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Introduction
The continuous increase in the world population, the progressive 

reduction of arable land due to the advance of urbanization, soil erosion 
and soil contamination due to the accumulation of toxic products, are 
aspects that make the application of strategies and biotechnologies 
essential to increase crop productivity. Among them, the use of soil 
microorganisms with the ability to promote plant growth stands out.

Due to the knowledge of the contribution of soil microorganisms in 
promoting plant growth, it is considered of interest to use them in crops 
of economic importance in the region. Among these microorganisms 
are the so-called PGPR, plant growth promoting rhizobacteria, 
which facilitate plant growth either directly by providing nitrogen, 
phosphorus, and essential minerals or by biosynthesis and regulation 
of hormone levels, or indirectly by the reduction of the inhibitory 
effects of various phytopathogens and the development of forms of 
biological control agents. All this due to its ability to biologically 
fix atmospheric nitrogen, the increase in nitrate reductase activity 
when plants grow endophytically, the production of hormones such 
as auxins, cytokinin’s, gibberellins, ethylene and a variety of other 
molecules, the solubility of phosphate, by favoring mycorrhizal 
associations that are beneficial for plants and can act indirectly on 
growth by protecting plants from phytopathogenic microorganisms in 
the soil.1–7

Therefore, this work has as its main objective to contribute to 
the knowledge of microorganisms of the genus Azospirillum and 
mycorrhizal fungi as agents to improve the growth, development, 
and production of plants, by intervening in the nutrition and defense 
of phytopathogens through isolation, selection, inoculation, and 
evaluation of these soil microorganisms as promoters of plant growth 
and their potential when incorporated into the productive activity. Its 
use has the advantage of having practices that do not contaminate 
the environment and that at the same time are in balance with the 
ecological conditions of the soil.

The bacterium: Azospirillum

Azospirillum is a genus of bacteria belonging to the alpha subclass 
of proteobacteria, with Azospirillum lipoferum being identified 
as the type species. Its typical characteristics are vibrioid shape, 
pleomorphism and spiral mobility. Their cells contain high quantities, 
up to 50% of the cell dry weight, of poly-beta-hydroxybutyrate, 
observed microscopically as refringent granules in young cells. Old 
cultures frequently present ovoid-shaped, thick-walled, cyst-like 
refringent cells.8

The use of microorganisms that promote plant growth has been 
investigated for many years, the Azospirillum genus being one of the 
most prominent, mainly due to its ability to produce a wide range of 
active metabolites such as indole acetic acid, cytokinin’s, gibberellins 
and siderophores,8,9 which positively influence the growth and 
healthy development of plants. Azospirillum sp. as PGPRs, that 
is “Plant Growth Promoting Rhizobacteria” or “Plant Growth 
Promoting Microorganisms” (MPCV), non-specific providing varied 
contributions to the improvement of growth and productivity in many 
species of agricultural crops.4,5,10,11

The practice of inoculation with rhizosphere bacteria can provide 
different benefits to crops from the moment of germination and in 
the stages of their subsequent development.10,12 Azospirillum is a 
rhizobacteria considered to promote plant growth due to its ability 
to fix atmospheric nitrogen, produce plant growth regulators and 
greater root development, which may involve other effects such 
as increased absorption of water and nutrients, greater tolerance to 
stress, such as salinity and drought, that result in a more vigorous and 
productive plant.5,8,9 Probably due to increased root growth and better 
plant nutrition there is an increased tolerance to phytopathogenic 
agents5,13–15 and by improving the gene expression of resistance to the 
disease of genes related to the disease.16,17

It is known that this bacterium, inoculated in cereal seeds, increases 
the percentage of germination and biomass,18,19 since it produces 
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Abstract

The role and importance of two types of soil microorganisms are highlighted: the bacteria 
of the Azospirillum genus and mycorrhiza-forming fungi, which establish beneficial 
interactions with plants and the application of these generates great interest due to the 
potential and to be considered as these soil microorganisms as a tool in sustainable and 
agroecological agriculture. The importance of developing biofertilizers with native strains 
of plant-promoting microorganisms, such as Azospirillum brasilense and mycorrhizal fungi, 
is also highlighted as a strategy to control diseases and improve the agronomic performance 
of crops. The development and application of this type of biofertilizers can be considered an 
important alternative for the partial or total replacement of mineral fertilizers, which would 
generate great benefits without having a detrimental impact on the environment.
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substances that stimulate root growth, which allows the absorption 
potential of nutrients and water to be increased. elevate, a benefit that, 
in the case of crops in arid and semi-arid zones, constitutes an even 
greater advantage.9

