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Abbreviations: IR, infrared; FEDS, functionally-enhanced 
derivative spectroscopy; DFT, density functional theory; SNR, signal-
noise ratio

Introduction
Background of analytical problem 

Infrared spectroscopy (IR spectroscopy) is a well-known 
technique based on the interaction of IR radiation with the matter. 
By this interaction, changes of vibrational state of functional 
groups are produced.1–5 These changes are visualized in the IR 
spectra as signals associated with the wavelength of vibration, 
or as usually is done in chemistry, with the wavenumber, but also, 
with the intensity of absorbed radiation (absorbance).2,3 Thus, each 
molecule has associated a characteristic vibrational patter which 
gives qualitative and quantitative information about molecular 
structure. The component quantitative is resulting of Beer-Lambert 
Law which describes a linear relationship between the absorbance 
and the concentration.2,3 However, as the number of components in 
the analytic sample increases, the vibrational patter is increased in 
complexity. The reason of the above is that each component into the 
sample has its own vibrational patter and, in consequence, overlap of 
signals is produced. In addition, the molecular vibration is affected 
by the chemical environment, or being the same, by the intra- and 
intermolecular interactions, and therefore, as a result of the above, 
the signal broadening is produced and overlap is increased. But also, 
fluctuations of signals, displacements and the presence of noise are 
factors which are usually identified in the typical IR spectra.1–5 

Many applications of IR spectroscopy have been described, and 
these have been focused in the positive aspects of technique being 
generally omitted their limitations. Some applications for the study 
of complex and dynamic systems in microbiology and biotechnology 
are: to characterize molecular composition and stress response 
in foodborne pathogenic bacteria,6 analysis of microbial cell,7 
identification and discrimination of bacteria,8 real-time monitoring 
of nitrile biotransformations,9 microbial biodegradation pathways,10 
monitoring of bacterial biofilm formation on implantable devices,11 
characterization of structural properties of fungal-bacterial biofilms.12 
Applications in other fields also have been described and these 
are easily localized in specialized publications.1–5 From analytical 
overview, the quality analysis is directly related with the quality of 
information obtained. Thus, in a typical IR analysis, overlap and 
broadening of signals is not desired. However, in many cases this 
cannot be avoided and the analysis is strongly restricted. The above 
is a major problem when complexity of sample is increased (e.g., 
blood, biofilms, soils, animal and plant tissues, polymeric composites, 
among others), and therefore, the IR technique has seen limited their 
applications to relatively simple systems (e.g., individual molecules, 
binary systems) or to the identification of characteristic signals of one or 
more components in a mixture (e.g., identification of carbonyl groups 
of esters in a matrix of polypropylene).6-11 In order to resolve these 
problems different strategies have been used, being the theoretical and 
computational approach, and the mathematical approach, the more 
generalized, including Fourier transform, Derivative spectroscopy 
and Functionally-Enhanced Derivative Spectroscopy (FEDS). The 
purpose of this review is to provide a theoretical and applied overview 
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Abstract

Functionally-Enhanced Derivative Spectroscopy (FEDS) is a simple, fast and easy to use 
deconvolution method based on the combination of derivative spectroscopy and simple 
functional algorithms. As analytical technique has demonstrated to be a powerful tool 
for analysis of spectral signals of mid-infrared spectra. In specific, FEDS produces the 
separation of overlapped signals through a transformation of the spectrum that consists 
of making the signals more acute and intense depending on the signal to noise ratio. The 
purpose of this review is to provide a theoretical and applied overview of ability of FEDS 
for the improving spectral analysis of complex samples with importance in materials, food 
and biomedical engineering, environmental sciences, microbiology, biotechnology and 
biological, chemical and physical science, among others.
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about the ability of FEDS for the improving spectral analysis of 
complex samples with importance in materials, food and biomedical 
engineering, environmental sciences, microbiology, biotechnology, 
and biological, chemical and physical sciences, among others.

