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Abbreviations: ABCB/PGP, ATP-Binding Cassette/P-
GlycoProtein; AUX/IAA, Auxin/Indole-3-Acetic Acid; ARF, Auxin 
Response Factor; CALS/GSL, callose synthase/glucan synthase-
like; GFP, Green Fluorescent Protein; GH3, GRETCHEN HAGEN3; 
IAA, Indol-3-Acetic Acid; IPA, Indole-3-Pyruvic Acid; LR, Lateral 
Root; LRP, Lateral Root Primordia; PAT, Polar Auxin Transport; PIN, 
PIN-FORMED efflux; PDLP, PlasmoDesmatal-Located Protein; PD, 
PlasmoDesmata; PDCB, PD-Callose Binding protein; PR, Primary 
Root; QC, Quiescent Center; RAM, Root Apical Meristem; SAUR, 
Small Auxin-Upregulated RNA; SEL, Size Exclusion Limit; SCN, 
Stem Cell Niche; SKP1, S-phase Kinase-associated Protein1; CUL1, 
CULLIN1; RBX1, ring box protein1; ST, Symplastic Transport; TAA, 
Trp Aminotransferase; TIR1, Transport Inhibitor Response1; Trp, 
Tryptophan

Introduction
The natural auxin, indole-3-acetic acid (IAA), which regulates 

practically all plant development processes, is synthesized in plant 
foliage and mobilized to sink tissues by two types of transport; a 
rapid through of phloem and another that is carried out cell-cell and 
it known as polar auxin transport necessary for the auxin gradients 
establishment.1 Recently, it has been shown that auxin is also 
mobilized through channels calls plasmodesmata, movement known 
as symplastic transport  that complements at PAT.2 Studies several 
indicate that plants close PD due to callose deposition that causes a 
restriction of ST of auxins, affecting  stomata development, lateral 
roots and plants tropic responses, which this manuscript will review 
the ST importance in plant development.

Auxin response network

The word auxin comes from the Greek auxein which means “to 
grow” and was discovered by observing of coleoptile bending of 
Phalaris canariensis towards light. Years later, it was shown that this 
effect was due to auxin accumulation in area of tissue folding.3 It is 
now known that virtually all plant development is auxin regulated.4–8 
The auxin response network comprises the following events: i) 
homeostasis, ii) transport and iii) perception and signaling9 which 
are described below. i) Homeostasis, maintains the internal balance 
of IAA, through multiple and dynamic adjustments in synthesis, 

storage, catabolism and conjugation of IAA. In Arabidopsis, IAA 
biosynthesis from tryptophan (Trp) can be carried out by four different 
pathways.10–13 The pathway main involved at indole-3-pyruvic acid 
(IPA), where Trp is converted by trp aminotransferases (TAA) to IPA, 
which at the same time is transformed by flavin mono-oxygenases 
YUCCA (YUC) to IAA (Figure 1).14 ii) IAA is distributed in plant by 
two ways: one from the young leaf tissues where it is synthesized to 
sink tissues through the phloem and another through of PAT over short 
distances. The PAT requires influx carriers AUXIN1/LIKE-AUX1 
(AUX1/LAX) and PIN-FORMED efflux (PIN) and ATP-Binding 
Cassette/P-glycoprotein (ABCB/PGP) (Figure 1).15 iii) In perception 
and signaling events, when auxin concentration is low, the response is 
inhibited by the repressors Auxin/Indole-3-Acetic Acid (AUX/IAA) 
that sequester at the Auxin Response Factor transcription factors 
(ARF) and thereby prevent the expression of auxin early response 
genes. While, at auxin high concentrations it is perceived by nuclear 
receptor Transport Inhibitor Response1 (TIR1) binding to SCF 
complex (S-PHASE KINASE-ASSOCIATED PROTEIN1 (SKP1), 
CULLIN1 (CUL1), RING BOX PROTEIN1 (RBX1) and a F-box 
ligase E3 of ubiquitin, this allows auxin to bind AUX/IAA to the 
complex SCF. When this happens, the AUX/IAA are marked by the E3 
ubiquitin ligase and it degraded via proteasome, with the consequent 
release of the ARFs and genes expression: Small Auxin-Upregulated 
RNA (SAUR), GRETCHEN HAGEN3 (GH3) and AUX/IAA (Figure 
1).16–18 As articles numerous have shown PAT participation during the 
plant development 19,20 and recently it has been reported that auxins, 
in addition to moving through the PAT, also diffuse through ST21–24 

whereby both processes are described below.

