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Introduction
The heavy metals are generally characterized as the inorganic 

elements listed in d-orbital (transition elements) of modern periodic 
table with +2 oxidation state and low melting point. Cadmium (Cd), 
with atomic number 48 is soft and bluish-white in appearance. It is 
an important component of batteries, cadmium pigments and plating. 
It is also used as stabilizers for plastics, chemical stabilizers, metal 
coatings, alloys, barrier to control neutrons in nuclear reactions, 
television picture tubes and semiconductors as well as in molecular 
biology to block voltage-dependent calcium channels. Cadmium is 
highly toxic metal and plays an important role in industrial occupation. 
In present time, it is even more significant as environmental pollutant. 
Cadmium can severely damage various organs and biochemical 
systems of an organism and can induce severe acute and especially 
chronic intoxications. The major target for acute cadmium toxicity 
is liver, whereas severe nephrotoxicity has been observed in chronic 
cadmium poisoning. No any excretory mechanism is reported in 
humans for cadmium, as it accumulates in tissues of different organs. 
Any biological function of cadmium in mammals is not known. 
However, in marine diatoms it is reported to act as cofactor for few 
enzymes. This is the only known biological function of cadmium 
in a living system. Cadmium poisoning occurs through inhalation 
of cadmium fumes, intake of food, water and tobacco. In humans, 
the amount of cadmium deposition is very high in the kidney, liver, 
pancreas and lung. In kidney cortex, the half-life of cadmium is 
reported to be about 17–35 years. Low ratio of excretion and continued 
accumulation of cadmium in the organism is the main reason for 
long life of cadmium.1 Cadmium accumulates primarily in liver and 
kidney in humans.2 The long biological half-life (17–30 years) and 

almost no excretion of Cd facilitate continuous accumulation of it 
into the body systems. The bioaccumulation of Cd in mammalian 
systems may cause severe damage to nervous system, reproductive 
systems, gastrointestinal tract and mucous tissues and the occurrence 
of several ailments such as anaemia, osteoporosis, blood, brain, skin 
related diseases, malfunctioning of foetus which includes ablephary, 
club foot, exencephaly, micrognathia, non-hypertrophic emphysema, 
irreversible renal tubular injury, eosinophilia, chronic rhinitis 
and microphthalmia. The local agricultural communities in Japan 
consuming Cd contaminated rice developed itai-itai disease and renal 
abnormalities, including proteinuria and Glucosuria.1 Cadmium is 
one of six substances banned by the European Union’s Restriction on 
Hazardous Substances (RoHS) directive because of its carcinogenic 
potential in humans. The International Agency for Research on Cancer 
of USA has classified Cd into the category of carcinogens.3

Though the exact mechanism of their pathogenicity is not known 
but there are various reports indicating that the exposure of this heavy 
metal or it’s accumulation in the body systems may induce generation 
of free radicals4 which leads to the production of oxidative stress.1,5,6 
Cd may induce oxidative stress through the formation of ROS that 
results into the decrease in intracellular GSH content as it combines 
with thiol groups of enzymes involved in antioxidant mechanisms 
(SOD), catalase (CAT) and glutathione peroxidase (GPx) and exerts 
inhibitory effect on the level of their activities.7–9 Cd has been 
reported to form cadmium-selenium complexes in the active centre 
of GPx and shows the inhibition of enzyme activity. Complex III of 
the mitochondrial electronic transport chain has also been reported to 
be inhibited by Cd and increases production of ROS.10,11 damaging 
mitochondrial membrane. Cadmium can replace magnesium and 
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Abstract

