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Abstract

Cadmium is highly toxic heavy metal and a significant environmental pollutant.
Cadmium can severely damage various organs and biochemical systems. It can induce
severe, acute and especially chronic intoxications. The major target for acute cadmium
toxicity is liver, kidney and lungs. Cadmium is a highly carcinogenic element causing
preferentially prostate, lung and gastro-intestinal cancers. Cadmium has a very high
potential to induce ROS production. The toxicity by this metal ion induces oxidative
stress in any organism by Fenton reaction which leads to alteration in the activities
of certain antioxidant enzymes such as Cu- and Zn-Superoxide Dismutase (SOD),
glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR) and
glutathione-S-transferase (GST). Exposure to cadmium increases lipid peroxidation in
mammalian systems. Plants which are rich in antioxidants such as flavonoids, alkaloids
and other polyphenolic compounds have potential to be used against cadmium toxicity
for removal of cadmium burden from system or for clinical recoveries of biochemical
systems. Some plants and their phytochemicals have already shown their effect against
cadmium toxicity in model organisms. This review presents an updated account of
impact of cadmium exposure on different physiological and biochemical indices in
mammalian systems. The article also includes the effects of various antidotes and
certain plant based principles to protect from the adverse impact of cadmium exposure.
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Introduction

The heavy metals are generally characterized as the inorganic
elements listed in d-orbital (transition elements) of modern periodic
table with +2 oxidation state and low melting point. Cadmium (Cd),
with atomic number 48 is soft and bluish-white in appearance. It is
an important component of batteries, cadmium pigments and plating.
It is also used as stabilizers for plastics, chemical stabilizers, metal
coatings, alloys, barrier to control neutrons in nuclear reactions,
television picture tubes and semiconductors as well as in molecular
biology to block voltage-dependent calcium channels. Cadmium is
highly toxic metal and plays an important role in industrial occupation.
In present time, it is even more significant as environmental pollutant.
Cadmium can severely damage various organs and biochemical
systems of an organism and can induce severe acute and especially
chronic intoxications. The major target for acute cadmium toxicity
is liver, whereas severe nephrotoxicity has been observed in chronic
cadmium poisoning. No any excretory mechanism is reported in
humans for cadmium, as it accumulates in tissues of different organs.
Any biological function of cadmium in mammals is not known.
However, in marine diatoms it is reported to act as cofactor for few
enzymes. This is the only known biological function of cadmium
in a living system. Cadmium poisoning occurs through inhalation
of cadmium fumes, intake of food, water and tobacco. In humans,
the amount of cadmium deposition is very high in the kidney, liver,
pancreas and lung. In kidney cortex, the half-life of cadmium is
reported to be about 17-35 years. Low ratio of excretion and continued
accumulation of cadmium in the organism is the main reason for
long life of cadmium." Cadmium accumulates primarily in liver and
kidney in humans.”> The long biological half-life (17-30 years) and

almost no excretion of Cd facilitate continuous accumulation of it
into the body systems. The bioaccumulation of Cd in mammalian
systems may cause severe damage to nervous system, reproductive
systems, gastrointestinal tract and mucous tissues and the occurrence
of several ailments such as anaemia, osteoporosis, blood, brain, skin
related diseases, malfunctioning of foetus which includes ablephary,
club foot, exencephaly, micrognathia, non-hypertrophic emphysema,
irreversible renal tubular injury, eosinophilia, chronic rhinitis
and microphthalmia. The local agricultural communities in Japan
consuming Cd contaminated rice developed itai-itai disease and renal
abnormalities, including proteinuria and Glucosuria.! Cadmium is
one of six substances banned by the European Union’s Restriction on
Hazardous Substances (RoHS) directive because of its carcinogenic
potential in humans. The International Agency for Research on Cancer
of USA has classified Cd into the category of carcinogens.?

Though the exact mechanism of their pathogenicity is not known
but there are various reports indicating that the exposure of this heavy
metal or it’s accumulation in the body systems may induce generation
of free radicals* which leads to the production of oxidative stress.!*¢
Cd may induce oxidative stress through the formation of ROS that
results into the decrease in intracellular GSH content as it combines
with thiol groups of enzymes involved in antioxidant mechanisms
(SOD), catalase (CAT) and glutathione peroxidase (GPx) and exerts
inhibitory effect on the level of their activities.”” Cd has been
reported to form cadmium-selenium complexes in the active centre
of GPx and shows the inhibition of enzyme activity. Complex III of
the mitochondrial electronic transport chain has also been reported to
be inhibited by Cd and increases production of ROS.!*!"' damaging
mitochondrial membrane. Cadmium can replace magnesium and
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calcium in certain biological systems.® Cd induced oxidative stress
is involved in causing DNA damage/mutations'>!* lipid peroxidation
(LPO)' and oxidation of proteins.

