

Oxidative stress biomarkers of cadmium toxicity in mammalian systems and their distinct ameliorative strategy

Abstract

Cadmium is highly toxic heavy metal and a significant environmental pollutant. Cadmium can severely damage various organs and biochemical systems. It can induce severe, acute and especially chronic intoxications. The major target for acute cadmium toxicity is liver, kidney and lungs. Cadmium is a highly carcinogenic element causing preferentially prostate, lung and gastro-intestinal cancers. Cadmium has a very high potential to induce ROS production. The toxicity by this metal ion induces oxidative stress in any organism by Fenton reaction which leads to alteration in the activities of certain antioxidant enzymes such as Cu- and Zn-Superoxide Dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR) and glutathione-S-transferase (GST). Exposure to cadmium increases lipid peroxidation in mammalian systems. Plants which are rich in antioxidants such as flavonoids, alkaloids and other polyphenolic compounds have potential to be used against cadmium toxicity for removal of cadmium burden from system or for clinical recoveries of biochemical systems. Some plants and their phytochemicals have already shown their effect against cadmium toxicity in model organisms. This review presents an updated account of impact of cadmium exposure on different physiological and biochemical indices in mammalian systems. The article also includes the effects of various antidotes and certain plant based principles to protect from the adverse impact of cadmium exposure.

Keywords: oxidative stress, biomarkers, cadmium toxicity, antioxidant enzymes, antioxidants, phytochemicals, antidotes

Volume 6 Issue 3 - 2019

Abhishek Kumar,¹ Rashmi Pandey,² Nikhat Jamal Siddiqi,³ Bechan Sharma¹

¹Department of Biochemistry, University of Allahabad, India

²Department of Pulmonary and Critical Care Medicine, King George Medical University, India

³Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia

Correspondence: Bechan Sharma, Department of Biochemistry, University of Allahabad, Allahabad 211002, India, Email sharmabi@yahoo.com

Received: May 11, 2019 | **Published:** May 28, 2019

Introduction

The heavy metals are generally characterized as the inorganic elements listed in d-orbital (transition elements) of modern periodic table with +2 oxidation state and low melting point. Cadmium (Cd), with atomic number 48 is soft and bluish-white in appearance. It is an important component of batteries, cadmium pigments and plating. It is also used as stabilizers for plastics, chemical stabilizers, metal coatings, alloys, barrier to control neutrons in nuclear reactions, television picture tubes and semiconductors as well as in molecular biology to block voltage-dependent calcium channels. Cadmium is highly toxic metal and plays an important role in industrial occupation. In present time, it is even more significant as environmental pollutant. Cadmium can severely damage various organs and biochemical systems of an organism and can induce severe acute and especially chronic intoxications. The major target for acute cadmium toxicity is liver, whereas severe nephrotoxicity has been observed in chronic cadmium poisoning. No any excretory mechanism is reported in humans for cadmium, as it accumulates in tissues of different organs. Any biological function of cadmium in mammals is not known. However, in marine diatoms it is reported to act as cofactor for few enzymes. This is the only known biological function of cadmium in a living system. Cadmium poisoning occurs through inhalation of cadmium fumes, intake of food, water and tobacco. In humans, the amount of cadmium deposition is very high in the kidney, liver, pancreas and lung. In kidney cortex, the half-life of cadmium is reported to be about 17–35 years. Low ratio of excretion and continued accumulation of cadmium in the organism is the main reason for long life of cadmium.¹ Cadmium accumulates primarily in liver and kidney in humans.² The long biological half-life (17–30 years) and

almost no excretion of Cd facilitate continuous accumulation of it into the body systems. The bioaccumulation of Cd in mammalian systems may cause severe damage to nervous system, reproductive systems, gastrointestinal tract and mucous tissues and the occurrence of several ailments such as anaemia, osteoporosis, blood, brain, skin related diseases, malfunctioning of foetus which includes ablephary, club foot, exencephaly, micrognathia, non-hypertrophic emphysema, irreversible renal tubular injury, eosinophilia, chronic rhinitis and microphthalmia. The local agricultural communities in Japan consuming Cd contaminated rice developed itai-itai disease and renal abnormalities, including proteinuria and Glucosuria.¹ Cadmium is one of six substances banned by the European Union's Restriction on Hazardous Substances (RoHS) directive because of its carcinogenic potential in humans. The International Agency for Research on Cancer of USA has classified Cd into the category of carcinogens.³

Though the exact mechanism of their pathogenicity is not known but there are various reports indicating that the exposure of this heavy metal or its accumulation in the body systems may induce generation of free radicals⁴ which leads to the production of oxidative stress.^{1,5,6} Cd may induce oxidative stress through the formation of ROS that results into the decrease in intracellular GSH content as it combines with thiol groups of enzymes involved in antioxidant mechanisms (SOD), catalase (CAT) and glutathione peroxidase (GPx) and exerts inhibitory effect on the level of their activities.^{7–9} Cd has been reported to form cadmium-selenium complexes in the active centre of GPx and shows the inhibition of enzyme activity. Complex III of the mitochondrial electronic transport chain has also been reported to be inhibited by Cd and increases production of ROS.^{10,11} damaging mitochondrial membrane. Cadmium can replace magnesium and

calcium in certain biological systems.⁶ Cd induced oxidative stress is involved in causing DNA damage/mutations^{12,13} lipid peroxidation (LPO)¹⁴ and oxidation of proteins.

Another mechanism of Cd toxicity may be caused by zinc binding proteins. Zinc and cadmium contain the same common oxidation state (+2) and are almost the same in size. Due to their similarities, cadmium can replace zinc, magnesium and calcium in certain biological systems¹⁵⁻¹⁷ and iron and copper from various cytoplasmic and membrane proteins such as ferritin and apoferritin, thus increasing the pool of free metal ions¹ in many biological systems. Cadmium can bind up to ten times more strongly than zinc in certain biological systems and is difficult to remove. The genotoxic potential of cadmium has also been studied and recognised as a clastogenic agent.^{15,18-20} Cadmium is known to cause its deleterious effect by deactivating DNA repair activity.²¹

This article presents an updated account of impact of cadmium exposure on different physiological indices in general and the enzymes in particular in mammalian systems. The description also includes the effects of various antidotes and certain plant based principles to protect the exposed subjects from cadmium toxicity or to alleviate the adverse impact of cadmium.