Polar auxin transport 

In Arabidopsis thaliana the family of PIN efflux carriers consists 
of members eight. At primary root (PR) tip, auxins that arrive through 
the phloem are redistributed by PIN carriers different, creating whit it 
an auxin maximum in the Root Apical Meristem (RAM), essential for 
the indeterminate growth of root. In Figure 2A we can observed that 
PIN1 participates in auxin movement through vascular bundle; PIN4 
it concentrates in Quiescent Center (QC); PIN3 and PIN7 redistribute 
them in region of columella and PIN2 transports the auxins from 
lateral root cap to epidermis and the same carrier returns it through 
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Abstract

Plants are sessile organisms that depend on the root system that anchors them to the soil 
and it permited to taken water and nutrients. Root system development depends on natural 
auxin, indole-3-acetic acid. The auxin are transported in plants by the polar auxin transport 
(PAT) and the symplastic transport (ST) through of the plasmodesmata (PD). In the present 
work, the participation of the TS during the development of A. thaliana was analyzed.
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cortex towards the QC, maintaining an auxin maximum at root tip, 
necessary to supported the Stem Cell Niche (SCN) function. SCN is 
formed by QC surrounded by initial cells it which will give rise to 

cell types different that form the root (Figure 2B). It has been reported 
that efflux carriers PIN1 and PIN3 are involved in lateral roots (LR) 
development (Figure 2A).25,26

Figure 1 Auxin response network: The balance between auxin synthesis (green box), conjugation, storage and catabolism (rose boxes) controls the pool of 
IAA (blue disc). Cellular auxin content also depends on the auxin transporters (blue box). Binding of auxin to the SCFTIR1/AFB auxin receptor complexes, allows 
ubiquitination and degradation of the Aux/IAA protein, depressing activating ARF-regulated loci (yellow boxes).24

Figures 2 Auxin transport by the PINs carriers in Arabidopsis root: (A) At primary root tip the auxins are mobilized by PINs different, while only two members 
of PIN participates in root lateral development. (B) Schematic of Stem Cell Niche (SCN) of the primary root of Arabidopsis.27

Auxin symplastic transport through of the 
plasmodesmata

We can has observed in Figure 3A that auxins in addition to being 
mobilized through PAT, also it diffuses through plasmodesmata by the 
symplastic transport. It has been reported that the ST of auxin affects 
phototropism, lateral root emergence, and leaf hyponasty.23 Mellor, 
et al.,2 compared in vivo experimental data of Arabidopsis root auxin 

level with the level predicted by in silico experiments (Figure 3B). 
The results from both distributions showed very large discrepancies 
between auxin concentrations when only PAT was considered, 
unlike the high agreement when both PAT and ST were taken into 
account. This allowed the authors to recommend that in any process 
of plant development that involves the auxin transport, both types of 
movement must be considered.
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Figure 3 Components that modulate auxin movement through the polar transport and symplastic transport. (A) Schematic of the auxin fluxes. Although auxin 
is transported via influx and efflux carriers, the presence of PD enables diffusion of auxin directly in adjacent cells. (B) Differences between in silico distribution 
and experimental data with the DII-VENUS reporter line that allow us to observe auxin level in Arabidopsis root tip. Discrepancies between auxin concentrations, 
when only auxin transport by PINs is considered, are indicated in colors ranging from pink to red (left). While the coincidences, when both, the movement of 
auxin through the PINs and the diffusion through the PD are taken into account are represented in color from white to lilac (right).2

