILI.77 Meanwhile, a new 
publication by Ding78 suggested that the integrin family member β-6 
is known to play an important role in regulating lung inflammation, 
macrophage protease expression, and pulmonary edema during the 
process of ALI. In this process, both WISP1and integrin β6 constitute 
a pathway to regulate pathophysiological process in the lung. Also, 
RGDs, which act as an inhibitor of integrin-ligand interactions, can 
block the pathway to alleviate ALI induced by CLP and improve the 
survival rate of mice.

Activation of the TLR complex, a receptor of the innate immune 
system, may underpin the pathophysiology of many human diseases, 
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including asthma, cardiovascular disorders, diabetes, obesity, 
metabolic syndrome, autoimmune disorders, neuro-inflammatory 
disorders, schizophrenia, bipolar disorder, autism, clinical depression, 
chronic fatigue syndrome, alcohol abuse, and toluene inhalation.79 
TLRs play a pivotal role in the innate immune response in sensing 
and responding to cellular injury in the lung.80

TLR4 is the most important transmembrane protein receptor in 
the TLR1-9 family that activates the cellular inflammatory reaction 
by interacting with CD14 extracellular membrane,81 and transmitting 
biochemical signals through the MyD88 pathway82 and TRIF 
intracellular pathway.83 TLR4 has been shown to play a critical role in 
ALI induced by high tidal volume mechanical ventilation (HTV),82,84,85 

LPS,86 acid aspiration,87 hemorrhage,88 and ischemia and reperfusion 
injury.89 Hu et al.84 showed that HTV increases WISP1expression;84 
meanwhile, mechanical stretch has been demonstrated to increase 
endogenous TLR4 ligand production and activate TLR4 in healthy 
mice.90,91 Several studies have shown that TLR4 is associated with 
VILI in animal models.82,84,90 Zhang’s et al.47 found that HTV can 
increase the expression and production of WISP1, which might 
contribute to VILI in mice; such a process probably occurs through 
modifying and/or enhancing TLR4-mediated cellular functions 
because the interaction between WISP1with TLR4 is synergized. This 
includes both increased WISP1production in HTV and activation of 
TLR4 signaling, leading to further lung injury.

Summary
As a potential proliferative and restorative protein, WISP1has 

demonstrated great promise for the development of novel therapeutic 
strategies against acute and chronic disorders that involve the 
nervous, musculoskeletal, cardiac, pulmonary, and vascular systems.92 
Meanwhile, with the development of research onWISP1in pulmonary 
diseases, more and more biological functions of WISP1have been 
found, which can produce complex biological outcomes. Under 
certain conditions, WISP1plays a primary role during the occurrence 
and development of pulmonary disease. Emerging studies demonstrate 
that targeting CCN protein expression or signaling pathways holds 
promise for the development of diagnostics and therapeutics for 
pulmonary diseases. Nevertheless, many questions remain to be 
answered, such as: In the lung, where and which cell type is the major 
source of WISP1production? Which pathway, the non-canonical or 
the canonical WNT pathway, is the main productive route? How can it 
be regulated? Accordingly, identifying the role of WISP1in pulmonary 
disorders is essential to effectively target this pathway for clinical 
therapies and diagnostic prevention. 
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