Entry of cadmium via different routes into the mammalian systems

Through food ingestion

The cadmium absorption in human through gastrointestinal tract is about 5% of ingested amount of cadmium. This value depends on the exact consumed dose and nutritional content of food.²⁰⁻²³ The major route of cadmium deposition in human body is through food and drink. About 95% of cadmium is absorbed through this way. Several factors are responsible and can interfere with this amount, such as trace elements like zinc, copper, iron and calcium and vitamin D. Low intake of these entire elements can increase cadmium content. The

presence of other polyvalent cations also influence cadmium uptake. Cadmium absorption in rat jejunum was suppressed by relatively higher concentration of polyvalent cations including Magnesium, Chromium, Nickel and Strontium.^{24,25} It is reported that high fibre diet can also elevate the cadmium uptake through gastrointestinal tract.²⁶ The iron stock of a mammal is a very important parameter for cadmium uptake. The cadmium uptake is higher in people with low iron diet in comparison to people with balance iron stock.²⁷ This is the main reason why the anaemic and habitual iron deficient people such as children and menstrual women show higher cadmium uptake. Low iron blood levels also promote the expression of DCT-1 gene. It is a metal ion transporter in the gastrointestinal tract, which plays an important role in divalent metal ion transport.²⁸ Cadmium after absorption enters into the blood stream and binds with blood albumin, metallothionein and erythrocytes membranes. It can also bind to -SH group of some proteins such as glutathione and cysteine but to very less extent.²⁹ The absorption of cadmium through various routes is summarised in Figure 1.

Through dermal contact

Not much work has been done for dermal absorption of cadmium in recent years. The two main mechanisms involved in dermal absorption of cadmium are: binding of a free cadmium ion in the epidermal keratins with sulphhydryl radicals of cysteine or induction and association with metallothionein.^{30,31} Researchers also study the absorption of cadmium chloride from soil and contaminated water by human corpse skin in a diffusion cell model³² and have explained the cadmium penetration efficiency to be 12.7% and 8.8% from water and soil, respectively, by skin; whereas the plasma uptake of cadmium from water and soil has been reported to be 0.07% and 0.01%, respectively.^{28,31,32} According to one such study, cadmium chloride solution on dorsum (shaved skin) of rat showed high mitotic index with infrequent ulcerative changes, hyperkeratosis and acanthosis.³³ They have also observed a significant increase in the level of cadmium concentration in liver, blood and kidney.

Figure 1 Absorption of cadmium through different routes.

Through inhalation

The intoxication of cadmium through inhalation is mainly by cigarette smoking. The human lung exposed to tobacco smoke can absorb 40-60% of cadmium present in it.²³⁻³⁴ An average cigarette smoker has further intake of 30µg per day. The cadmium body burden in an average 50-year-old non-smoker is about 15mg, whereas this goes double in case of an average life long smoker which is about

30mg. Non-smokers generally have low cadmium blood levels; approximately 4-5 times lesser than a normal smokers.²⁶ Many lung associated diseases are reported through cadmium inhalation. Cadmium-containing fumes exposed workers have been reported to develop acute respiratory distress syndromes (ARDS).³⁵ The absorbed cadmium forms complex with cysteine-rich protein. This complex reaches to their target organs through blood circulation.

Effect of cadmium on parameters of oxidative stress biomarkers in mammalian systems

Circulatory system

Researchers have reported that cadmium influences oxidative status and antioxidant systems of organisms, which is independent of the route of exposure. However, its toxicity ratio varies with respect to the route of administration. The experiments were performed by treating organisms with different routes like orally through food and water, intra peritoneal, and inhalation. In all cases the results show imbalance in antioxidant system. The intra peritoneal doses of 1mg/kg and 2mg/kg body weight of cadmium chloride solution are sufficient to induce alteration in blood parameters. This may lead to absolute and relative changes in granulocytes in peripheral blood and leukocytosis. However, no changes were recorded in haematocrit value.³⁶ Expression of catalase gene is also induced by cadmium.^{37,38} The glutathione reductase (GR) activity is also significantly increased in serum of rodent treated with cadmium chloride, whereas glutathione peroxidase (GPx) activity is lowered in blood level. The acute cadmium exposure to the organisms has been shown to cause elevation in the levels of ALT, AST and Alkaline phosphatase.³⁹⁻⁴¹ Cadmium also influences the protein content of organisms. Some researchers reported a significant decrease in total protein content, and concentrations of albumin and testosterone in serum.^{42,43}

Central nervous system

Cadmium has been shown to be very toxic for the central nervous system (CNS).^{44,45} It also affects the activity of certain enzymes and the level of neurotransmitters.^{46,47} The capability of cadmium as neurotoxin is well reported both *in vivo* and *in vitro*.⁴⁸⁻⁵⁰ Acetylcholinesterase (AChE, EC 3.1.1.7) is a cholinergic esterase, that plays a very important role at neuromuscular junctions and cholinergic brain synapses, where it maintains the acetylcholine cycle. It is a membrane bound enzyme and inhibited by cadmium in a non-competitive manner indicating that cadmium is highly neurotoxic agent for mammals.⁵¹⁻⁵³ These experiments were performed on rodents. They treated the rodents with cadmium by both *in vitro* and *in vivo*. The results of experiments explained the dose dependent differences in activities of enzymes. Pure AChE (electric eel AChE) is activated by low cadmium concentrations (0.01 mM). On the other hand, it was inhibited by higher Cadmium concentrations.

Cadmium metal ions compete with other metal ions for enzyme binding site and induce conformational changes. Brain AChE was found to be inactivated by the same high Cadmium concentrations and show dose dependent inhibition. Cadmium shows time dependent inhibition of AChE, which is also reported by other workers.^{54,55} The chronic cadmium administration in rat model causes significant decrease in glutathione content, superoxide dismutase (SOD) and glutathione S-transferase (GST) activity in rat brain.