Cadmium is highly toxic heavy metal and a significant environmental pollutant. 
Cadmium can severely damage various organs and biochemical systems. It can induce 
severe, acute and especially chronic intoxications. The major target for acute cadmium 
toxicity is liver, kidney and lungs. Cadmium is a highly carcinogenic element causing 
preferentially prostate, lung and gastro-intestinal cancers. Cadmium has a very high 
potential to induce ROS production. The toxicity by this metal ion induces oxidative 
stress in any organism by Fenton reaction which leads to alteration in the activities 
of certain antioxidant enzymes such as Cu- and Zn-Superoxide Dismutase (SOD), 
glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR) and 
glutathione-S-transferase (GST). Exposure to cadmium increases lipid peroxidation in 
mammalian systems. Plants which are rich in antioxidants such as flavonoids, alkaloids 
and other polyphenolic compounds have potential to be used against cadmium toxicity 
for removal of cadmium burden from system or for clinical recoveries of biochemical 
systems. Some plants and their phytochemicals have already shown their effect against 
cadmium toxicity in model organisms. This review presents an updated account of 
impact of cadmium exposure on different physiological and biochemical indices in 
mammalian systems. The article also includes the effects of various antidotes and 
certain plant based principles to protect from the adverse impact of cadmium exposure.
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calcium in certain biological systems.6 Cd induced oxidative stress 
is involved in causing DNA damage/mutations12,13 lipid peroxidation 
(LPO)14 and oxidation of proteins.

Another mechanism of Cd toxicity may be caused by zinc binding 
proteins. Zinc and cadmium contain the same common oxidation 
state (+2) and are almost the same in size. Due to their similarities, 
cadmium can replace zinc, magnesium and calcium in certain 
biological systems15–17 and iron and copper from various cytoplasmic 
and membrane proteins such as ferritin and apoferritin, thus 
increasing the pool of free metal ions1 in many biological systems. 
Cadmium can bind up to ten times more strongly than zinc in certain 
biological systems and is difficult to remove. The genotoxic potential 
of cadmium has also been studied and recognised as a clastogenic 
agent.15,18–20 Cadmium is known to cause its deleterious effect by 
deactivating DNA repair activity.21

This article presents an updated account of impact of cadmium 
exposure on different physiological indices in general and the enzymes 
in particular in mammalian systems. The description also includes 
the effects of various antidotes and certain plant based principles to 
protect the exposed subjects from cadmium toxicity or to alleviate the 
adverse impact of cadmium.

Entry of cadmium via different routes into 
the mammalian systems
Through food ingestion

The cadmium absorption in human through gastrointestinal tract is 
about 5% of ingested amount of cadmium. This value depends on the 
exact consumed dose and nutritional content of food.20–23 The major 
route of cadmium deposition in human body is through food and 
drink. About 95% of cadmium is absorbed through this way. Several 
factors are responsible and can interfere with this amount, such as 
trace elements like zinc, copper, iron and calcium and vitamin D. Low 
intake of these entire elements can increase cadmium content. The 

presence of other polyvalent cations also influence cadmium uptake. 
Cadmium absorption in rat jejunum was suppressed by relatively 
higher concentration of polyvalent cations including Magnesium, 
Chromium, Nickel and Strontium.24,25 It is reported that high fibre 
diet can also elevate the cadmium uptake through gastrointestinal 
tract.26 The iron stock of a mammal is a very important parameter for 
cadmium uptake. The cadmium uptake is higher in people with low 
iron diet in comparison to people with balance iron stock.27 This is 
the main reason why the anaemic and habitual iron deficient people 
such as children and menstrual women show higher cadmium uptake. 
Low iron blood levels also promote the expression of DCT-1gene. 
It is a metal ion transporter in the gastrointestinal tract, which plays 
an important role in divalent metal ion transport.28 Cadmium after 
absorption enters into the blood stream and binds with blood albumin, 
metallothionein and erythrocytes membranes. It can also bind to -SH 
group of some proteins such as glutathione and cysteine but to very 
less extent.29 The absorption of cadmium through various routes is 
summarised in Figure 1.