Previous approaches to FEDS 

Theoretical and computational approach is based in theoretical 
modeling of vibrational patters of molecules by advanced procedures, 
as Density Functional Theory or DFT, thus, theorical spectrum of 
molecules is obtained by the combination of theory and calculations. 
However, its application requires specialized knowledge in quantum 
and computational chemistry, specialized software (e.g., Gaussian 
software), and a relatively high computational cost depending of 
complexity of target problem. But also, the use of this approach is 
limited to simple molecules and systems, where the predicted spectrum 
is depending of computational code used, in consequence, it not rare that 
theoretical spectrum differs of experimental spectrum. Many examples 
for the study of simple molecules have been published, by instance, 
vibrational analysis of nucleic acids,13,14 amino acids as glycine and 
cysteine,15,16 or biological components as N-Acetyl-D-glucosamine 
and D-Glucuronic Acid.17 On the other hand, mathematical approach 
is based on to consider the spectrum as a continuous mathematical 
function and, therefore, several mathematical strategies can be used. 

The most common technique is the Fourier deconvolution or Fourier 
self-deconvolution algorithm.18–21 However, though from a conceptual 
approach the Fourier self-deconvolution is simple, its application is 
limited by the complexity of computation, the appearing of negative 
intensities from calculations, the highly sensitive to the noise and 
the appearing of ‘false’ signals resulting of mathematical arguments 
without physical meaning.18 

Other strategy is the derivative spectroscopy, mainly, the second-
order derivate. The derivation process yields helpful features associated 
with the spectrum such as maximum and minimum points (first-order 
derivative) and points of inflection (second-order derivative). Thus, 
the first-order derivative is the slope of the “spectrum function” in 
function of wavenumber, or wavelength. Whereas the first-order 
derivative has a value of zero at the same wavelengths where the 
original spectrum has a maximum or minimum, the second-order 
derivative has a value equal to zero where the first-order derivative 
reaches a minimum or maximum absorbance; but also, these points 
correspond to points of inflection in the original spectrum. In this 
way, the first and second order derivatives facilitate the extracting 
of features specifically associated with the spectra; however, upper 
derivatives are hardly rationalized since these don’t show a direct 
relation with original function.22,23 In addition, the most important 
effect of the derivative method is that broad bands are suppressed in 
comparison with sharp bands and, in consequence, this suppression 
increases with the increase of derivative order.22–27 An unwished effect 
of the derivative spectroscopy is that the signal-noise ratio (SNR) 
decreases as derivatives with higher orders are used; therefore, for 
the derivative process, it is important the control of the degree of 
smoothing that is applied in order to adapt the procedure to different 
analytical problems.22,23 

FEDS spectroscopy: fundaments 

In contrast with the strategies previously described, FEDS is 
a simple method for the deconvolution and the increase of spectral 
resolution of signals, based on the transformation of spectrum by the 
use of derivative algorithm enhanced by functional transformations. 

In addition, it has the following advantages: easy use, no require 
high computational capacity, adaptability according to objective, 
no requires advanced software, and produces the deconvolution of 
spectrum coherently with original IR spectrum.28 FEDS algorithm is 
based on the application of functional transformations of spectrum 
and first-order differentiation. By FEDS, the spectrum is considered 
a collection of data which correspond to points of function where for 
each value of wavenumber (v) is obtained one absorbance value (a). 
In consequence, a is function of v, and therefore it can be written 
to be w, where w denotes a function w:(v) which describes the IR 
spectrum. After, it is defined a new function y which is obtained by 
the calculation of inverse of respective absorbance. Thus, if a is the 
absorbance of w(v) then a-1 will be the absorbance of y(v). Later, first-
order derivate of y(v) is calculated with a ‘small’ consideration. 