The Na⁺-K⁺ ATPase is an enzyme involved in metabolic energy production^{56,57} and neural excitability.⁵⁸ The role of Mg²⁺-ATPase in brain is to maintain high intracellular Mg²⁺ concentration. Changes in the level of Mg²⁺ also affect the protein synthesis and cell growth in brain.⁵⁹ Brain Na⁺-K⁺ATPase was activated by cadmium low concentration and inhibited in higher concentrations. Mg²⁺-ATPase was not affected by *in vitro* low dose cadmium exposure, whereas it

was activated by its higher concentrations. The total antioxidant status of brain was decreased by 25% in cadmium intoxication, indicating that these metals can induce oxidative stress.⁶⁰ Biotransformation of xenobiotics is known to involve several oxidative enzymes such as Aldehyde Oxidase (AO), Xanthine Oxidase (XO) and Sulphite Oxidase (SO). These are soluble enzymes containing molybdenum and haem found in brain and other tissues.^{61,62} Interaction and influence of cadmium with several cellular enzymes are summarised in Figure 2.

Hepatotoxic effect of cadmium

Liver is the major site for biotransformation of toxic compounds. In case of cadmium administration, liver is the primary target for cadmium-acute toxicity. The antioxidant system of liver is highly influenced by cadmium. It disturbs the ratio of activities of alanine transaminase (ALT) and aspartate transaminase (AST), the markers of liver associated disorders.^{63,64} The cadmium induced alterations in the activities of ALT and AST reflect the impact on the metabolic rate of protein degradation. Cadmium has been observed to exert adverse impact on the activity of lactate dehydrogenase (LDH). It is presumed that reactive oxygen species (ROS) production by cadmium initiates series of reactions which may result in alterations of metabolic indices.^{65,66}

Some workers have reported that a single high dose of cadmium is more toxic in comparison to the same dose in several small doses given to mice by injection for long period.⁶⁷ This treatment severely damages the liver of cadmium exposed animals. The pre-treatment of organisms with a small dose of cadmium induces metallothionein synthesis, which provides protection to acute liver toxicity. These results explained the association of cadmium with cysteine rich protein metallothionein, which protects liver by cadmium induced toxicity. By forming a complex with cadmium, metallothionein protects sensitive target enzymes and molecules in liver cells from being affected by cadmium ions.^{68,69} But at higher dose of cadmium administration the expression of mt-gene becomes much high, which causes easy transportation of cadmium in different tissues instead of protection.^{23,70,71}

Cadmium poisoning has been found to cause much variation in the expression levels of antioxidative enzymes and proteins.^{72,73} For example, osmotic stress protein Osp94, Oxidative stress protein A170, heat shock protein (HSPs), Heme oxygenase-1 (HO-1) and signal transduction regulatory protein MAP kinase activated protein kinase-2 was reported to be increased, while multidrug resistance genes expression were markedly decreased. The genes involved in cell growth arrest induced by DNA damage such as GADD45 and GADD153 and stress enzymes like phospholipase A2 and cytochrome P450 3A25 were also found to be increased. The expression of antioxidant enzymes such as catalase and Mn-SOD were suppressed, whereas the expression of Zn-SOD and Cu-SOD was not significant. Cadmium treatment has been found to reduce the expression of thiosulfate sulfurtransferase (rhodanese), microsomal UDP-glucuronosyltransferase, NADPH cytochrome P450 and their isozymes. The researchers have found that enhancement of heme oxygenase-1 (HO-1) may be as a general response to oxidative stress.^{74,75} They have observed that the level of HO-1 increases more than 15 fold in cadmium administration. Thus HO-1 is considered as one of the most sensitive biomarkers for acute cadmium toxicity.⁶³⁻⁶⁶

Figure 2 Enzymes and proteins affected by cadmium.

Nephrotoxicity of cadmium

Accumulation of cadmium is very high in kidney and long-term exposure causes severe damage to kidney. Human workers exposed to cadmium and induction of proteinuria provide evidence that kidney is critical organ for cadmium toxicity.⁷⁶ Cadmium causes proximal tubular damage and glomerular damage which leads to several diseases such as bicarbonaturia, glycosuria and phosphaturia. Cadmium also elevates the N-acetyl-beta-D-glucosaminidase (NAG) activity. Cadmium may alter the antioxidant system of kidney. The antioxidant enzymes like Cu Zn-SOD and total SOD, catalase and GPx were inhibited by acute cadmium intoxication. The inhibition in SOD activity may be due to the competition of cadmium and other essential metals (Cu and Zn) for metal transporter protein. The activity of GR and GPx is also inhibited by cadmium administration.^{77,78} These findings can be explained by direct interaction of cadmium and functional groups of enzymes such as cadmium binding to -SH groups, or metal cofactors replacement with cadmium from the enzyme active sites, whereas the decrease in GPx activity could be due to the competition between GPx and metallothioneins for S-amino acids.⁷⁹

Cadmium mediated modulation of respiratory system

The heavy metals are known to adversely influence the environmental health and hence pose risks to human's quality of life. The heavy metals contamination in physical environment has been reported to induce asthma in humans, especially in children.⁸⁰ The different sources to release cadmium in the environment have been presented in various review articles.^{1,4,54,55,68} Cadmium exposure causes induction of asthma or pulmonary emphysema mostly in the humans, who mostly do tobacco smoking. Although no concrete mechanism is known so far in the context of cadmium induced pathogenesis in the lungs or respiratory tract of humans, several workers have found it to be involved as a key player in the genesis of lung diseases of smokers and the effect was possibly *through* an imbalance in redox system of an exposed individual and also via modulation of functions

of macrophages.⁸¹ The analysis of urine is considered to estimate the body burden of cadmium in smokers but it may not reflect the true value as cadmium also accumulates in various specific tissues.⁸¹ Asthma, an allergic disease, is known to be mediated via increased level of IgE sensitization due to heavy metals exposure. In one of the studies concerning this issue in Korean adults, it has been suggested that their exposure to cadmium had caused increase in the level of this heavy metal in their blood samples. Some workers have hypothesized that the presence of higher concentration of cadmium in the blood may be associated with onset and severity of asthma in the majority of Korean adults. Their epidemiological studies have indicated rise in the level of total / allergen-specific IgE⁸² in this condition.

