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Abbreviations: E, envelope; M, membrane; N, nucleocapsid, 
S, spike 

Introduction
On December 31, 2019, chinese health authorities alerted the 

World Health Organization (WHO) to several cases of pneumonia 
without a recognized aetiologyin Wuhan City, Hubei province, 
China. The first cases were reported on December 8, 2019 and on 
March, 11, 2020 COVID-19 gained pandemic status.1 This pathogen 
was denominated as severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) by the Coronavirus Study Group and the disease 
was named coronavirus disease 2019 (COVID-19) by the WHO.2 

COVID-19 is affecting 217 countries and territories around the world 
and 2 international conveyances with more than 9.1 million confirmed 
cases and about 470 thousand confirmed deaths.1 Billions of people 
have been impacted due to mandatory lockdowns, isolations, and 
quarantines. Thus, the severe effect of the COVID-19 outbreak has 
imposed major challenges for global health, society and economy. 
Nowadays, the COVID-19 treatment and control are very difficult 
because there are no specific antiviral drugs or vaccines available. The 
prevention and supportive therapies are being implemented to avoid 
new cases and minimize clinical complications.3

Coronavirus

The current classification of coronaviruses recognizes 39 species 
in 27 subgenera, 5 genera and 2 subfamilies that belong to the 

family Coronaviridae, suborder Cornidovirineae, order Nidovirales 
and realm Riboviria. Coronaviridae are enveloped single-stranded 
ribonucleic acid (RNA) viruses that infect humans and animals. The 
size of positive-sense RNA genome of CoVsis between 26.2 and 
31.7 kb.The spike projections of these virions give the appearance 
of solar corona. The main structural proteins of these viruses are 
envelope (E), membrane (M), nucleocapsid (N), and spike (S) 
(Figure 1). Coronaviruses outbreak has been reported three times 
in the earlier of 21st century namely SARS in 2002 (severe acute 
respiratory syndrome caused by SARS-CoV), MERS in 2012 (Middle 
East respiratory syndrome caused by MERS-COV), and the most 
recent COVID-19, caused by the new coronavirus, SARS- CoV-
2.2 Seven type of coronaviruses cause human diseases. The four of 
them (HCoV-NL63, HCoV-229E, HCoV-OC43 and HKU1) induce 
only mild respiratory diseases, typically only in upper respiratory 
tract although some of them can cause severe infections in infants, 
young children, and elderly individuals.4 The two highly pathogenic 
and extremely invasive viruses, SARS-CoV and MERS-CoV, cause 
severe respiratory syndrome in humans and have high mortality rate, 
about 11 and 35 % for SARS-CoV and MERS-CoV, respectively.5,6 

The transmission rate of SARS-CoV-2 is much higher than SARS-
CoV and MERS-Cov and other flu-viruses.7 The clinical course of 
SARS and MERS was highly similar, and they also have similar 
pathogenesis.8 The coronaviruses attack patient’s lower respiratory 
system by invading the airway epithelial cells, parabronchial 
epithelial cells, alveolar epithelial cells, vascular endothelial cells 
and macrophages in the lung. The pathological changes include focal 
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Abstract

The pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) denominated COVID-19 is an important problem of world public health because 
do not have specific drugs and vaccines available to control the disease progression and 
the rapid virusspreading. SARS-CoV-2 genome resemble to other SARS-CoV andMERS-
COVcoronaviruses genomes, thus drugs developed for SARS and MERS treatment may 
be used for COVID-19. The aim of this work is discuss the molecular target of SARS-
CoV-2, the main protease, a chymotrypsin-like named as 3CLpro, for a rational devolpment 
of specific molecules anti-SARS-CoV-2 with broad-spectrum anti-coronavirus activities.
This study is a literature mini review using 47 articles obtained from Public Medline 
and Science directmainly from this year 2020. The coronaviruses infection is mediated 
by spike protein from viral capsid which bind to ACE2 receptor in the host cells which 
endocytes the viruses RNA, which is translated to proteins that are cleavead by proteases, 
mainly the 3CLpro. This enzyme is crucial to SARS-CoV-2 replication and its inhibition 
can prevent the virus replication. Thus, it is an important coronaviruses target because the 
amino acid sequence of 3CLpros from SARS, MERS and SARS-CoV-2 have high similarity. 
In silico studies have been demonstrated that synthetic small molecules, natural products, 
peptidomimetic inhibitors, and HIV inhibitors had different docking scores with SARS-
CoV-23CLpro. However, peptidomimetic inhibitors seems to be better inhibitors to this 
protease and promise dugs to treat COVID-19 and other diseases caused by coronaviruses.
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haemorrhagic necrotising pneumonia with exudative diffuse alveolar 
damage,which can be fatal. They also affect gastrointestinal system, 
kidney, liver, heart, and central nervous system.5–9