Since the difference between two adjacent values of v is constant, 
the function w is given by the difference between absorbances instead 
of quotient between the difference of absorbance (i.e., aj+1 – aj where 
j denotes the j-th position in the spectrum) and the difference between 
respective v (i.e., vj+1 – vj). The above defines the auxiliary function p 
(the notation p comes from the Spanish word ‘primera’ alluding to 
the use of the first derivative). The following step consists in to use 
the mathematical operator 1/(|x|)0.5 where x denotes any mathematical 
argument, and it is used to define the working function called Function 
P. Note that this operator is equal to scale factor defined under the 
wavelet concept, which is used to define the general expression of 
‘mother wavelet’. Function P is defined for each vj as
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where (1 + aj) is an amplification factor for the assignation of 
a weight congruent with absorbance intensity (i.e., small values of 
absorbance in the experimental spectrum will be amplified using 
small values of aj since 1+ aj will be a small factor, contrary to the 
expected for large values of aj). It is important avoid confusions with 
the notation used, and therefore it is suggested the use of the same 
terms in order to achieve a language uniformity. Details description 
is given by Palencia.28

An important aspect for the correct application of FEDS is the 
pre-treatment of data. For each region of spectrum being analyzed, 
data must be auto-scaled with respect to the values of minimum and 
maximum absorbances (amin and amax, respectively). 
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where aj and bj are the experimental absorbance and the 
corresponding auto-scaled absorbance, respectively. In order to 
avoid calculation mistakes resulting to scaling from 0 to 1 during the 
application of FEDS algorithm, the zero absorbance was approximated 
by the calculation of average value between two adjacent values of 
absorbance satisfying that bj-1 < bj < bj+1 with bj = 0 (deterministic 
approximation). Since derivative spectrum is strongly sensitive to the 
noise in the original signal, the smoothing of spectral noise must be 
decreased by the use of average-based spectral filter (ABSF).28 ABSF 
is given by
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ABSF is the moving average with a data window of 3 and 20 cycles 
(N = 20). Thus, for each bj, bj+1 and bj+2 the corresponding average 
value is calculated, and subsequently, this procedure is repeated N 
times. However, as the spectrum line function in the absorbance 
domain is modified by the use of Equation 3, the same transformation 
of data is performed on values of wavenumber (v) in order to correct 
the displacements respect to original spectrum (i.e., maximum points 
in original spectrum should be the same in the original and smoothed 
spectra).28 

FEDS applications 

FEDS has been used for the structural study of humin and its 
interaction with humic acids by Fourier-transform mid-infrared 
spectroscopy permitting to identify the wavenumbers of hydroxyl 
groups of humic acids in extracted of humified organic matter.29 In 
a similar context, during edaphology studies, FEDS has been used 
for the study, by attenuated total reflectance spectroscopy, structural 
changes of humified organic matter by chemical perturbations 
via alkaline dissolution. Results showed that FEDS can be used to 
increase the differentiation between soil spectra, and possibility the 
identification of signals highly overlapped.30 In addition, FEDS have 
been used to determine weak signals in spectra of nitrogen-fixing 
bacterial biofilms.31 On the other hand, FEDS was used to explore the 
deconvolution of surface plasmon of inorganic nanoparticles. Though 
contraction of signal was obtained, results permits conclude that FEDS 
technique can be used for the building of mixture models of spectral 
signals in order to achieve a correlation with their components.32 The 
mid-infrared spectral characterization of fish scales: “Bocachico” 
(Prochilodus magdalenae) was performed by FEDS permitting the 
characterization of collagen and identification of hydroxyapatite.33 In 
the study of binary mixture, FEDS was used for the solve the problem 
of the overlap of spectral signals in mixtures of triethylamine-acetone 
demonstrating its capability to extract signals from small fluctuations 
of line function of IR spectra.34

Conclusion
FEDS is an analytical tool which enormous potential in the analysis 

of complex systems. It has as advantage its easy implementation and 
interpretation. In addition, it is adaptable to much types of problems 
and maximize the potential use of IR spectroscopy. Though the 
most of researches has been centered to the use of IR spectra, it is 
concluded from review of fundaments that FEDS can be implemented 
in any functional relationship of physical variables. On the other 
hand, FEDS transform of IR spectra permits the building of new 
and more specific spectral libraries, of target substances in many 
multicomponent systems with importance in biotechnology and 
bioengineering. In addition, it eases the comparison of spectra and 
the study of spectral signals with very low intensities permitting to 
extract analytical information from signal-noise mixtures, and the 
deconvolution of overlapped signals.
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