Remediation strategy for cadmium toxicity

Through phytochemicals

Natural products are well known for their antioxidant properties. These natural compounds mainly exert their antioxidant action by metal chelating and free radical scavenging.^{8,83} Apple and their derivatives are already known for their nutritive value, as they are rich in antioxidants.^{84,85} These antioxidants include flavonoids (flavonols, quercetin, catechins), vitamins and phenolic acids (quercetin glycosides, epicatechin, procyanidins). Researchers have reported that apple derivatives are very useful against cadmium toxicity. Rat exposed to cadmium solutions show a high number of micronucleated cells in hepatocytes. The administration of apple juice has ameliorated the cadmium induced genotoxicity.⁸⁴ The reasons behind this protection may be due to the presence of antioxidant activity of apple juice. Previous works have also shown that quercetin, a major content of apple, is very effective against oxidative DNA damage.^{86,87} These workers have demonstrated low level of catalase activity after apple juice administration in cadmium exposed rats. This reduction in catalase activity may be explained in terms of the antioxidative properties of polyphenols present in apples.

The elderberries are also having good nutritive value and their antioxidant content is also high. They are rich in polyphenolic compounds especially flavonols. These compounds provide antioxidant activity and protection against injurious effect of various toxins including heavy metals.⁸⁸⁻⁹⁰ Some workers have shown that elderberries have no effect on elevated cadmium concentration in kidney and bones of rat. But it improved the function of liver and kidney in cadmium intoxicated rat.⁹¹ The GR activity was lowered in the serum of rats treated with both elderberry and cadmium in comparison to cadmium treated rats. The workers displayed that the rats treated with cadmium alone exhibited lower GPx activity which was recovered after the administration of elderberry lyophilisate.

Rosemary (*Rosmarinus officinalis*) is well known for their therapeutic action against bronchial asthma, inflammatory diseases, cataract, hepatotoxicity, atherosclerosis, peptic ulcer and poor sperm quality.⁹² This therapeutic action of rosemary is due to presence of rosmalic acid, a caffeic acid derivative. In other hand, the aqueous extract of rosemary also mitigates the cadmium chloride mediated hepatotoxicity. Rosemary also balances the antioxidant system of

rodents. Studies in recent years have explained that rosemary can suppress the MDA level and stimulate synthesis of antioxidative enzymes such as CAT, GSH, and SOD.^{93,94} The antioxidant properties of some of the plants involved in treatment of cadmium induced toxicity are summarized in Table 1.⁹⁵⁻¹⁰⁷

Curcumin existing in two different chemical forms i.e. keto and enol is reported to act as a potential antioxidant in several studies into rodents and *in vitro* models. It has been shown that curcumin has the ability to protect the animal from cadmium induced nephrotoxicity, neurotoxicity¹⁰⁸⁻¹¹⁰ and hepatotoxicity. It was also observed that curcumin prevents cadmium induced hepatotoxicity in rodents.¹¹¹ Moreover, it also regulates the level of trace elements which are involved in cadmium poisoning such as Zn and Iron. According to several researchers, the combined dose of curcumin with metal ions or with vitamins is more effective in cadmium toxicity and it can prevent the organisms from oxidative damage. It can induce MT expression and balance the SOD activity.^{110,111} The keto-enol tautomers of curcumin are displayed in Figure 3.

Figure 3 Keto-enol tautomers of curcumin with free radical scavenging activity.

Through antioxidants

Vitamins are metabolically active and provide protection against free radical stress induced by various toxic compounds. Pretreatment of vitamin E against cadmium administration results in the restoration of the normal hematological indices and reduction in the lipid peroxidation. The combined effects of vitamins have been found more effective against oxidative stress. It is reported that mixed supplementation of vitamin C and E reduces the ROS induced testicular damage. This synergistic effect of vitamins ameliorates normal testicular functions of cadmium exposed rats.¹¹²

Through metals ions as antidotes

By increasing the concentration of other useful metal ions in dietary supplement can reduce the cadmium body burden in rodents. It is well reported that zinc and magnesium supplementation reduces the cadmium deposition in tissues of rabbits; zinc being more effective in kidney as compared to magnesium.⁷³ However, some

workers have suggested that magnesium as a supplement in diet can reduce cadmium burden as it did not disturb any metal ion reservoir. On the other hand, Zn supplementation has been found to reduce the Mg concentration in blood by increasing its excretion. Magnesium provides high therapeutic range against heavy metal toxicity, and therefore further investigations are required to validate these results, especially against cadmium.¹¹³ Selenium also shows protective properties in cadmium toxicity. The major effect of selenium has been demonstrated on blood parameters. The administration of Se in cadmium toxicity significantly increases the counts of lymphocytes, erythrocytes (RBCs), platelets (PLTs) and the level of haemoglobin (Hb).^{114,115}

Combination therapy

Combination therapy referred to the administration of two or more than two medications simultaneously to treat a single disease at the same time. The chelation therapy refers to the administration of two chelating agents that may immobilize or trap the toxic metals

from different tissues of mammalian systems.¹¹⁶⁻¹¹⁹ In such therapy, the co-administration of an amino acid, an essential metal,¹²⁰ and/or dietary nutrients with the chelating agent, has been found to provide better recoveries.^{5,119} The co-administration of phytochemicals with chelating agents, dietary nutrients or essential metal may be useful in the alleviation of cadmium toxicities. In mammalian systems, the in-depth clinical studies with different combinations of chelating

agents, dietary nutrients, essential metals in association with those of antioxidants are required to be done for the benefit with the least side effects. It is also important to find out the suitable dose and duration for the treatment to determine the optimal therapeutic index of drug(s) to be given in isolation or in different combinations in order to achieve optimum benefit.

