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Introduction
Since the 20th century, nanotechnology has been an eye-catching 

hot point for scientists along with more and more huge effort putting 
into the relevant fields. As the same time, the technology attached 
with nano techniques closely to human is dramatically changed with 
the exploration and achievements of nanotechnology. Even for our 
routine life shows nanotechnology an extensively profound influence. 
For nano-porous materials, as a subset of nanotechnology, it is also 
a pivotal class with impressive utilizations for instant electrodes,1–3 
sensors,4–6 catalysis,7,8 molecular separation9–12 and drug delivery, 
etc.13–27

It is well known that nano-porous materials correlated to 
biomedical applications have been significantly investigated owing 
to the relevant unique characteristics (such as large volume of pores, 
tunable size of pores, chemical stability, feasible surface modification 
and high specific surface area, etc.). Additionally, the structures of 
nano-porous materials also possess captivating fluorescent, magnetic 
and conducting properties. As a consequence, nano-porous materials 
have attractively been explored in biomedical applications, for 
instance, biomolecule determination, drug encapsulation, drug 
solubility improvement, controlled drug release, proteome analysis, 
targeted therapy, enzyme immobilization, gene transfer, adjuvants, 
tissue engineering, theranostics, regeneration medicine, nucleic 
acid protection, implants, fluorescent imaging, magnetic resonance 
imaging, electrochemical sensors, optical sensors, etc.

The highly porous nanostructure materials with the correlated pore 
sizes ranged from a few nanometers to one hundred nanometers are 
well known as nano-porous materials. In accordance with the standards 
of IUPAS (International Union of Pure and Applied Chemistry), three 
different kinds of pore can be classified according to the pore diameter 
(1) macropores (>50 nm); (2) mesopores, 2 nm <pore size < 50 nm; 
and (3) nanopores (< 2 nm). The captivating achieved results show 
that at the nanoscale, nano-porous materials have various fascinating 
properties (for instant high surface to volume area,8,28–30 plasmonic,31–34 
photonic11,35,36 and quantum confinement effect,37–39 which are closely 
to the utilized materials. 

Over the past decades, there has been a growing global emphasis 
on nano-porous materials for various applications. Up to now, 
a significant portion of investigating dedications has been put 
into exploring various porous materials such as metal,40–42 semi-
conductor,43–46 ceramic47,48 and organic.49–51

Owing to cutting-edge synthesis strategies with significant efforts 
put-in, for preparing the porous materials, bulk materials can be 
utilized with the techniques of state-of-art. To date, pore morphologies 
tailored with the desired nanostructures have already successfully 
explored in numerous types. For the morphology of a pore, it is 
generally an open pore throughout to the material surface with the 
well-developed structures (or the tailored/desired patterns). So far, 
researchers have already achieved pores with various compelling 
structures for instant sponge-like cylinder,52–55 triangular56,57 and 
spherical etc.58,59 Additionally, by the electrochemical methods, other 
special kinds of nanostructured pores can be also obtained, such as 
wavy forms60 and sinusoidal forms.61

Approaches for synthesis of nano-porous materials

Etching-dealloying

As a kind of the selective etching, dealloying is a method for 
partial dissolution of the relevant alloy.62 It is well known that during 
the dealloying, etchants are always utilized to dissolve a less noble 
element for achieving a noble alloy left with the tailored structures 
in desired nano-porous. The detailed mechanism of the nanoporosity 
evolution during the dealloying was revealed in Nature 2001 by 
Erlebacher et al.63 The results express that in the dealloying, gold 
atoms prefer to form gold islands and are not dissolved, the pore 
opens up and the bulk structure continuously etches throughout. As 
a consequence, the sponge-like porous Au is attained after etching. 
Years ago, by dealloying Au/Ag, Ruffino et al.,32 obtained a type 
of nano-porous gold structures. The results indicate that by HNO3 
dealloying, as a consequence of the volume shrinking of particles to 
some extent, gold crystal structure possesses the plastic deformation 
and lattice defects along with the shape of particles and the density of 
surface successfully keeping. Also, it elucidates that for the particles 
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Abstract

Since the photoluminescence was discovery at room temperature due to the quantum 
confinement effects, nano-porous materials have addressed intense eye-catching research 
focuses. The achieved results indicate that besides the superior photoluminescence, 
nano-porous silicon materials fabricated by the electrochemical approach are promising 
candidates for the utilizations in biological sensing, energy storage, chemical and catalysis, 
owing to the correlated biocompatibility, biodegradability, modifiable surface and high 
porosity, which comprise with tunable optical porous silicon structure and the applications 
such as biosensing, in vivo imaging, gas sensing and solar cells.

Therefore, the facile electrochemical approaches utilized to prepare nano-porous materials 
are addressed, particularly for nano-porous silicon materials aim to showcase the correlated 
significant techniques to realize green exploits for the future eco-friendly environmental 
developments.
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achieved by the liquid state process, the dealloying process is more 
efficient, particularly for AuAg alloy forming the particles with a 
more homogeneity.

Etching-electrochemical etching

It is noted that as a conventional top-down method to achieve 
nano-porous materials, electrochemical etching is generally utilized, 
where the pore is fabricated by an applied current or voltage at the 
bulk material electrochemically etching in electrolyte along with 
two or three electrode configurations using a potenetiostat in this 
procedure. During the processing, the electrolyte reacts with the 
surface of bulk materials. Consequently, the pore with the tailored 
structure is generated. Moreover, it should be noted that the defect 
sites of surface are usually the start of such reaction. The published 
literature relevant to nano-porous materials by the electrochemical 
etching has already been released: porous alumina,36,64–66 porous 
titania,2,67,68 porous silicon (pSi)69–71 and porous Ni.72,73

Templating method

As an approach-sacrificing a mold with target precursors filling 
into the relevant void space to attain porous materials, the technique-
templating method was developed for applications. Actually, the 
electrochemical calcination or reduction is usually utilized. Up to 
now, as the sacrificial template, various materials can be adopted, for 
instant porous anodic alumina,74,75 porous silicon (pSi). Moreover, 
for the porous anodic alumina, owing to cylindrical pores captivating 
characteristics, other materials can fill into the correlated pores to 
successfully attain the well-defined nanotube or nanorod arrays in 
an easy route.76 In addition, by filling other materials into the porous 
silicon, for example, polymer77,78 and metal,79,80 it can achieve the 
photonic porous silicon with the rugated structure (particularly for the 
special structure).