Importantly, SARS-CoV-2 shared approximately 80% of the 
genome (~30,000 bases) with SARS-CoV and almost all their 
encodedproteins are homologous and also shows some similarities 
to MERS-CoV genome.10Thus, it will be very important to study the 
relationship among SARS-CoV, MERS-CoV, and SARS-CoV-2 for 
developing broad-spectrum antiviral therapies. Accordingly, drugs 
and other therapies for treating SARS may be used as a reference 
for COVID-19 treatment. The viral lifecycle steps provide potential 
targets for drug therapy.11 Promising drug targets include nonstructural 
viral proteins because their sequence are found in non-variable region 
of RNA, such as main 3-chymotryps in-like protease (3CLpro), papain-
like protease(PLpro), RNA-dependent RNA polymerase, which share 
homology with other novel coronaviruses.12,13 Additional drug targets 
include viral entry, and immune regulationpathways.13,14

Infection and replication

The first step of viral lifecycle is the infection through the 
binding to a host cell receptor. The glycoprotein spike (S) on the 
outer surface of coronaviruses and the host transmembraneserine 
protease 2(TMPRSS2) are responsible for the attachmentto the 
angiotensin-converting enzyme 2 (ACE2)receptor andentry into the 
cell targets.15 This serine protease hydrolyzes specific peptide bonds 
in S protein and expose the ACE2receptor-bindingdomain.16 Furin, 
other transmembrane serine protease, can also be associated to ACE2 
receptor, cleaves the S protein and facilitate the entry of SARS-CoV-2 
in host cell after binding.17 Lung cells, enterocytes, nasal secretory 
cells co-express high levels of ACE2 and TMPRSS2.18 SARS-CoV 
infection reduces ACE2 expression in lung cells. Becauseloss of 
pulmonary ACE2 function is associated with acutelung injury, 
virus-induced ACE2 downregulation maybe important for disease 
pathology. ACE2 regulates the renin–angiotensin system (RAS). 
Therefore, a reduction in ACE2 function after viralinfection could 
result in a dysfunction of the RAS, whichinfluences blood pressure 
and fluid/electrolyte balance,and enhance inflammation and vascular 
permeability in the airways.18,19 Following receptor binding, the virus 
particle uses host cell receptors andendosomes to enter cells. SARS-
CoV-2 deliver its nucleocapsid and hijacking the cellular machinery 
to replicate in the cytoplasm.The RNA genome composes of six to 
ten open reading frames (ORFs). The virus synthesizes RNA via its 
RNA-dependent RNA polymerase and encodes two ORFs, ORF1a, 
that is the longest part of the RNA encodes for the replicases, and 
ORF1b, which expresses for two large replicative polyproteins 
(pp) including pp1a and pp1ab comprising about 4000 (~500 kDa) 
and 7000 (~800 kDa) amino acids.20T  hese polyproteins are auto 
catalytically processed to produce two proteases: a chymotrypsin-like 
proteaseserine protease (3CLpro Main Protease or 3CLpro) and a papain-
cysteine proteinases (PLpro). These polyproteins are further processed 
to generatefour structural proteins and sixteen non-structural 
proteins (nsps). The proteolytic processing of the sixteennsps by 
3CLproandPLpro is essential for virus replication and maturation 
because the nsps are involved in downstream binding and replication 
events including the formation of the replicase complex, which is 
essential for viral replication and transcription of the genome.21,22 The 
3CLpro (33.8 kDa) cleaves the poly protein 1abat 12 distinct sitesin 
most of peptide bonds involving Leu, Gln↓ (Ser,Ala,Gly-↓ marks 
the cleavage site)to generate nsps4 to 16 which are essential for 

viral replication, because they perform function as RNA dependent 
RNA polymerase, RNA binding proteins, exoribonuclease, helicase, 
methyl transferase, and unlike structural/accessory protein-encoding 
genes, such as S, M, E, N proteins, that are located at the 3’ end which 
exhibits excessive variability(Figure 1).23,24Among non-structural 
proteins, most play a vital role in coronaviruses replication. Structural 
proteins, however, are crucial for virion assembly as well as for 
infection.25 The inhibition the activity of 3CLpro would block SARS-
CoV-2 replication. The Xraystructures of this protease from SARS-
CoV-2, such as PDB:6W63; 6M2N; 6M2Q; 6Y2E; 6Y84; 6YB7, are 
available on protein databank (Figure 1).