Table I Plants and their compounds used in the remediation of cadmium toxicity in mammalian systems

Plant name	Family	Bioactive compounds	References
Apple (<i>Malus domestica</i>)	Rosaceae	Flavonols, quercetin and catechins	95,96
Elderberry (<i>Sambucus nigra</i>)	Adoxaceae	Anthocyanins, flavonoids, vitamin C and pectins	88,97
Fenugreek (<i>Trigonella foenum raecum</i>)	Leguminosae	Polyphenolic flavonoids	98,99
Garlic (<i>Allium sativum</i>)	Amaryllidaceae	Allicin	100,101
Mimosa (<i>Mimosa caesalpiniifolia</i>)	Mimosaceae	Mimosin, saponins, alkaloids and terpenoids	102
Oranges (<i>Citrus sinensis</i>)	Rutaceae	Naringenin	103
Rosemary (<i>Rosmarinus officinalis</i>)	Lamiaceae	Rosmarinic acid, carnosic acid and carnosol	104,105
Turmeric (<i>Curcuma onga</i>)	Zingiberaceae	Curcumin	106-108

Conclusion

Cadmium has a very high potential to induce oxidative stress via production of ROS and alterations in antioxidant systems. The toxicity caused by cadmium is mainly due to the formation of complexes with sulphhydryl group of several enzymes and proteins thereby causing perturbations in the three-dimensional conformations or by replacing the divalent metal ions from their catalytic pockets which are essentially required by concerned proteins/enzymes as cofactors for their optimal biological activity. In this situation, these biomolecules tend to lose their native conformations due to loss of non-covalent and weak interactions responsible for stabilising their structures, which lead to serious bearings on to their biological activities and finally the cellular health. Cadmium also chelates with proteins which utilise metal ions as a cofactor. Cadmium replaces other divalent metal ions and disrupts the conformation of proteins which leads to inactivation of associated biological function. All cells tend to make reductive environment. Since cadmium disturbs the normal redox potential in cells, it results into activation and production of hydrogen peroxides and free radicals, which are responsible for damage of key cellular ingredients such as protein, nucleic acid and lipids. Some plants and their phytochemicals already have been shown for their effects against cadmium toxicity in different model organisms. The

oxidative stress could be ameliorated by different antioxidants, both herbal and synthetic. The amelioration by plant based principles is of great significance because they are highly cost effective and exert no side effects. In addition to them, the application of certain vitamins and chelating molecules is being tried with the expectation that they would make coordinate complexes with these heavy metals and help remove them thereby making the affected organs free from metal's burden. Plant based natural compounds such as flavonoids, alkaloids and other polyphenolic compounds could be used against cadmium toxicity for removal or reduction of cadmium burden from various biological systems. Although the co-administration of antioxidants (natural, herbal, or synthetic) with other chelating agents may improve removal of this toxic metal from the biological systems, the in-depth clinical studies with newer chelating agents are required to assess their adverse effects.

Acknowledgments

AK is grateful to the University Grant Commission, New Delhi, for providing financial support in the form of a research fellowship. The Department of Biochemistry is DST-FIST and UGC-SAT sponsored Department. RP is grateful to UPCST-UP, Luknow for financial support in the form of a Project Assistant. NJS acknowledges

the Research Center of the Female Scientific and Medical Colleges, Deanship of Scientific Research, King Saud University, Riyadh for the financial support.

Conflicts of interest

The authors declare that they do not have any conflict of interests.