Through dermal contact

Not much work has been done for dermal absorption of cadmium 
in recent years. The two main mechanisms involved in dermal 
absorption of cadmium are: binding of a free cadmium ion in the 
epidermal keratins with sulfhydryl radicals of cysteine or induction 
and association with metallothionein.30,31 Researchers also study the 
absorption of cadmium chloride from soil and contaminated water by 
human corpse skin in a diffusion cell model32 and have explained the 
cadmium penetration efficiency to be 12.7% and 8.8% from water and 
soil, respectively, by skin; whereas the plasma uptake of cadmium 
from water and soil has been reported to be 0.07% and 0.01%, 
respectively.28,31,32 According to one such study, cadmium chloride 
solution on dorsum (shaved skin) of rat showed high mitotic index 
with infrequent ulcerative changes, hyperkeratosis and acanthosis.33 
They have also observed a significant increase in the level of cadmium 
concentration in liver, blood and kidney.

Figure 1 Absorption of cadmium through different routes.

Through inhalation

The intoxication of cadmium through inhalation is mainly by 
cigarette smoking. The human lung exposed to tobacco smoke can 
absorb 40-60% of cadmium present in it.23–34 An average cigarette 
smoker has further intake of 30μg per day. The cadmium body burden 
in an average 50-year-old non-smoker is about 15mg. whereas this 
goes double in case of an average life long smoker which is about 

30mg. Non-smokers generally have low cadmium blood levels; 
approximately 4-5 times lesser than a normal smokers.26 Many 
lung associated diseases are reported through cadmium inhalation. 
Cadmium-containing fumes exposed workers have been reported to 
develop acute respiratory distress syndromes (ARDS).35 The absorbed 
cadmium forms complex with cysteine–rich protein. This complex 
reaches to their target organs through blood circulation.
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Effect of cadmium on parameters of oxidative 
stress biomarkers in mammalian systems
Circulatory system

Researchers have reported that cadmium influences oxidative 
status and antioxidant systems of organisms, which is independent of 
the route of exposure. However, its toxicity ratio varies with respect 
to the route of administration. The experiments were performed by 
treating organisms with different routes like orally through food 
and water, intra peritoneal, and inhalation. In all cases the results 
show imbalance in antioxidant system. The intra peritoneal doses 
of 1mg/kg and 2mg/kg body weight of cadmium chloride solution 
are sufficient to induce alteration in blood parameters. This may lead 
to absolute and relative changes in granulocytes in peripheral blood 
and leukocytosis. However, no changes were recorded in haematocrit 
value.36 Expression of catalase gene is also induced by cadmium.37,38 

The glutathione reductase (GR) activity is also significantly 
increased in serum of rodent treated with cadmium chloride, whereas 
glutathione peroxidase (GPx) activity is lowered in blood level. The 
acute cadmium exposure to the organisms has been shown to cause 
elevation in the levels of ALT, AST and Alkaline phosphatase.39–41 
Cadmium also influences the protein content of organisms. Some 
researchers reported a significant decrease in total protein content, and 
concentrations of albumin and testosterone in serum.42,43

 Central nervous system

Cadmium has been shown to be very toxic for the central 
nervous system (CNS).44,45 It also affects the activity of certain 
enzymes and the level of neurotransmitters.46,47 The capability of 
cadmium as neurotoxin is well reported both in vivo and in vitro.48–50 
Acetylcholinesterase (AChE, EC 3.1.1.7) is a cholinergic esterase, 
that plays a very important role at neuromuscular junctions and 
cholinergic brain synapses, where it maintains the acetylcholine 
cycle. It is a membrane bound enzyme and inhibited by cadmium in a 
non-competitive manner indicating that cadmium is highly neurotoxic 
agent for mammals.51–53 These experiments were performed on 
rodents. They treated the rodents with cadmium by both in vitro and 
in vivo. The results of experiments explained the dose dependent 
differences in activities of enzymes. Pure AChE (electric eel AChE) 
is activated by low cadmium concentrations (0.01 mM). On the other 
hand, it was inhibited by higher Cadmium concentrations. 