Another mechanism of Cd toxicity may be caused by zinc binding
proteins. Zinc and cadmium contain the same common oxidation
state (+2) and are almost the same in size. Due to their similarities,
cadmium can replace zinc, magnesium and calcium in certain
biological systems'>!7 and iron and copper from various cytoplasmic
and membrane proteins such as ferritin and apoferritin, thus
increasing the pool of free metal ions' in many biological systems.
Cadmium can bind up to ten times more strongly than zinc in certain
biological systems and is difficult to remove. The genotoxic potential
of cadmium has also been studied and recognised as a clastogenic
agent.’>1¥20 Cadmium is known to cause its deleterious effect by
deactivating DNA repair activity.”!

This article presents an updated account of impact of cadmium
exposure on different physiological indices in general and the enzymes
in particular in mammalian systems. The description also includes
the effects of various antidotes and certain plant based principles to
protect the exposed subjects from cadmium toxicity or to alleviate the
adverse impact of cadmium.

Entry of cadmium via different routes into
the mammalian systems

Through food ingestion

The cadmium absorption in human through gastrointestinal tract is
about 5% of ingested amount of cadmium. This value depends on the
exact consumed dose and nutritional content of food.?*** The major
route of cadmium deposition in human body is through food and
drink. About 95% of cadmium is absorbed through this way. Several
factors are responsible and can interfere with this amount, such as
trace elements like zinc, copper, iron and calcium and vitamin D. Low
intake of these entire elements can increase cadmium content. The
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presence of other polyvalent cations also influence cadmium uptake.
Cadmium absorption in rat jejunum was suppressed by relatively
higher concentration of polyvalent cations including Magnesium,
Chromium, Nickel and Strontium.*** It is reported that high fibre
diet can also elevate the cadmium uptake through gastrointestinal
tract.?® The iron stock of a mammal is a very important parameter for
cadmium uptake. The cadmium uptake is higher in people with low
iron diet in comparison to people with balance iron stock.?’” This is
the main reason why the anaemic and habitual iron deficient people
such as children and menstrual women show higher cadmium uptake.
Low iron blood levels also promote the expression of DCT-1gene.
It is a metal ion transporter in the gastrointestinal tract, which plays
an important role in divalent metal ion transport.® Cadmium after
absorption enters into the blood stream and binds with blood albumin,
metallothionein and erythrocytes membranes. It can also bind to -SH
group of some proteins such as glutathione and cysteine but to very
less extent.” The absorption of cadmium through various routes is
summarised in Figure 1.

Through dermal contact

Not much work has been done for dermal absorption of cadmium
in recent years. The two main mechanisms involved in dermal
absorption of cadmium are: binding of a free cadmium ion in the
epidermal keratins with sulfhydryl radicals of cysteine or induction
and association with metallothionein.3*3! Researchers also study the
absorption of cadmium chloride from soil and contaminated water by
human corpse skin in a diffusion cell model*? and have explained the
cadmium penetration efficiency to be 12.7% and 8.8% from water and
soil, respectively, by skin; whereas the plasma uptake of cadmium
from water and soil has been reported to be 0.07% and 0.01%,
respectively.?83132 According to one such study, cadmium chloride
solution on dorsum (shaved skin) of rat showed high mitotic index
with infrequent ulcerative changes, hyperkeratosis and acanthosis.*
They have also observed a significant increase in the level of cadmium
concentration in liver, blood and kidney.

GI Tract

Through DCT-1 metal
transporter & albuminion .

High fiber diet Low iron and
polyvalent metal ion.

Respiration
In association with
cystiene rich protein.
-l /

Figure | Absorption of cadmium through different routes.