References

1. B Sharma, S Singh, NJ Siddiqi. Biomedical implications of heavy metals induced imbalances in redox systems. *Biomed Res Int.* 2014;640754.
2. A Bernard. Cadmium & its adverse effects on human health. *Indian J Med Res.* 2008;128(4):557–64.
3. AP Wild. International Agency for Research on Cancer in Encyclopedia of Toxicology. 2014. p. 1067–1069.
4. VK Gupta, S Singh, A Agrawal, et al. Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals. *Biochemistry Research International.* 2015. 9 p.
5. SJS Flora, M Mittal, A Mehta. Heavy metal induced oxidative stress and its possible reversal by chelation therapy. *Indian J Med Res.* 2008;128(4):501–523.
6. EA Lane, MJ Canty, SJ More. Cadmium exposure and consequence for the health and productivity of farmed ruminants. *Research in Veterinary Science.* 2015;101:132–139.
7. J Limón-Pacheco, ME Gonsebatt. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. *Mutat Res.* 2009;674(1–2):137–147.
8. N Ercal, H Gurer-Orhan, N Aykin-Burns. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. *Curr Top Med Chem.* 2001;1(6):529–539.
9. SK Tandon, S Singh, S Prasad, et al. Reversal of cadmium induced oxidative stress by chelating agent, antioxidant or their combination in rat. *Toxicol Lett.* 2003;145(3):211–217.
10. B Wang, Q Luo, C Shao, et al. The late and persistent pathogenic effects of cadmium at very low levels on the kidney of rats. *Dose-Response.* 2013;11(1):60–81.
11. B Wang, S Wang, C Shao, et al. Proteomic characterization of the late and persistent effects of cadmium at low doses on the rat liver. *J Appl Toxicol.* 2013;3(7):546–557.
12. L Wang, T Xu, W wen Lei, et al. Cadmium-induced oxidative stress and apoptotic changes in the testis of freshwater crab, *Sinopotamon henanense*. *PLoS One.* 2011;6(11):e27853.
13. A jun LIN, X Hong Zhang, M mei Chen, et al. Oxidative stress and DNA damages induced by cadmium accumulation. *Journal of Environmental Sciences.* 2007;19(5):596–602.
14. G Burden. *R Factors, Global Burden of Disease and Risk Factors.* 2006.
15. KB Jacobson, JE Turner. The interaction of cadmium and certain other metal ions with proteins and nucleic acids. *Toxicology.* 1980;16(1):1–37.
16. PB Tchounwou, CG Yedjou, AK Patlolla, et al. Heavy Metals Toxicity and the Environment. *Mol Clin Environ Toxicol.* 2012. p. 133–164.
17. M Jaishankar, T Tseten, N Anbalagan, et al. Toxicity, mechanism and health effects of some heavy metals. *Interdiscip Toxicol.* 2014;7(2):60–72.
18. S Cambier, P Gonzalez, G Durrieu, et al. Cadmium-induced genotoxicity in zebrafish at environmentally relevant doses. *Ecotoxicol Environ Saf.* 2010;73(3):312–319.
19. C Risso-De Faverney, A Devaux, M Lafaurie, et al. Cadmium induces apoptosis and genotoxicity in rainbow trout hepatocytes through generation of reactive oxygene species. *Aquat Toxicol.* 2001;53(1):65–76.
20. JA Adeyemi, A Da Cunha Martins, F Barbosa. Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (*Danio rerio*) co-exposed to arsenic and atrazine. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology.* 2015;172(173):7–12.
21. Bertin G, Averbeck D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). *Biochimie.* 2006;88(11):1549–1559.
22. Jin T, Nordberg M, Frech W, et al. Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (ChinaCad). *Biometals.* 2002;15(4):397–410.
23. Satarug S, Baker JR, Urbenjapols S, et al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. *Toxicol Lett.* 2003;31:137(1–2):65–83.
24. Zhai Q, Narbad A, Chen W. Dietary strategies for the treatment of cadmium and lead toxicity. *Nutrients.* 2015;14;7(1):552–571.
25. Bernhoft RA. Cadmium toxicity and treatment. *The Scientific World Journal.* 2013.
26. Järup L, Berglund M, Elinder CG, et al. Health effects of cadmium exposure--a review of the literature and a risk estimate. *Scand J Work Environ Health.* 1998;24(Suppl 1):1–51.
27. Flanagan PR, McLellan JS, Haist J, et al. Increased dietary cadmium absorption in mice and human subjects with iron deficiency. *Gastroenterology.* 1978;74(5 Pt 1):841–846.
28. Joseph Bressler, Luisa Olivi, Jae Hoon Cheong, et al. Divalent metal transporter 1 in lead and cadmium transport. *Annals of the New York Academy of Sciences.* 2004;1012:142–152.
29. Zalups RK, Ahmad S. Molecular handling of cadmium in transporting epithelia. *Toxicol Appl Pharmacol.* 2003;186(3):163–188.
30. Godt J, Scheidig F, Grosse-Siestrup C, et al. The toxicity of cadmium and resulting hazards for human health. *J Occup Med Toxicol.* 2006;10;1:22.
31. Venza M, Visalli M, Biondo C, et al. Epigenetic Effects of Cadmium in Cancer: Focus on Melanoma. *Curr Genomics.* 2014;15(6):420–435.
32. Wester PW, Vethaak AD, van Muiswinkel WD. Fish as biomarkers in immunotoxicology. *Toxicology.* 1994;886(3):213–232.
33. Lansdown AB, Sampson B, Rowe A. Experimental observations in the rat on the influence of cadmium on skin wound repair. *Int J Exp Pathol.* 2001;82(1):35–41.
34. Alli LA. Blood level of cadmium and lead in occupationally exposed persons in Gwagwalada, Abuja, Nigeria. *Interdiscip Toxicol.* 2015;8(3):146–150.
35. Barbee JY Jr, Prince TS. Acute respiratory distress syndrome in a welder exposed to metal fumes. *South Med J.* 1999;92(5):510–512.
36. Kataranovski M, Kataranovski D, Savic D, et al. Granulocyte and plasma cytokine activity in acute cadmium intoxication in rats. *Physiol Res.* 1998;47(6):453–461.
37. Radhakrishnan M. Effect of cadmium on catalase activity in four tissues of freshwater fish *Heteropneustes fossilis* (Bloch.). *Internet J Vet Med.* 2008;7(1):1–4.
38. Sayeed I, Parvez S, Pandey S, et al. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, *Channa punctatus* Bloch. *Ecotoxicol Environ Saf.* 2003;56(2):295–301.
39. Newairy AA, El-Sharaky AS, Badreldeen MM, et al. The hepatoprotective effects of selenium against cadmium toxicity in rats. *Toxicology.* 2007;242(1–3):23–30.

40. Arafa MH, Mohammad NS, Atteia HH. Fenugreek seed powder mitigates cadmium-induced testicular damage and hepatotoxicity in male rats. *Exp Toxicol Pathol.* 2014;66(7):293–300.

41. Liu J, Corton C, Dix DJ. Genetic background but not metallothionein phenotype dictates sensitivity to cadmium-induced testicular injury in mice. *Toxicol Appl Pharmacol.* 2001;176(1):1–9.

42. Asal Younessi, Ali Asghar Sadeghi. Ameliorating Effect of Ginger on Plasma Gonadotropin Hormones and Testosterone Hormones of Male Rats Exposed to Cadmium Toxicity. *Biol Forum An Int J.* 2015;7(1):1064–1069.

43. Sdik NA. Effects of diallyl sulfide and zinc on testicular steroidogenesis in cadmium-treated male rats. *J Biochem Mol Toxicol.* 2008;22(5):345–353.

44. Minami A, Takeda D, Nishibaba S, et al. Cadmium toxicity in synaptic neurotransmission in the brain. *Brain Res.* 2001;16;894(2):336–339.

45. Gilani SR, Batool M, Zaidi SRA, et al. Central nervous system (CNS) toxicity caused by metal poisoning: Brain as a target organ. *Pak J Pharm Sci.* 2015;28(4):1417–1423.

46. Wang B, Du Y. Cadmium and its neurotoxic effects. *Oxidative Medicine and Cellular Longevity.* 2013.

47. Méndez-Armenta M, Ríos R. Cadmium neurotoxicity. *Environmental Toxicology and Pharmacology.* 2007;23;(3):350–358.

48. Hoedemaker JR, Peake BM, Kerr DS. Reduction in functional potency of the neurotoxin domoic acid in the presence of cadmium and zinc ions. *Environ Toxicol Pharmacol.* 2005;20(1):175–181.

49. Michael PW. Cadmium carcinogenesis in review. *J Inorg Biochem.* 2000;79;(1–4):241–244.

50. Sigel A, Sigel H, Sigel RKO. Cadmium: From Toxicity to Essentiality. 2013. 11 p.

51. Auslander M, Yudkovski Y, Chalifa-Caspi V, et al. Pollution-affected fish hepatic transcriptome and its expression patterns on exposure to cadmium. *Mar Biotechnol.* 2008;10(3):250–261.