Cadmium metal ions compete with other metal ions for enzyme 
binding site and induce conformational changes. Brain AChE was 
found to be inactivated by the same high Cadmium concentrations 
and show dose dependent inhibition. Cadmium shows time dependent 
inhibition of AChE, which is also reported by other workers.54,55 
The chronic cadmium administration in rat model causes significant 
decrease in glutathione content, superoxide dismutase (SOD) and 
glutathione S-transferase (GST) activity in rat brain. 

The Na+-K+ ATPase is an enzyme involved in metabolic energy 
production56,57 and neural excitability.58 The role of Mg2+-ATPase in 
brain is to maintain high intracellular Mg2+ concentration. Changes 
in the level of Mg2+ also affect the protein synthesis and cell growth 
in brain.59 Brain Na+-K+ATPase was activated by cadmium low 
concentration and inhibited in higher concentrations. Mg2+-ATPase 
was not affected by in vitro low dose cadmium exposure, whereas it 

was activated by its higher concentrations. The total antioxidant status 
of brain was decreased by 25% in cadmium intoxication, indicating 
that these metals can induce oxidative stress.60 Biotransformation 
of xenobiotics is known to involve several oxidative enzymes such 
as Aldehyde Oxidase (AO), Xanthine Oxidase (XO) and Sulphite 
Oxidase (SO). These are soluble enzymes containing molybdenum and 
haem found in brain and other tissues.61,62 Interaction and influence of 
cadmium with several cellular enzymes are summarised in Figure 2.

Hepatotoxic effect of cadmium

Liver is the major site for biotransformation of toxic compounds. 
In case of cadmium administration, liver is the primary target for 
cadmium-acute toxicity. The antioxidant system of liver is highly 
influenced by cadmium. It disturbs the ratio of activities of alanine 
transaminase (ALT) and aspartate transaminase (AST), the markers 
of liver associated disorders.63,64 The cadmium induced alterations in 
the activities of ALT and AST reflect the impact on the metabolic rate 
of protein degradation. Cadmium has been observed to exert adverse 
impact on the activity of lactate dehydrogenase (LDH). It is presumed 
that reactive oxygen species (ROS) production by cadmium initiates 
series of reactions which may result in alterations of metabolic 
indices.65,66

Some workers have reported that a single high dose of cadmium 
is more toxic in comparison to the same dose in several small doses 
given to mice by injection for long period.67 This treatment severely 
damages the liver of cadmium exposed animals. The pre-treatment 
of organisms with a small dose of cadmium induces metallothionein 
synthesis, which provides protection to acute liver toxicity. These 
results explained the association of cadmium with cystiene rich 
protein metallothionein, which protects liver by cadmium induced 
toxicity. By forming a complex with cadmium, metallothionein 
protects sensitive target enzymes and molecules in liver cells from 
being affected by cadmium ions.68,69 But at higher dose of cadmium 
administration the expression of mt-gene becomes much high, which 
causes easy transportation of cadmium in different tissues instead of 
protection.23,70,71

Cadmium poisoning has been found to cause much variation in 
the expression levels of antioxidative enzymes and proteins.72,73 For 
example, osmotic stress protein Osp94, Oxidative stress protein 
A170, heat shock protein (HSPs), Heme oxygenase-1 (HO-1) 
and signal transduction regulatory protein MAP kinase activated 
protein kinase-2 was reported to be increased, while multidrug 
resistance genes expression were markedly decreased. The genes 
involved in cell growth arrest induced by DNA damage such as 
GADD45 and GADD153 and stress enzymes like phospholipase A2 
and cytochrome P450 3A25 were also found to be increased. The 
expression of antioxidant enzymes such as catalase and Mn-SOD 
were suppressed, whereas the expression of Zn-SOD and Cu-SOD 
was not significant. Cadmium treatment has been found to reduce the 
expression of thiolsulfate sulfurtransferase (rhodanese), microsomal 
UDP-glucuronosyltransferase, NADPH cytochrome P450 and their 
isozymes. The researchers have found that enhancement of heme 
oxygenase-1 (HO-1) may be as a general response to oxidative 
stress.74,75 They have observed that the level of HO-1 increases more 
than15 fold in cadmium administration. Thus HO-1 is considered as 
one of the most sensitive biomarkers for acute cadmium toxicity.63–66
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Figure 2 Enzymes and proteins affected by cadmium.