Díaz-Zorita and Fernández-Caniggia4 quantified the productivity 
of wheat (Triticum aestivum L.) inoculated with Azospirillum 
brasilense under normal dry farming conditions in localities of the 
Argentine Pampas region and determined that the inoculated plants 
showed a more vigorous vegetative growth, with greater number and 
yield of grains. In Brazil, Piccinin Gleberson et al.,6 experimented 
with liquid and peat inoculants and evaluated the efficiency of seed 
inoculation with A. brasilense on agronomic performance and wheat 
yield. At harvest time, they evaluated the number of grains per spike, 
grain weight and yield, and concluded that A. brasilense is efficient 
in nitrogen fixation and that yield is positively influenced by nitrogen 
fertilization associated with inoculation, independently of the type of 
inoculant.

In addition to research on the efficiency of Azospirillum in promoting 
plant growth in different culture conditions, the compatibility of its 
inoculation with other PGPR microorganisms in various crops is also 
studied,11,15,20–24 the influence of the plant genotype, the substances 
generated in the inoculated plants and their impact on the microbial 
communities of the soil.25–27

Garcia de Salamone et al.,21 measured the response of three 
rice cultivars under field conditions inoculated with a commercial 
formulation of A. brasilense and Pseudomonas fluorescens and 
evaluated the influence on soil microbial communities through 
molecular analysis; and concluded that the combined inoculation with 
A. brasilense and P. fluorescens increased aerial biomass production 
and grain yield in the three rice cultivars and did not generate a 
significant impact on soil microbial communities. There are numerous 
investigations of bipartite inoculations with Azospirillum and rhizobia 
on leguminous plants with the aim of studying a strategy to improve 
the sustainability of agricultural production and even highlight the 
biotechnological potential of secondary metabolites of rhizobia 
together with inoculants containing rhizobia and A. brasilense to 
improve the growth and yield of legume and cereal crops such as 
maize.22,23,28,29 There are also studies that determine that the genotypic 
variations of the bacteria and Azospirillum do not influence their 
ability to promote plant growth,30 as well as the phenotypic variations 
of the colonies of different strains of Azospirillum brasilense in 
culture media.31

The combination of nitrogen fertilization and Azospirillum 
inoculation can ensure higher nutrient uptake and thus increase crop 
yields. Ferrera et al.,32 evaluated the response of the maize crop to 
inoculation with A. brasilense and fertilization with macronutrients 
and micronutrients, conducting experiments in greenhouse and 
field conditions, in clayey and sandy soils. They obtained different 
responses, from significant increases in the growth and yield 
parameters evaluated with the inoculation of A. brasilense compared 
to the control and fertilized treatment, while in sandy soils and under 
greenhouse conditions there were no differences between treatments. 
They determined that the inoculation with A. brasilense gave a yield 
comparable to the fertilized treatment; that the combination of A. 
brasilense and fertilizer increased grain production by 29%; They 
also concluded that the response to inoculation and fertilization was 
dependent on the type of soil under greenhouse conditions. There are 
studies on the application in plants for reforestation of the combination 
of A. brasilense with organic residue, better results were obtained in 
the growth and establishment of the plants and an additive effect of 

improvement of the biochemical and microbiological quality of the 
soils, in comparison with the independent application of the microbial 
inoculum and the organic residue.33 In this line of study, a saving of 
nitrogenous fertilizer was determined with the inoculation with A. 
brasilense, which made it an economically viable technology due to 
the reduction of the necessary chemical fertilizers, which improved 
the nitrogen content and counteracted the effects of salinity and 
increased salinity tolerance of plants.5,34,35

Some investigations within the field of molecular biology, aim 
to determine the substances generated in plants inoculated with A. 
brasilense, it has been possible to determine proteins that accumulate 
only in corn seedlings in response to inoculation;36 as well as to 
determine the molecules biosynthesized by A. brasilense and those 
that influence its behavior.37–44

Larraburu et al.,45 studied the changes in enzyme levels produced 
during in vitro rhizogenesis of pink lapacho (Handroanthus 
impetiginosus) by inoculation with A. brasilense, and determined the 
significant effect of the triple interaction between the composition 
of the culture medium, auxin concentration and bacterization in 
antioxidant enzyme activities, and analyzed the role of A. brasilense 
in rooting and stress in vitro. The biochemical determinations made in 
this study contribute to a better understanding of how auxin induction, 
culture media, and PGPR inoculation affect the physiology of woody 
plants. Research lines currently being carried out aim to study the 
diversity of new isolates of A. brasilense and select bacteria according 
to their ability to promote plant growth, from native forage,46,47 
cereals,16,19,44,48–53 fruit trees,54 microplants,55 as well as the ability to 
promote the growth of microalgae.56–58