Through inhalation

The intoxication of cadmium through inhalation is mainly by
cigarette smoking. The human lung exposed to tobacco smoke can
absorb 40-60% of cadmium present in it.*3* An average cigarette
smoker has further intake of 30pug per day. The cadmium body burden
in an average 50-year-old non-smoker is about 15mg. whereas this
goes double in case of an average life long smoker which is about

Dermal absorption

Binding with sulphydryl
radical of protemn and
metallothionein

30mg. Non-smokers generally have low cadmium blood levels;
approximately 4-5 times lesser than a normal smokers.”* Many
lung associated diseases are reported through cadmium inhalation.
Cadmium-containing fumes exposed workers have been reported to
develop acute respiratory distress syndromes (ARDS).* The absorbed
cadmium forms complex with cysteine-rich protein. This complex
reaches to their target organs through blood circulation.
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Effect of cadmium on parameters of oxidative
stress biomarkers in mammalian systems

Circulatory system

Researchers have reported that cadmium influences oxidative
status and antioxidant systems of organisms, which is independent of
the route of exposure. However, its toxicity ratio varies with respect
to the route of administration. The experiments were performed by
treating organisms with different routes like orally through food
and water, intra peritoneal, and inhalation. In all cases the results
show imbalance in antioxidant system. The intra peritoneal doses
of Img/kg and 2mg/kg body weight of cadmium chloride solution
are sufficient to induce alteration in blood parameters. This may lead
to absolute and relative changes in granulocytes in peripheral blood
and leukocytosis. However, no changes were recorded in haematocrit
value.’® Expression of catalase gene is also induced by cadmium.?’3#
The glutathione reductase (GR) activity is also significantly
increased in serum of rodent treated with cadmium chloride, whereas
glutathione peroxidase (GPx) activity is lowered in blood level. The
acute cadmium exposure to the organisms has been shown to cause
elevation in the levels of ALT, AST and Alkaline phosphatase.®*!
Cadmium also influences the protein content of organisms. Some
researchers reported a significant decrease in total protein content, and
concentrations of albumin and testosterone in serum.*>#

Central nervous system

Cadmium has been shown to be very toxic for the central
nervous system (CNS).*# Tt also affects the activity of certain
enzymes and the level of neurotransmitters.**4” The capability of
cadmium as neurotoxin is well reported both in vivo and in vitro.*
Acetylcholinesterase (AChE, EC 3.1.1.7) is a cholinergic esterase,
that plays a very important role at neuromuscular junctions and
cholinergic brain synapses, where it maintains the acetylcholine
cycle. It is a membrane bound enzyme and inhibited by cadmium in a
non-competitive manner indicating that cadmium is highly neurotoxic
agent for mammals.’'> These experiments were performed on
rodents. They treated the rodents with cadmium by both in vitro and
in vivo. The results of experiments explained the dose dependent
differences in activities of enzymes. Pure AChE (electric eel AChE)
is activated by low cadmium concentrations (0.01 mM). On the other
hand, it was inhibited by higher Cadmium concentrations.

Cadmium metal ions compete with other metal ions for enzyme
binding site and induce conformational changes. Brain AChE was
found to be inactivated by the same high Cadmium concentrations
and show dose dependent inhibition. Cadmium shows time dependent
inhibition of AChE, which is also reported by other workers.’
The chronic cadmium administration in rat model causes significant
decrease in glutathione content, superoxide dismutase (SOD) and
glutathione S-transferase (GST) activity in rat brain.

The Na'™-K* ATPase is an enzyme involved in metabolic energy
production®®*” and neural excitability.’® The role of Mg**-ATPase in
brain is to maintain high intracellular Mg>* concentration. Changes
in the level of Mg?" also affect the protein synthesis and cell growth
in brain.® Brain Na™-K*ATPase was activated by cadmium low
concentration and inhibited in higher concentrations. Mg**-ATPase
was not affected by in vitro low dose cadmium exposure, whereas it
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was activated by its higher concentrations. The total antioxidant status
of brain was decreased by 25% in cadmium intoxication, indicating
that these metals can induce oxidative stress.®” Biotransformation
of xenobiotics is known to involve several oxidative enzymes such
as Aldehyde Oxidase (AO), Xanthine Oxidase (XO) and Sulphite
Oxidase (SO). These are soluble enzymes containing molybdenum and
haem found in brain and other tissues.®"* Interaction and influence of
cadmium with several cellular enzymes are summarised in Figure 2.