Nephrotoxicity of cadmium

Accumulation of cadmium is very high in kidney and long-term 
exposure causes severe damage to kidney. Human workers exposed to 
cadmium and induction of proteinuria provide evidence that kidney is 
critical organ for cadmium toxicity.76 Cadmium causes proximal tubular 
damage and glomerular damage which leads to several diseases such as 
bicarbonaturia, glycosuria and phosphaturia. Cadmium also elevates 
the N-acetyl-beta-D-glucosaminindase (NAG) activity. Cadmium 
may alter the antioxidant system of kidney. The antioxidant enzymes 
like Cu Zn-SOD and total SOD, catalase and GPx were inhibited by 
acute cadmium intoxication. The inhibition in SOD activity may be 
due to the competition of cadmium and other essential metals (Cu 
and Zn) for metal transporter protein. The activity of GR and GPx is 
also inhibited by cadmium administration.77,78 These findings can be 
explained by direct interaction of cadmium and functional groups of 
enzymes such as cadmium binding to -SH groups, or metal cofactors 
replacement with cadmium from the enzyme active sites, whereas the 
decrease in GPx activity could be due to the competition between GPx 
and metallothioneins for S-amino acids.79

Cadmium mediated modulation of respiratory system 

The  heavy metals are known to adversely influence the 
environmental health and hence pose risks to human’s quality of life. 
The heavy metals contamination in physical environment has been 
reported to induce asthma in humans, especially in children.80 The 
different sources to release cadmium in the environment have been 
presented in various review articles.1,4,54,55,68 Cadmium exposure causes 
induction of asthma or pulmonary emphysema mostly in the humans, 
who mostly do tobacco smoking. Although no concrete mechanism 
is known so far in the context of cadmium induced pathogenesis in 
the lungs or respiratory tract of humans, several workers have found 
it to be involved as a key player in the genesis of lung diseases of 
smokers and the effect was possibly  through an imbalance in redox 
system of an exposed individual and also via modulation of functions 

of macrophages.81 The analysis of urine is considered to estimate 
the body burden of cadmium in smokers but it may not reflect the 
true value as cadmium also accumulates in various specific tissues.81 
Asthma, an allergic disease, is known to be mediated via increased 
level of IgE sensitization due to heavy metals exposure. In one of the 
studies concerning this issue in Korean adults, it has been suggested 
that their exposure to cadmium had caused increase in the level of this 
heavy metal in their blood samples. Some workers have hypothesized 
that the presence of higher concentration of cadmium in the blood 
may be associated with onset and severity of asthma in the majority 
of Korean adults. Their epidemiological studies have indicated rise in 
the level of total / allergen-specific IgE82 in this condition.

Remediation strategy for cadmium toxicity
Through phytochemicals

Natural products are well known for their antioxidant properties. 
These natural compounds mainly exert their antioxidant action 
by metal chelating and free radical scavenging.8,83 Apple and their 
derivatives are already known for their nutritive value, as they are rich 
in antioxidants.84,85 These antioxidants include flavonoids (flavonols, 
quercetin, catechins), vitamins and phenolic acids (quercetin 
glycosides, epicatechin, procyanidins). Researchers have reported 
that apple derivatives are very useful against cadmium toxicity. Rat 
exposed to cadmium solutions show a high number of micronuleated 
cells in hepatocytes. The administration of apple juice has ameliorated 
the cadmium induced genotoxicity.84 The reasons behind this 
protection may be due to the presence of antioxidant activity of 
apple juice. Previous works have also shown that quercetin, a major 
content of apple, is very effective against oxidative DNA damage.86,87 
These workers have demonstrated low level of catalase activity after 
apple juice administration in cadmium exposed rats. This reduction 
in catalase activity may be explained in terms of the antioxidative 
properties of polyphenols present in apples.
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The elderberries are also having good nutritive value and their 
antioxidant content is also high. They are rich in polyphenolic 
compounds especially flavonols. These compounds provide 
antioxidant activity and protection against injurious effect of various 
toxins including heavy metals.88–90 Some workers have shown that 
elderberries have no effect on elevated cadmium concentration in 
kidney and bones of rat. But it improved the function of liver and 
kidney in cadmium intoxicated rat.91 The GR activity was lowered 
in the serum of rats treated with both elderberry and cadmium in 
comparison to cadmium treated rats. The workers displayed that the 
rats treated with cadmium alone exhibited lower GPx activity which 
was recovered after the administration of elderberry lyophilisate. 