SARS-CoV-2 and SARS-CoV share a very high (96-98%)
sequence identity for their 3CLpro and is located in a highly conserved 
region of coranaviruses genome.Therefore, it is a potentialtarget for 
anti-coronaviruses inhibitors screening and structure-based activity 
analyses and highthroughputstudies have identified potential inhibitors 
for SARS-CoV and MERS-CoV3CLpro.26 The structure and activity 
of SARS-CoV3CLpro has been unveiled and prompted the design 
of 3CLpro inhibitors as novelantivirals. SARS-CoV3CLpro features 
three domains: I3CLpro (comprising residues 8–101), II (comprising 
residues 102–184),and III (comprising residues 201–301). The active 
site regionspans domains I and II, which are β-barrel domains, while 
domainIII displays an α-helical organization. The cysteine residue 
145(Cys145) of the active site behaves as the nucleophile, while 
thehistidine residue 41 (His41) functions as the general acid base.27

Drug development anti-SARS-CoV-2

The scientific communityis investigating new drugs against 
SARS-CoV-2 and have come up with three strategies for developing: 
the first one is assay existing broad-spectrum anti-virals, such 
as interferons, ribavirin, and cyclophilin that are used to treat 
coronavirus pneumonia. The great advantage of these treatments is 
the biochemistry, pharmacologic, pharmacokinetic, dosages and side 
effects are known and they have been approved for the treating of viral 
infections. However, they are broad-spectrum and cannot kill corona 
viruses in a targeted manner.28 The second strategy is to use existing 
molecular databases to screen for molecules that may have therapeutic 
effect on SARS-CoV-2. High-throughput screening makes this 
strategy possible, and new functions of many drug molecules can be 
found. The third strategy is directly based on the genomic information 
and pathological characteristics of different coronaviruses to develop 
new targeted drugs from scratch. Theoretically, the drugs found 
through these therapies would exhibit better anti-coronavirus effects.29

Many compounds have been assayed against SARS-CoV-2 
3CLpro using combined structure-assisted drug design, virtual drug 
screening and high-throughput screening30 and some examples were 
discussed here. Pyridine-containingα-ketoamides, presented good 
pharmacokinetic properties in animal model and were detected at high 
concentrations in lung tissue and broncheo-alveolar lavagefluid within 
4 –24 hours after subcutaneous injections, demonstrating important 
lung tropism. Besides sub-cutaneous administration, inhalation of 
nebulized resultedin high and long-lasting (24 h) levels in lung tissue, 
withoutany adverse effects, suggesting that these α-ketoamides are 
potential candidates in COVID-19 therapy.31

A mechanism-based synthetic peptidomimetic inhibitor of 3CLpro, 
a Michael acceptor inhibitor N3, was identified by computer-aided 
drug design that can inhibit the 3CLpros of SARS-CoVand MERS-
CoV,32was shown to form a covalent and irreversible bond with 
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SARS-CoV-2 3CLpro.33 Furthermote, the high-throughput screening 
approach for identifying inhibitors of SARS-CoV-2 3CLpro, ebselen, 
an organo selenium compound with anti-inflammatory, anti-oxidant 

and cytoprotective properties, was assayed with N3. They had 
expressive antiviraland host cell protection activities demonstrating 
their potential against SARS-CoV-2.33

Figure 1 SARS-CoV-2 structure: SARS-CoV-2 capside showing major proteins and single-straded RNA (A), the model of 3CLpro a SARS-CoV-2 drug target 
(B) and (C) genome of SARS-CoV-2 and the large replicase polyprotein P1ab. The figure A, B and C were adaptaded from Moonchak V Projecto, references 29 
and 47 respectively.

The described inhibitors from different coronaviruses 3CLpros 

can be employed as anti-SARS-CoV-2, due to the high similarity of 
this protease among coronaviruses, as stated before. The majority 
of these inhibitors are bindcovalently active-site cysteine, including 
α-halocarbonyl, acrylamides, sulfonyl chlorides, aldehydes, isatines, 
or α-ketoheteraromates.34 However, they did not fit very well into the 
active site, because they are not peptide substrate of the protease. 
Interestingly, some compounds noncovalently binding to the active site 
of the 3CLpro seems to be a better strategy. A high-throughput screening 
identified pyrazolidinones, nitroanilides and α-aminoacylamidesas 
SARS-CoV3CLpro inhibitors with good antiviral inhibitory. But these 
molecules suffer from extensive metabolism and rapid clearance. 
Nevertheless, they are a promising starting point for further drug 
development.35