Plasmodesmata structure and regulation of its 
opening and closing 

The PD are nanoscopic channels that pass through the cell wall 
and cytoplasm neighboring cells connect. The molecules movement 
through of PD depends on their permeability, characteristic known 
as size exclusion limit (SEL), which is defined by the maximum size 
of a molecule capable of passing through PD28–31 and that depends 
on concentration gradient between adjacent cells. Proteins, RNAs, 
viruses, IAA and molecules of up to 80 kDa are mobilized through these 
PD.32 The PD permeability is regulated by mechanisms dependent and 
independent of callose (polymer of glucose linked by β-1,3 bonds) 

deposited in PD necks (Figure 4). The dependent mechanisms involve 
synthesis and degradation of the callose, while that it independent 
included the alteration in the frequency and changes in PD structure 
from simple to branched.33 Callose synthesis is carried out by callose 
synthases, CALLOSE SYNTHASE/GLUCAN SYNTHASE-LIKE 
(CALS/GSL) and it has been observed that callose levels high on 
PD neck close it and ST restrict. Proteins that help callose deposition 
on PD neck also participate in PD closure, such as PD-CALLOSE 
BINDING PROTEIN (PDCB)34,35 and PLASMODESMATAL-
LOCATED PROTEIN (PDLP) (Figure 4B).36,37 On the other hand, 
callose removal that results in PD opening is mediated by β-1,3-
glucanases (Figure 4A).38

Figure 4 Callose mediated plants open and close plasmodesmata: (A) A cartoon representing ‘open’ plasmodesmata (left). (B) ‘Closed’ plasmodesmata (right) 
due to over accumulation of callose in cell walls.38
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​ Callose participation on defense response plants

The plants defense response against invading pathogen was one 
of reported functions first of PD, because viruses, fungi and bacteria 
use PDs to invade them.39,40 To face the attack of pathogens, the plants 
expression increase of CALS/GSL, PDLP5, and PDCB and form a 
structure known as papillae that contains phytoalexins, reactive 
oxygen species, and defensins.41 Callose deposition in PD regulated 
by salicylic acid in response to pathogen attack, causing a decrease in 
SEL.42,43 An callose accumulation increase during the plant-bacteria 
interaction was reported in Arabidopsis exposed to Botrytis cinerea.44 
In study another, was observed an callose increase in strawberry 
leaves exposed to the physical interaction and at volatile compounds 
of Botrytis methylotrophicus.45 The aforementioned results suggest 
that plasmodemal closure prevents that pathogen spread to plant rest.

Plasmodesmata role during plant development

Callose is synthesized by a multi-subunit complex, where the 
catalytic subunit callose synthase is the most important.46 The 
Arabidopsis genome contains twelve CALS/GSL callose synthase 
genes.47 The Arabidopsis gsl8 mutant prevents callose accumulation 
in PD and stomatal development impairs. As the gsl8 mutation caused 
other alterations on plant development, were created gsl8 mutant 
dexamethasone conditioned (dsGSL8 RNAi) to analyzed the effect of 
callose on hypocotyl response to light and gravity. It was observed 
that hypocotyls of dsGSL8 RNAi seedlings in dexamethasone 
presence did not present characteristic bending in response to both 
stimuli and showed an callose absence in bending zone. So results of 
these experiments indicated that callose accumulation was necessary 
for hypocotyl bending in response to the two tropisms evaluated.48

On the other hand, Vatén et al.,49 reported that CALS3 is expressed 
in vascular bundle and in RAM, and that roots of three gain-of-
function mutants (it increased gene expression) in CALS3: cals3-1d, 
cals3 -2d and cals3-3d, collectively called cals3-d showed an aberrant 
pattern of movement marker, GFP encoded by pSUC2::GFP gene. 