52. Kumar P, Singh A. Cadmium toxicity in fish: An overview. *Environ Health Perspect.* 2010;1(1):41–47.

53. Castro-González MI, Méndez-Armenta M. Heavy metals: Implications associated to fish consumption. *Environmental Toxicology and Pharmacology.* 2008;26(3):263–271.

54. Gupta VK, Kumar A, Siddiqi NJ, et al. Rat Brain Acetyl Cholinesterase as a Biomarker of Cadmium Induced Neurotoxicity. *Open Access J Toxicol.* 2016;1(1):1–7.

55. Gupta VK, Kumar A, Yadav SH, et al. Acetylcholinesterase as a Biomarker of Arsenic Induced Cardiotoxicity in Mammals. *Sci Int.* 2017;5(4):142–149.

56. Won EJ, Kim RO, Rhee JS, et al. Response of glutathione S-transferase (GST) genes to cadmium exposure in the marine pollution indicator worm, *Perinereis nuntia*. *Comp Biochem Physiol C Toxicol. Pharmacol.* 2011;154(2):82–92.

57. Sidhu M, Sharma M, Bhatia M, et al. Effect of chronic cadmium exposure on glutathione S-transferase and glutathione peroxidase activities in Rhesus monkey: the role of selenium. *Toxicology.* 1993;83(1–3):203–213.

58. Alshuaib WB, Mathew MV. Resistance of delayed-rectifier K⁺current to cadmium in Drosophila neurons. *Int J Neurosci.* 2004;114(4):481–491.

59. Romani AMP. Intracellular magnesium homeostasis in Magnesium in the Central Nervous System. 2011. p. 13–58.

60. Carageorgiou H, Tzotzes V, Sideris A, et al. Cadmium effects on brain acetylcholinesterase activity and antioxidant status of adult rats: Modulation by zinc, calcium and L-cysteine co-administration. *Basic Clin Pharmacol Toxicol.* 2005;97(5):320–324.

61. Ezedom T, Asagba SO. Effect of a controlled food-chain mediated exposure to cadmium and arsenic on oxidative enzymes in the tissues of rats. *Toxicol Reports.* 2016;3:708–715.

62. Asagba SO. Comparative effect of water and food-chain mediated cadmium exposure in rats. *Bio Metals.* 2010;23(6):961–971.

63. Go YM, Sutliff RL, Chandler JD, et al. Low-Dose Cadmium Causes Metabolic and Genetic Dysregulation Associated With Fatty Liver Disease in Mice. *Toxicol Sci.* 2015;147(2):524–534.

64. Wang CP, Chung FM, Shin SJ, et al. Congenital and environmental factors associated with adipocyte dysregulation as defects of insulin resistance. *Review of Diabetic Studies.* 2007;4(2):77–84.

65. Menon MP, Hunter FR, Miller S. Kinetic studies on human lactate dehydrogenase isoenzyme-catalyzed lactate-to-pyruvate reaction. *J Protein Chem.* 1987;6(5):413–429.

66. López E, Figueroa S, Oset-Gasque MJ, et al. Apoptosis and necrosis: Two distinct events induced by cadmium in cortical neurons in culture. *Br J Pharmacol.* 2003;138(5):901–911.

67. Nordberg M. Studies on metallothionein and cadmium. *Environ Res.* 1978;15(3):381–404.

68. Singh N, Gupta VK, Kumar A, et al. Synergistic Effects of Heavy Metals and Pesticides in Living Systems. *Front Chem.* 2017. 5 p.

69. Kumar A, Singh N, Pandey R, et al. *Biochemical and Molecular Targets of Heavy Metals and Their Actions*. Biomedical Applications of Metals. In: M Rai, AP Ingle, S Medici, editors. Springer International Publishing AG, part of Springer Nature. 2018. p. 297–319.

70. Klaassen CD, Liu, Diwan BA. Metallothionein protection of cadmium toxicity. *Toxicology and Applied Pharmacology.* 2009;238(3):215–220.

71. Waalkes MP. Cadmium carcinogenesis. *Mutat Res.* 2003;533(1–2):107–120.

72. Patra RC, Rautray AK, Swarup D. Oxidative Stress in Lead and Cadmium Toxicity and Its Amelioration. *Vet Med Int.* 2011;2011:1–9.

73. Matović V, Buha A, Bulat Z, et al. Cadmium toxicity revisited: Focus on oxidative stress induction and interactions with zinc and magnesium. *Arhiv za Higijenu Rada i Toksikologiju.* 2011;62(1):65–76.

74. Alam J, Wicks C, Stewart D, et al. Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. *J Biol Chem.* 2000;275(36):27694–27702.

75. Koizumi S, Gong P, Suzuki K, et al. Cadmium-responsive element of the human heme oxygenase-1 gene mediates heat shock factor 1-dependent transcriptional activation. *J Biol Chem.* 2007;282(12):8715–8723.

76. Järup L. Cadmium overload and toxicity. *Nephrol Dial Transplant.* 2002;17(2):35–39.

77. Adi PJ, Burra SP, Vataparti AR, et al. Calcium, zinc and vitamin E ameliorate cadmium-induced renal oxidative damage in albino Wistar rats. *Toxicol Reports.* 2016;3:591–597.

78. Karabulut-Bulan O, Bolkent S, Yanardag R, et al. The role of vitamin C, vitamin E, and selenium on cadmium-induced renal toxicity of rats. *Drug Chem Toxicol.* 2008;31(4):413–426.

79. Ognjanović BI, Marković SD, Pavlović SZ, et al. Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: protective effect of selenium. *Physiol Res.* 2008;57(3):403–411.

80. Keh-Gong W, Chia-Yuan C, Chun-Y, et al. Associations between environmental heavy metal exposure and childhood asthma: A population-based study. *Journal of Microbiology, Immunology and Infection*. 2019;52(2):352–362.

81. Ganguly K, Levänen B, Palmberg L, et al. Cadmium in tobacco smokers: a neglected link to lung disease? *European Respiratory Review*. 2018;27:170122.