Hepatotoxic effect of cadmium

Liver is the major site for biotransformation of toxic compounds.
In case of cadmium administration, liver is the primary target for
cadmium-acute toxicity. The antioxidant system of liver is highly
influenced by cadmium. It disturbs the ratio of activities of alanine
transaminase (ALT) and aspartate transaminase (AST), the markers
of liver associated disorders.®** The cadmium induced alterations in
the activities of ALT and AST reflect the impact on the metabolic rate
of protein degradation. Cadmium has been observed to exert adverse
impact on the activity of lactate dehydrogenase (LDH). It is presumed
that reactive oxygen species (ROS) production by cadmium initiates
series of reactions which may result in alterations of metabolic
indices.*

Some workers have reported that a single high dose of cadmium
is more toxic in comparison to the same dose in several small doses
given to mice by injection for long period.” This treatment severely
damages the liver of cadmium exposed animals. The pre-treatment
of organisms with a small dose of cadmium induces metallothionein
synthesis, which provides protection to acute liver toxicity. These
results explained the association of cadmium with cystiene rich
protein metallothionein, which protects liver by cadmium induced
toxicity. By forming a complex with cadmium, metallothionein
protects sensitive target enzymes and molecules in liver cells from
being affected by cadmium ions.®*® But at higher dose of cadmium
administration the expression of mt-gene becomes much high, which
causes easy transportation of cadmium in different tissues instead of
protection. 707!

Cadmium poisoning has been found to cause much variation in
the expression levels of antioxidative enzymes and proteins.”>”® For
example, osmotic stress protein Osp94, Oxidative stress protein
A170, heat shock protein (HSPs), Heme oxygenase-1 (HO-1)
and signal transduction regulatory protein MAP kinase activated
protein kinase-2 was reported to be increased, while multidrug
resistance genes expression were markedly decreased. The genes
involved in cell growth arrest induced by DNA damage such as
GADD45 and GADDI153 and stress enzymes like phospholipase A2
and cytochrome P450 3A25 were also found to be increased. The
expression of antioxidant enzymes such as catalase and Mn-SOD
were suppressed, whereas the expression of Zn-SOD and Cu-SOD
was not significant. Cadmium treatment has been found to reduce the
expression of thiolsulfate sulfurtransferase (rhodanese), microsomal
UDP-glucuronosyltransferase, NADPH cytochrome P450 and their
isozymes. The researchers have found that enhancement of heme
oxygenase-1 (HO-1) may be as a general response to oxidative
stress.”” They have observed that the level of HO-1 increases more
thanl5 fold in cadmium administration. Thus HO-1 is considered as
one of the most sensitive biomarkers for acute cadmium toxicity.®¢
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Figure 2 Enzymes and proteins affected by cadmium.
Nephrotoxicity of cadmium

Accumulation of cadmium is very high in kidney and long-term
exposure causes severe damage to kidney. Human workers exposed to
cadmium and induction of proteinuria provide evidence that kidney is
critical organ for cadmium toxicity.”* Cadmium causes proximal tubular
damage and glomerular damage which leads to several diseases such as
bicarbonaturia, glycosuria and phosphaturia. Cadmium also elevates
the N-acetyl-beta-D-glucosaminindase (NAG) activity. Cadmium
may alter the antioxidant system of kidney. The antioxidant enzymes
like Cu Zn-SOD and total SOD, catalase and GPx were inhibited by
acute cadmium intoxication. The inhibition in SOD activity may be
due to the competition of cadmium and other essential metals (Cu
and Zn) for metal transporter protein. The activity of GR and GPx is
also inhibited by cadmium administration.””’® These findings can be
explained by direct interaction of cadmium and functional groups of
enzymes such as cadmium binding to -SH groups, or metal cofactors
replacement with cadmium from the enzyme active sites, whereas the
decrease in GPx activity could be due to the competition between GPx
and metallothioneins for S-amino acids.”

Cadmium mediated modulation of respiratory system

The heavy metals are known to adversely influence the
environmental health and hence pose risks to human’s quality of life.
The heavy metals contamination in physical environment has been
reported to induce asthma in humans, especially in children.®* The
different sources to release cadmium in the environment have been
presented in various review articles.!*3*53% Cadmium exposure causes
induction of asthma or pulmonary emphysema mostly in the humans,
who mostly do tobacco smoking. Although no concrete mechanism
is known so far in the context of cadmium induced pathogenesis in
the lungs or respiratory tract of humans, several workers have found
it to be involved as a key player in the genesis of lung diseases of
smokers and the effect was possibly through an imbalance in redox
system of an exposed individual and also via modulation of functions

-
N

Enecrgy metabolism
Na+-K+ ATPase and
G6DHP ete

of macrophages.’! The analysis of urine is considered to estimate
the body burden of cadmium in smokers but it may not reflect the
true value as cadmium also accumulates in various specific tissues.®!
Asthma, an allergic disease, is known to be mediated via increased
level of IgE sensitization due to heavy metals exposure. In one of the
studies concerning this issue in Korean adults, it has been suggested
that their exposure to cadmium had caused increase in the level of this
heavy metal in their blood samples. Some workers have hypothesized
that the presence of higher concentration of cadmium in the blood
may be associated with onset and severity of asthma in the majority
of Korean adults. Their epidemiological studies have indicated rise in
the level of total / allergen-specific IgE® in this condition.