Rosemary (Rosmarinus officinalis) is well known for their 
therapeutic action against bronchial asthma, inflammatory diseases, 
cataract, hepatotoxicity, atherosclerosis, peptic ulcer and poor sperm 
quality.92 This therapeutic action of rosemary is due to presence of 
rosamic acid, a caffeic acid derivative. In other hand, the aqueous 
extract of rosemary also mitigates the cadmium chloride mediated 
hepatotoxicity. Rosemary also balances the antioxidant system of 

rodents. Studies in recent years have explained that rosemary can 
suppress the MDA level and stimulate synthesis of antioxidative 
enzymes such as CAT, GSH, and SOD.93,94 The antioxidant properties 
of some of the plants involved in treatment of cadmium induced 
toxicity are summarized in Table 1.95–107

Curcumin existing n two different chemical forms i.e. keto and 
enol is reported to act as a potential antioxidant in several studies into 
rodents and in vitro models. It has been shown that curcumin has the 
ability to protect the animal from cadmium induced nephrotoxicity, 
neurotoxicity108–110 and hepatotoxicity. It was also observed that 
curcumin prevents cadmium induced hepatotoxicity in rodents.111 
Moreover, it also regulates the level of trace elements which are 
involved in cadmium poisoning such as Zn and Iron. According to 
several researchers, the combined dose of curcumin with metal ions or 
with vitamins is more effective in cadmium toxicity and it can prevent 
the organisms from oxidative damage. It can induce MT expression 
and balance the SOD activity.110,111 The keto-enol tautomers of 
curcumin are displayed in Figure 3.

Figure 3 Keto-enol tautomers of curcumin with free radical scavenging activity.

Through antioxidants

Vitamins are metabolically active and provide protection 
against free radical stress induced by various toxic compounds. 
Pretreatment of vitamin E against cadmium administration results in 
the restoration of the normal hematological indices and reduction in 
the lipid peroxidation. The combined effects of vitamins have been 
found more effective against oxidative stress. It is reported that 
mixed supplementation of vitamin C and E reduces the ROS induced 
testicular damage. This synergistic effect of vitamins ameliorates 
normal testicular functions of cadmium exposed rats.112

Through metals ions as antidotes

By increasing the concentration of other useful metal ions in 
dietary supplement can reduce the cadmium body burden in rodents. 
It is well reported that zinc and magnesium supplementation reduces 
the cadmium deposition in tissues of rabbits; zinc being more 
effective in kidney as compared to magnesium.73 However, some 

workers have suggested that magnesium as a supplement in diet can 
reduce cadmium burden as it did not disturb any metal ion reservoir. 
On the other hand, Zn supplementation has been found to reduce the 
Mg concentration in blood by increasing its excretion. Magnesium 
provides high therapeutic range against heavy metal toxicity, and 
therefore further investigations are required to validate these results, 
especially against cadmium.113 Selenium also shows protective 
properties in cadmium toxicity. The major effect of selenium has 
been demonstrated on blood parameters. The administration of Se in 
cadmium toxicity significantly increases the counts of lymphocytes, 
erythrocytes (RBCs), platelets (PLTs) and the level of haemoglobin 
(Hb).114,115