Other lines of work study the mechanisms and molecules involved 
in the establishment of plant-microorganism interaction. In recent 
molecular genetic studies using immunomicroscopic techniques, they 
determined the cell surface proteins involved in the establishment of 
the plant- interaction A. brasilense.59

Mycorrhizal fungi

Mycorrhizae are mutualistic associations between soil fungi and 
roots of higher plants.60,61 As in other symbiotic relationships, both 
participants benefit. These fungi depend on the plant for the supply of 
energy, carbohydrates, and vitamins, which the fungus itself is unable 
to synthesize while the plant can do so thanks to photosynthesis 
and other internal reactions. At the same time, they deliver mineral 
nutrients to the plant, especially those that are not very mobile, such 
as phosphorus and water.62–65 In addition, fungi impart other benefits 
to plants such as: stimulation of growth-regulating substances, 
increased photosynthetic rate, osmotic adjustments when there is 
drought, increased nitrogen fixation by symbiotic or associated 
bacteria, increased resistance to pests and diseases, tolerance to 
environmental stress, improvement of soil aggregation and mediation 
in many interactions of microflora and microfauna that occur in the 
rhizosphere.60 That is, mycorrhizal associations are the result of three 
interactive pathways between mycorrhizal fungi, plants, and the 
environment or soil conditions where they thrive.61,66

Factors that can influence the occurrence and effectiveness 
of mycorrhizal associations include root properties, edaphic and 
climatic factors, soil organisms, soil disturbance, and plant-fungus 
compatibility.61 Therefore, its study is complex since it involves the 
plant, the environment and the fungus. It should be known phenology 
of mycorrhizae, factors responsible for greater or lesser mycorrhizal 
dependence on host plants (degrees of mycotrophy), the role of hyphae 
in the soil, competition for nutrients between mycorrhizal and non-
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mycorrhizal plants, and mycorrhizal interactions involving pollution 
and other stressors, rhizosphere, soil properties, and allelopathy.61

Mycorrhizae have been classified based on their structure, 
morphology, and mode of infection.60,66 At least seven different types 
of mycorrhizal associations are recognized, involving different groups 
of fungi and host plants, and with different morphological patterns.61,67 
The most common associations are: vesicular-arbuscular mycorrhizae 
(VAM) in which fungi belonging to the Phylum Glomeromycota 
produce arbuscules, hyphae and, some of them, inter- and intracellular 
vesicles in the root cortex; ectomycorrhizae (ECM) where fungi 
belonging to the Phylum Basidiomycota and Ascomycota form 
a layer of hyphae, more or less compact above the surface of the 
root, called mantle, sheath or sleeve and the hyphae that penetrate 
intercellularly in the first layers of root cells form what is known as 
the Hartig network.67 Orchid mycorrhizae or ball mycorrhizae, are 
characterized by forming coils of hyphae, called intracellular balls 
and are distributed in the canopy (spongy layer of the root of these 
epiphytic and terrestrial plant species) in plants of the Orchidaceae 
family.66,67 Ericoid mycorrhizae penetrate cells and form hyphal 
tangles in members of the family Ericaceae; its roots are characterized 
by forming cell monolayers in the epidermis, bark, phloem and xylem; 
they do not form a mantle and interconnect intercellularly. Arbutoid 
mycorrhizae form an outer mantle, a well-developed Hartig network, 
and hyphae that penetrate cells where they form “curls” of coiled 
hyphae.67 They occur in plants of the genera Arctostaphylos, Arbutus 
and Pyrola, members of the order Ericales. Generally, fungi that form 
arbutoid mycorrhizae can form ectomycorrhizae if they interact with 
plants of the genus Pinus.67 Finally, monotropoid mycorrhizae are 
characterized by the way hyphal penetration is straight or at an angle 
of almost 90 degrees with respect to the root surface.61,68,69

Mycorrhizae play a key role in sustainable agriculture, since, if you 
want to reduce the use of agrochemicals for environmental reasons, 
production costs and health, then it is necessary to restore mycorrhizal 
fungi and other beneficial microorganisms, but it is essential a optimal 
and responsible use of microorganisms and other soil inhabitants.60 
The key function of the mycorrhiza lies in the fact that its intra and 
extra radical mycelium constitutes a link or bridge between the plants 
and the soil. When mycorrhizae form, root physiology and exudation 
are altered, which in turn changes the surrounding microbial 
population. It not only contributes to plant nutrition by exploring a 
larger volume of soil than the root alone, but also to soil nutrition by 
increasing microbial activity.60,61