Remediation strategy for cadmium toxicity
Through phytochemicals

Natural products are well known for their antioxidant properties.
These natural compounds mainly exert their antioxidant action
by metal chelating and free radical scavenging.®$3 Apple and their
derivatives are already known for their nutritive value, as they are rich
in antioxidants.’** These antioxidants include flavonoids (flavonols,
quercetin, catechins), vitamins and phenolic acids (quercetin
glycosides, epicatechin, procyanidins). Researchers have reported
that apple derivatives are very useful against cadmium toxicity. Rat
exposed to cadmium solutions show a high number of micronuleated
cells in hepatocytes. The administration of apple juice has ameliorated
the cadmium induced genotoxicity.®® The reasons behind this
protection may be due to the presence of antioxidant activity of
apple juice. Previous works have also shown that quercetin, a major
content of apple, is very effective against oxidative DNA damage.3¢
These workers have demonstrated low level of catalase activity after
apple juice administration in cadmium exposed rats. This reduction
in catalase activity may be explained in terms of the antioxidative
properties of polyphenols present in apples.
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The elderberries are also having good nutritive value and their
antioxidant content is also high. They are rich in polyphenolic
compounds especially flavonols. These compounds provide
antioxidant activity and protection against injurious effect of various
toxins including heavy metals.**° Some workers have shown that
elderberries have no effect on elevated cadmium concentration in
kidney and bones of rat. But it improved the function of liver and
kidney in cadmium intoxicated rat.”! The GR activity was lowered
in the serum of rats treated with both elderberry and cadmium in
comparison to cadmium treated rats. The workers displayed that the
rats treated with cadmium alone exhibited lower GPx activity which
was recovered after the administration of elderberry lyophilisate.

Rosemary (Rosmarinus officinalis) is well known for their
therapeutic action against bronchial asthma, inflammatory diseases,
cataract, hepatotoxicity, atherosclerosis, peptic ulcer and poor sperm
quality.”* This therapeutic action of rosemary is due to presence of
rosamic acid, a caffeic acid derivative. In other hand, the aqueous
extract of rosemary also mitigates the cadmium chloride mediated
hepatotoxicity. Rosemary also balances the antioxidant system of

[=]
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rodents. Studies in recent years have explained that rosemary can
suppress the MDA level and stimulate synthesis of antioxidative
enzymes such as CAT, GSH, and SOD.**** The antioxidant properties
of some of the plants involved in treatment of cadmium induced
toxicity are summarized in Table 1.1

Curcumin existing n two different chemical forms i.e. keto and
enol is reported to act as a potential antioxidant in several studies into
rodents and in vitro models. It has been shown that curcumin has the
ability to protect the animal from cadmium induced nephrotoxicity,
neurotoxicity'® ' and hepatotoxicity. It was also observed that
curcumin prevents cadmium induced hepatotoxicity in rodents.'!
Moreover, it also regulates the level of trace elements which are
involved in cadmium poisoning such as Zn and Iron. According to
several researchers, the combined dose of curcumin with metal ions or
with vitamins is more effective in cadmium toxicity and it can prevent
the organisms from oxidative damage. It can induce MT expression
and balance the SOD activity.!"!"" The keto-enol tautomers of
curcumin are displayed in Figure 3.

OH

CHy o

Bis-keto form

O —— CH,4

Figure 3 Keto-enol tautomers of curcumin with free radical scavenging activity.

Through antioxidants

Vitamins are metabolically active and provide protection
against free radical stress induced by various toxic compounds.
Pretreatment of vitamin E against cadmium administration results in
the restoration of the normal hematological indices and reduction in
the lipid peroxidation. The combined effects of vitamins have been
found more effective against oxidative stress. It is reported that
mixed supplementation of vitamin C and E reduces the ROS induced
testicular damage. This synergistic effect of vitamins ameliorates
normal testicular functions of cadmium exposed rats.!?