In control seedlings pSUC2::GFP was mobilized in vascular bundle, 
while in homozygous line cals3-1d the marker disappeared and was 
partially restored in heterozygous line cals3-1d/+. cals3-d seedlings 
showed an extremely short primary root compared to wild type and 
when analyzing the callose accumulation during LR development 
with aniline blue, the mutant showed a greater callose accumulation 
respect to Wt. The lateral roots are induced from of structures known 
as lateral root primordia (LRP), whose development proceeds through 
of stages seven. In I stage, the founding cells of the pericycle are 
marked with auxins and later in the II-VII stages, cells it divide and 
form a dome that as it grows, successively breaks down the layers 
of the endodermis, cortex until reaching the epidermis. Interestingly, 
this development is regulated by auxins. Subsequently, auxins move 
towards tip the dome as it grows until they reach the meristems of the 
LR.50

As mentioned before, PDLP5 assists in callose deposition on PD 
neck and therefore contributes to plasmodesmal closure. Sager, et 
al.,51 observed that in I-II stages of the LRP development, PDLP5 are 
located in the endodermis, while in the IV-VI stages, in cortex and 
in epidermis when emerged the LR. Interestingly, they also observed 
that PDPL5 expression depends on auxin. The phenotype presented 
by the lines pdlp5-1 mutants and PDLP5OE overexpression was 
contrasting, pdlp5-1 showed a greater number of long LRs, while 
PDLP5OE seedlings presented a decrease in the PR and a growth 
of few LR and short. This behavior was attributed to an accelerated 
development of LRP in pdlp5-1 and a delay in PDLP5OE. Based on 
the aforementioned results, Sager, et al.,50 established a model that 
proposes that there is a transient symplastic isolation in some LRP 
development stages. In I-III stages, LRP is connected to phloem of 
the RP and PDLP5 is positioned on endodermis cells. In IV-VI stages, 
it is located in cortex, preventing GFP movement, while in VII stage, 
protein is positioned in epidermis, leaving at the LRP symplastically 
isolated from phloem of the RP. When the LR emerges, it develops 
its phloem and then symplastic connection with the phloem of RP is 
reestablished (Figure 5).

Figure 5 Progression of symplastic domains during lateral root primordia outgrowth.

Abbreviations: CF, CarboxyFluorescein; Co, Cortex; DZ, Differentiation Zone; En, Endodermis; Epi, Epidermis; EZ, Elongation Zone; LR, Lateral Root; LRP, 
Lateral Root Primordium; MZ, Meristematic Zone; PD, PlasmoDesmata; PDLP5, PlasmoDesmata-Located Protein 5; SEL, Size Exclusion Limit; Xpp, Xylem pole 
pericycle.52
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Another example of callose participation in the LRs development 
is the behavior observed in the mutant double of glucanases, pdbg1,2, 
where the PDs are closed because there is not callose degradation. 
These seedlings presented a greater callose accumulation in vascular 
bundle of the PR, compared to Wt. Furthermore, these lines showed 
an increase in the lateral roots density. By observing these seedlings 
whit more detail, they noticed that at the site where normally forms 
one LRP, in these mutants appears several LRPs, resulting in a greater 
of lateral root number. The authors concluded that ST through PD is 
critical for the initiation and properly positioning of LRP.51-53

Conclusions
The root system is essential for plant anchoring to soil and for 

absorption of water and nutrients. So understanding molecular 
mechanisms that regulate root architecture is crucial to improve 
nutrient uptake efficiency and yield in crops of agronomic importance. 
The formation of the lateral roots is an essential organogenic process 
to establish the root architecture. Analyzes numerous have shown 
that auxins are central regulators of LR development. It has recently 
been reported that a transient symplastic isolation during the LRPs 
development and their subsequent symplastic reconnection to the 
PR phloem is an important event for the proper LRP development. 
In this review, several examples were presented that show that ST of 
auxin is a fundamental element not only for the establishment of root 
architecture but also for the development of other plant structures, 
as well as in the regulation of tropic responses of plants to light and 
gravity.
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