Combination therapy

Combination therapy referred to the administration of two or 
more than two medications simultaneously to treat a single disease 
at the same time. The chelation therapy refers to the administration 
of two chelating agents that may immobilize or trap the toxic metals 
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from different tissues of mammalian systems.116–119 In such therapy, 
the co-administration of an amino acid, an essential metal,120 and/or 
dietary nutrients with the chelating agent, has been found to provide 
better recoveries.5,119 The co-administration of phytochemicals with 
chelating agents, dietary nutrients or essential metal may be useful 
in the alleviation of cadmium toxicities. In mammalian systems, the 
in-depth clinical studies with different combinations of chelating 

agents, dietary nutrients, essential metals in association with those of 
antioxidants are required to be done for the benefit with the least side 
effects. It is also important to find out the suitable dose and duration 
for the treatment to determine the optimal therapeutic index of drug(s) 
to be given in isolation or in different combinations in order to achieve 
optimum benefit. 

Table 1 Plants and their compounds used in the remediation of cadmium toxicity in mammalian systems

Plant name Family Bioactive compounds References

Apple

(Malus domestica)
Rosaceae Flavonols, quercetin and catechins 95,96

Elderberry

(Sambucus nigra)

Adoxaceae
Anthocyanins, 

flavonoids, vitamin C and pectins
88,97

Fenugreek

(Trigonella foenum raecum)
Leguminosae Polyphenolic flavonoids 98,99

Garlic

(Allium sativum)
Amaryllidaceae Allicin 100,101

Mimosa (Mimosa 
caesalpiniifolia) Mimosaceae Mimosin, saponins, alkaloids and 

terpenoids 102

Oranges

(Citrus sinensis)
Rutaceae Naringenin 103

Rosemary (Rosmarinus 
officinalis) Lamiaceae Rosmarinic acid, carnosic acid and 

carnosol
104,105

Turmeric

(Curcuma onga)
Zingiberaceae Curcumin 106–108

Conclusion
Cadmium has a very high potential to induce oxidative stress via 

production of ROS and alterations in antioxidant systems. The toxicity 
caused by cadmium is mainly due to the formation of complexes with 
sulphydryl group of several enzymes and proteins thereby causing 
perturbations in the three-dimensional conformations or by replacing 
the divalent metal ions from their catalytic pockets which are 
essentially required by concerned proteins/enzymes as cofactors for 
their optimal biological activity. In this situation, these biomolecules 
tend to lose their native conformations due to loss of non-covalent 
and weak interactions responsible for stabilising their structures, 
which lead to serious bearings on to their biological activities and 
finally the cellular health. Cadmium also chelates with proteins which 
utilise metal ions as a cofactor. Cadmium replaces other divalent 
metal ions and disrupts the conformation of proteins which leads to 
inactivation of associated biological function. All cells tend to make 
reductive environment. Since cadmium disturbs the normal redox 
potential in cells, it results into activation and production of hydrogen 
peroxides and free radicals, which are responsible for damage of key 
cellular ingredients such as protein, nucleic acid and lipids. Some 
plants and their phytochemicals already have been shown for their 
effects against cadmium toxicity in different model organisms. The 

oxidative stress could be ameliorated by different antioxidants, both 
herbal and synthetic. The amelioration by plant based principles is of 
great significance because they are highly cost effective and exert no 
side effects. In addition to them, the application of certain vitamins 
and chelating molecules is being tried with the expectation that they 
would make coordinate complexes with these heavy metals and help 
remove them thereby making the affected organs free from metal’s 
burden. Plant based natural compounds such as flavonoids, alkaloids 
and other polyphenolic compounds could be used against cadmium 
toxicity for removal or reduction of cadmium burden from various 
biological systems. Although the co-administration of antioxidants 
(natural, herbal, or synthetic) with other chelating agents may improve 
removal of this toxic metal from the biological systems, the in-depth 
clinical studies with newer chelating agents are required to assess 
their adverse effects. 
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