Through metals ions as antidotes

By increasing the concentration of other useful metal ions in
dietary supplement can reduce the cadmium body burden in rodents.
It is well reported that zinc and magnesium supplementation reduces
the cadmium deposition in tissues of rabbits; zinc being more
effective in kidney as compared to magnesium.” However, some

enol form

OH

CHjy

e}

workers have suggested that magnesium as a supplement in diet can
reduce cadmium burden as it did not disturb any metal ion reservoir.
On the other hand, Zn supplementation has been found to reduce the
Mg concentration in blood by increasing its excretion. Magnesium
provides high therapeutic range against heavy metal toxicity, and
therefore further investigations are required to validate these results,
especially against cadmium.'’ Selenium also shows protective
properties in cadmium toxicity. The major effect of selenium has
been demonstrated on blood parameters. The administration of Se in
cadmium toxicity significantly increases the counts of lymphocytes,
erythrocytes (RBCs), platelets (PLTs) and the level of haemoglobin
(Hb). 114115

Combination therapy

Combination therapy referred to the administration of two or
more than two medications simultaneously to treat a single disease
at the same time. The chelation therapy refers to the administration
of two chelating agents that may immobilize or trap the toxic metals
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from different tissues of mammalian systems.!'*!" In such therapy,

the co-administration of an amino acid, an essential metal,'?° and/or
dietary nutrients with the chelating agent, has been found to provide
better recoveries.>!"” The co-administration of phytochemicals with
chelating agents, dietary nutrients or essential metal may be useful
in the alleviation of cadmium toxicities. In mammalian systems, the
in-depth clinical studies with different combinations of chelating
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agents, dietary nutrients, essential metals in association with those of
antioxidants are required to be done for the benefit with the least side
effects. It is also important to find out the suitable dose and duration
for the treatment to determine the optimal therapeutic index of drug(s)
to be given in isolation or in different combinations in order to achieve
optimum benefit.

Table | Plants and their compounds used in the remediation of cadmium toxicity in mammalian systems

Plant name Family Bioactive compounds References
Apple

Rosaceae Flavonols, quercetin and catechins 95,96
(Malus domestica)

Anthocyanins,
Elderberry Adoxaceae 88,97
flavonoids, vitamin C and pectins

(Sambucus nigra)
Fenugreek

Leguminosae Polyphenolic flavonoids 98,99
(Trigonella foenum raecum)
Garlic

Amaryllidaceae Allicin 100,101
(Allium sativum)
Mimosa (Mimosa . Mimosin, saponins, alkaloids and

R Mimosaceae . 102

caesalpiniifolia) terpenoids
Oranges

Rutaceae Naringenin 103
(Citrus sinensis)
Rossema}ry (Rosmarinus Lamiaceae Rosmarinic acid, carnosic acid and 104,105
officinalis) carnosol
Turmeric

Zingiberaceae Curcumin 106—-108

(Curcuma onga)

Conclusion

Cadmium has a very high potential to induce oxidative stress via
production of ROS and alterations in antioxidant systems. The toxicity
caused by cadmium is mainly due to the formation of complexes with
sulphydryl group of several enzymes and proteins thereby causing
perturbations in the three-dimensional conformations or by replacing
the divalent metal ions from their catalytic pockets which are
essentially required by concerned proteins/enzymes as cofactors for
their optimal biological activity. In this situation, these biomolecules
tend to lose their native conformations due to loss of non-covalent
and weak interactions responsible for stabilising their structures,
which lead to serious bearings on to their biological activities and
finally the cellular health. Cadmium also chelates with proteins which
utilise metal ions as a cofactor. Cadmium replaces other divalent
metal ions and disrupts the conformation of proteins which leads to
inactivation of associated biological function. All cells tend to make
reductive environment. Since cadmium disturbs the normal redox
potential in cells, it results into activation and production of hydrogen
peroxides and free radicals, which are responsible for damage of key
cellular ingredients such as protein, nucleic acid and lipids. Some
plants and their phytochemicals already have been shown for their
effects against cadmium toxicity in different model organisms. The

oxidative stress could be ameliorated by different antioxidants, both
herbal and synthetic. The amelioration by plant based principles is of
great significance because they are highly cost effective and exert no
side effects. In addition to them, the application of certain vitamins
and chelating molecules is being tried with the expectation that they
would make coordinate complexes with these heavy metals and help
remove them thereby making the affected organs free from metal’s
burden. Plant based natural compounds such as flavonoids, alkaloids
and other polyphenolic compounds could be used against cadmium
toxicity for removal or reduction of cadmium burden from various
biological systems. Although the co-administration of antioxidants
(natural, herbal, or synthetic) with other chelating agents may improve
removal of this toxic metal from the biological systems, the in-depth
clinical studies with newer chelating agents are required to assess
their adverse effects.
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