Mycorrhizae have an advantage over the non-mycorrhizal root 
because the external mycelium extends further than the root hairs, 
which, from a nutritional point of view, the benefit is the greater growth 
of the plants due to an increase in the absorption of phosphorus when 
this element is limiting, when P is not limiting the benefit can be null 
or reduced, depending on the degree of mycorrhizal dependence of the 
plant. In addition, it directly or indirectly influences the absorption of 
other minerals (N, K, Ca, Mg, Fe, Mn).60,61

Mycotrophic plants have different degrees of mycorrhizal 
dependence. The obligate ones cannot grow without mycorrhiza even 
in fertile soils; facultative ones benefit from increased growth when 
P levels are low and can survive and grow without mycorrhizae in 
fertile soil conditions.60 In addition, mycorrhizae present interspecific 
differences in effectiveness to absorb P and other nutrients and 
translocate them to the plant, and therefore confer different 
physiological benefits to the same plant species.60,61,66

Soil microorganisms present complex interactions that affect soil 
fertility and plant development. Mycorrhizal fungi, in addition to their 

direct effect on plant nutrition, induce physiological changes that 
include an increase in the photosynthetic rate and redistribution of 
fixed carbon in a greater proportion towards the roots, which causes a 
notable increase in carbon available for microbial activity.60 Inhibitory 
and stimulatory effects of the processes of spore germination and 
growth of mycorrhizal fungi by different soil microorganisms have 
been verified.60 Earthworms and nematodes have a positive effect 
on the populations of mycorrhizal fungi and contribute to their 
spatial distribution, while springtails feed on extraradical hyphae 
causing reductions in their effectiveness and reduce the length of the 
colonized root.60,61 Numerous investigations studied the effects of the 
mutualistic association between mycorrhizae and plants, which have 
concluded in:

- The hyphae of mycorrhizal fungi intervene in the aggregation of 
soil particles, since they prolong the root system of plants, and this 
facilitates greater physical retention of soil particles, limiting the 
damaging effects of erosion caused by water.61

- They improve water and nutrient intake, which influences 
nutritional capacity, increased production and higher biological 
quality.15,60,61,70,71

- They give plants greater tolerance to many stress factors such as: 
drought, salinity, pH imbalances, among others.61,71,72

- They provide protection against herbivory and the attack of 
phytopathogenic agents from the soil.73,74

- They reduce the environmental stress that predisposes the plant to 
diseases.61,66

- Modify the endogenous level of phytohormones related to plant 
growth.72

- They generate a better adaptation to the photosynthetic capacity 
of the plant to satisfy the carbon demand that exists when associated 
with mycorrhizal fungi. (Obligatory mycotrophic plants depend on 
the supply of carbohydrates derived from photosynthesis to maintain 
an appropriate mycorrhizal symbiosis).60,61,70,71

- They function as a phytostabilizing system, because mycorrhizal 
plants grow in contaminated soils, which allows their use in the 
phytoremediation of contaminated soils.75

For all these reasons, mycorrhizae constitute an ecological 
alternative for sustainable agriculture and open new horizons not only 
in the field of agricultural production but also in reforestation, the 
cultivation of ornamental plants, etc.60,61,68,76–78

There are numerous investigations that have the objective of 
evaluating the colonization and the effect of associated native 
mycorrhizal fungi on different plant species.15,47,79–91 Urgilés Gómez et 
al.,92 evaluated the effect of inoculation with native mycorrhizal fungi 
on the propagation of Alnus acuminata and Morella pubescens. The 
two species propagated in the greenhouse showed an improvement 
in growth when inoculated with propagules of mycorrhizal fungi, 
compared to the controls, and concluded that the symbiotic relationship 
between plant-fungus ensured their survival in the nursery and later 
in plantations for afforestation purposes, reforestation or restoration 
of ecosystems.93

Conclusion
Biofertilizers emerged as the solution for organic and sustainable 

agriculture, since they allow to reduce production costs and reduce the 
use of agrochemicals, so it is important to increase their application 
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to achieve sustainable agricultural practices, due to their benefits 
in agriculture and positive effects on soil fertility. It is important 
to develop biofertilizers with native strains of plant-promoting 
microorganisms, such as Azospirillum brasilense and mycorrhizal 
fungi, as a strategy to control diseases and improve the agronomic 
performance of crops.

The development and use of biofertilizers is seen as an important 
alternative for the partial or total replacement of mineral fertilizers. 
The large-scale application of biofertilizers in any agricultural 
production system would bring great benefits without having a 
detrimental impact on the environment.
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