The anti-coronaviruses activity has been investigated in many 
plant-derived natural products and flavonoids, with diverse biological 
activities, have been shown to inhibit the 3CLpro.29Quercetin, a flavonoid 
compound, is widespread in fruits and vegetables, displays a great 
diversity of biological activities including anti-inflammatory, anti-
oxidant, anti-viral, anti-allergic, anti-cancer as well as vasoprotective.36 

Studies have found that quercet in exhibits antiviral properties against 
a variety of viruses, including Influenza A Virus, Hepatitis C Virus, 
Enterovirus, and SARS-CoV.37It has been confirmed that quercetin 
showed a good inhibitory effect on SARS-CoV3CLpro, about 82 %, 

expressed in Pichia pastoris. In addition, enzyme inhibition assays 
in vitro also showed that quercet in had inhibitory activity against 
SARS-CoV3CLpro.38 The 3CLpro sequence of SARS-CoV-2 is highly 
similar to that of SARS-CoV,28 thus, quercetin might have antiviral 
effects on SARS-CoV-2. This flavonoidwas docked to 3CLpro and was 
a good binder with energy of -5.6 kcal/mol. It also bind to Sprotein, 
ACE2, RNA-dependent RNA polymerase and PLpro indicating good 
potential against SARS-CoV-2.39 Quercetin has a wide range of 
sources with relatively low cost, so it is worth testing its efficacy 
against SARS-CoV-2 infection. Besides, many other plant derived 
compounds from Chinese herbal medicine and commom use such as 
andrographolide (labdane diterpenoid from Andrographis paniculata), 
glycyrrhizin (glycosilated saponin from Glycyrrhiza glabra), baicalin 
(glycosyloxyflavone obtained from Scutellariabaicalensis), luteolin 
(3′,4′,5,7-tetrahydroxyflavonecommon flavonoid), tanshione and 
derivates (abietane diterpenes isolated from Salviamiltiorrhiza), 
kampferol (natural flavonoid), hesperidin (flavanone glycoside found 
in citrus fruits), and betulinic acid (naturally occurring pentacyclic 
triterpenoid) was also docked to 3CLproand demonstrated to be very 
good binders of this protease. However these compounds were not 
specific to this protease and interacted to others viral targets, thus, 
they can be considered excellent adjuvants in the treatment of 
COVID-19.29,37,39,40

The approved HIV protease inhibitors were previously repurposed 
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for the treatment of the SARS outbreak in 2002 to 2004.41 So, they 
were hypothesized to inhibit the SARS-CoV-23CLpro. These drugs 
were docked inside the SARS-CoV-2 3CLpro. Importantly ritonavir, 
lopinavir, and darunavir had very good docking score of -8.878, 
-8.358 and -7.208, respectively. These three inhibitors are being tested 
against SARS-CoV-2.42 However, HIV protease is anaspartic protease 
and differs considerably from 3CLpro, but it also shares some common 
elements, such as a tetrahedral transition state and receptor pockets to 
recognize the amino acid side chains of the substrates.42,43

Peptidomimetic seems to be more potent inhibitors to 3CLpro. 
They have been used to treat many diseases like cancer, diabetes, 
autoimmune and viral and have high success rates in commercial 
development.44 These peptide inhibitors mimic a peptide bond and 
are better inhibitors than the others compounds. They bind to active 
site of SARS-CoV-2 3CLpro by multiple points in a combination of 
hydrophobic, hydrophilic and charged residues holding with hydrogen 
bonds. Peptide-like molecules provide a basic pharmacophore for the 
design of SARS-CoV-2 main protease inhibitors. The amide linkage 
backbone gives them the flexibility to fit confortably inside the 
binding site. Peptides may be the best alternative for small molecules 
for COVID-19 treatment, because they have great structural diversity, 
are easy to synthesize and are much less toxic when compared to 
synthetic and natural small molecules.45,46

Conclusion
A great diversity of compounds, synthetics or naturals, new or 

repurposed, have been extensively investigated against different 
targets of SARS-CoV-2 to develop drugs and pharmaceutical 
formulations in the shortest possible time to face the current pandemic. 
The 3CLproseems to be one of the best targets in coronaviruses, 
because the amino acid sequence of this protease is very similar to 
the 3CLpros from SARS and MERS, coronaviruses that infect humans 
and cause letal diseases. Besides, the 3CLpro inhibitors, specially the 
peptidomimetics, would be more specific to viral protease than the 
host enzymes, because 3CLpro-like proteaseare not commom in the 
human host. Thus, 3CLpro-baseddrugs for the treatment of COVID-19 
would be expected to be more tolerable for humans due to the fewer 
sides effects. However, this questions will only be answer after 
biological and clinical studies.
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