Furthermore, as a technique of nanospheres (polystyrene or silica) 
application with diameter ranged from about 100 nm to 1 µm, the 
templating method, for instant, the nanosphere lithography81,82 is often 
applied. At the initial, by various approaches involved dipcoating 
and spincoating on the substrate, nanospheres are self-assembled to 
form ordered hexagonal structures. As a consequence, a monolayer 
or a three dimensions structure can be successfully obtained, which 
can be utilized as a template with different materials filling into the 
correlated void (for example, by the electrodeposition processing to 
fill the metal). In an electrolyte, metal ions are reduced to metal and 
filled into the nanosphere template interstices during the process of 
electrodeposition. After that, to achieve porous materials with the 
desired characteristics, the nanosphere is removed by the calcination 
or dissolution.

Porous Silicon (pSi)

By chemical and electrochemical etching, multidimensional and 
multilayers macroporous crater-like surface can be easily achieved. 
The attained texture with different porous morphologies is shown 
in Figure 1. Meanwhile, Yerokhov et al.,83 explored the relevant 
mathematical model of the macroporous silicon of the real layer.83

Owing to the quantum confinement effects of porous silicon (pSi), 
since the photoluminescence discovery at room temperature, it has 
significantly attracted the intense scientific research focus.84,85 Various 
pSi applications have been well exploited such as gas sensing, in vivo 
imaging and biosensing (due to the unique characteristics of tailorable 
surface, high porosity, biodegradability and biocompatibility) besides 
the photoluminescence of pSi.86 Additionally, it is significantly key to 
exploring pSi-based sensor for the particular optical characteristics of 

pSi in the reflectance spectra. To date, the modulated pSi multilayers 
with the waveform can be tailored into optical nanostructures (such 
as Bragg stacks and rugated filters) and the single layer pSi addresses 
Fabry-Pérot fringes.87,88

Figure 1 Different geometrical models with macroporus silicon layers.

Figure 2 shows the porous silicon etched by ozone oxidization at 
ozone of 1.5 SCFH for 20 min in the top view and cross section. The 
results express that the average diameter of pores is about 37 nm in 
the fabricated pSi, where the attained pores are long and straight along 
with high porosity.

Figure 2 FESEM images-

(a) top view 

(b) cross section of the porous silicon etched by ozone oxidization.
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Synthesis strategies for pSi

Figure 3 depicts a typical electrochemical etching process for 
porous silicon achieved by crystalline silicon wafer with aqueous 
hydrofluoric acid (HF) connected to potentiostat. Generally, a solution 
of 48% aqueous HF: ethanol (3:1) is usually taken to fabricate 
pSi samples, where, in order to reduce the formation of bubble 
and improve the infiltration of etchant, ethanol is often added for 
increasing the wettability. The pore formation relevant to the silicon 
etching is addressed by Shcherban et al.,89

Figure 3 Schematic drawing of electrochemical etching process for porous 
silicon.

Si+6HF+2hole+→H2SiF6+2H++H2

Porous silicon for optical interferometric biosensor

For bioengineering, particularly in field of the biological sensing, 
the porous silicon is a promising candidate because of the attractive 
tunable pore sizes with various optical nanostructures. On the basis of 
the optical feature of pSi (Fabry-Pérot fringes), which are the result of 
the peak minima and maxima of the reflection spectrum constructed 
by the destructive and constructive interference of the reflecting 
light from the bottom and the top of porous silicon layer, one of 
the captivating biosensors, an optical interferometric biosensor), 
was tailored. Figure 4 shows the Fourier transform analysis of the 
reflection spectrum transforms the fringes pattern to a single peak 
corresponding to effective optical thickness (EOT)-2nL, where n is 
refractive index of average porous silicon matrix and L is the optical 
thickness of porous silicon.

Figure 4 The Fabry-Pérot interference pattern is transformed to single peak 
corresponding to effective optical thickness by Fourier transform analysis.

The results express that in the refractive index of the porous silicon 
matrix, the alteration (induced by the binding of analytes) can be 
easily detected by the charge-coupled device (CCD), as the peak shift 
of the effective optical thickness in the reflectance spectrum, as shown 
in Figure 5.90–95

Figure 5 Schematic of pSi-based optical interferometric biosensor.

Conclusion
The porous silicon (pSi) can be quickly, effectively and easily 

fabricated by electrochemical approaches with tunable and 
controllable pore size and porosity. The attained pSi possesses the 
attractive optical properties which is the contribution of the large 
internal surface area and the versatile surface chemistry. Because of 
the compelling characteristics such as tunable surface, high porosity, 
good biodegradability and biocompatibility, nanoporous silicon 
materials fabricated by the electrochemical approaches are crucial to 
the field of biological sensing, chemical, catalysis, gas sensing, in vivo 
imaging and energy storage. Moreover, porous silicon is a promising 
candidate for optical interferometric biosensors in the coming future 
owing to its captivating properties. Also, it should be noted that 
eco-friendly techniques for pSi shall be explored further due to the 
chemical usage for the future environmental risks and the sustainable 
development.
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