82. Park S, Lee EH, Kho Y. The association of asthma, total IgE, and blood lead and cadmium levels. *The Journal of Allergy and Clinical Immunology*. 2016;138(6):1701–1703.

83. Flora SJS, Shrivastava R, Mittal M. Chemistry and Pharmacological Properties of Some Natural and Synthetic Antioxidants for Heavy Metal Toxicity. *Curr Med Chem*. 2013;20(36):4540–4574.

84. Almeida MMB, De Sousa PHM, Arriaga AMC, et al. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. *Food Res Int*. 2011; 44;(7):2155–2159.

85. Dembitsky VM, Poovarodom S, Leontowicz H, et al. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. *Food Res Int*. 2011;44 (7):1671–1701.

86. Bellion P, Digles J, Will F, et al. Polyphenolic apple extracts: Effects of raw material and production method on antioxidant effectiveness and reduction of DNA damage in caco-2 cells. *J Agric Food Chem*. 2010;58(11):6636–6642.

87. Van der Sluis AA, Dekker M, Skrede MG, et al. Activity and concentration of polyphenolic antioxidants in apple juice. 1. Effect of existing production methods. *J Agric Food Chem*. 2002;50(25):7211–7219.

88. Kowalczyk E, Kopff A, Fijałkowski P, et al. Effect of anthocyanins on selected biochemical parameters in rats exposed to cadmium. *Acta Biochim Pol*. 2003;50(2):543–548.

89. Glińska S, Gabara B. Influence of selenium on lead absorption and localization in meristematic cells of *Allium sativum L.* and *Pisum sativum L.* Roots. *Acta Biol Cracoviensis Ser Bot*. 2002;44:39–48.

90. Havsteen BH. The biochemistry and medical significance of the flavonoids. *Pharmacol Ther*. 2002;96(2–3):67–202.

91. Kopeć A, Sikora E, Piątkowska E, et al. Possible protective role of elderberry fruit lyophilizate against selected effects of cadmium and lead intoxication in Wistar rats. *Environ Sci Pollut Res*. 2016;23(9):8837–8848.

92. Al-Sereiti MR, Abu-Amer KM, Sen P. Pharmacology of rosemary (*Rosmarinus officinalis* Linn.) and its therapeutic potentials. *Indian J Exp Biol*. 1999;37(2):124–130.

93. Sakr SA, Bayomy MF, El-Morsy AM. Rosemary extract ameliorates cadmium-induced histological changes and oxidative damage in the liver of albino rat. *J Basic Appl Zool*. 2015;71:1–9.

94. Zhao Y, Sedighi R, Wang P, et al. Carnosic Acid as a Major Bioactive Component in Rosemary Extract Ameliorates High-Fat-Diet-Induced Obesity and Metabolic Syndrome in Mice. *J Agric Food Chem*. 2015;63(19):4843–4852.

95. Walia M, Mann TS, Kumar D, et al. Chemical Composition and *In Vitro* Cytotoxic Activity of Essential Oil of Leaves of *Malus domestica* Growing in Western Himalaya (India). *Evid Based Complement Alternat Med*. 2012;(2012):649–727.

96. Bouayed J, Hoffmann L, Bohn T. Antioxidative Mechanisms of Whole-Apple Antioxidants Employing Different Varieties from Luxembourg. *J Med Food*. 2011;14:(12):1631–1637.

97. Thole JM, Kraft TFB, Sueiro LA, et al. A comparative evaluation of the anticancer properties of European and American elderberry fruits. *J Med Food*. 2006;9(4):498–504.

98. Kaviarasan S, Vijayalakshmi K, Anuradha CV. Polyphenol-rich extract of fenugreek seeds protect erythrocytes from oxidative damage. *Plant Foods Hum Nutr*. 2004;59:4143–4147.

99. Muralidhara K, Narasimhamurthy S, Viswanatha. et al. Acute and subchronic toxicity assessment of debitterized fenugreek powder in the mouse and rat. *Food Chem Toxicol*. 1999;37(8):831–838.

100. Aslani MR, Najarnezhad V, Mohri M. Individual and Combined Effect of Meso-2, 3-Dimercaptosuccinic Acid and Allicin on Blood and Tissue Lead Content in Mice. *Planta Med*. 2010;76(3):241–244.

101. Shahsavani D, Baghshani H, Alishahi E. Efficacy of allicin in decreasing lead (Pb) accumulation in selected tissues of lead-exposed common carp (*Cyprinus carpio*). *Biol Trace Elem Res*. 2011;142(3):572–580.

102. Dibeno-p-dioxins and dibenzofurans in different tissues of fish and piscivorous birds. *Ecotoxicol Environ Saf*. 2000;46(3):252–257.

103. Renugadevi J, Prabu SM. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. *Toxicology*. 2009;256(2):128–134.

104. Georgantelis D, Ambrosiadis I, Katikou P, et al. Effect of rosemary extract, chitosan and α -tocopherol on microbiological parameters and lipid oxidation of fresh pork sausages stored at 4°C. *Meat Sci*. 2007;76(1):172–181.

105. Moore J, Yousef M, Tsiani E. Anticancer effects of rosemary (*Rosmarinus officinalis* L.) extract and rosemary extract polyphenols. *Nutrients*. 2016; 8:1.

106. Turner MC, Wigle DT, Krewski D. Residential pesticides and childhood leukemia: A systematic review and meta-analysis. *Environmental Health Perspectives*. 2010;118(1):33–41.

107. Eybl V, Kotyzova D, Koutensky J. Comparative study of natural antioxidants - curcumin, resveratrol and melatonin - in cadmium-induced oxidative damage in mice. *Toxicology*. 2006;225(2–3):150–156.

108. Deevika B, Asha S, Taju G, Nalini T. Cadmium acetate induced nephrotoxicity and protective role of curcumin in rats. *Asian J Pharm Clin Res*. 2012;5(3):186–188.

109. García-Niño WR, Pedraza-Chaverri J. Protective effect of curcumin against heavy metals-induced liver damage. *Food and Chemical Toxicology*. 2014;69:182–201.

110. Mohajeri M, Rezaee M, Sahebkar A. Cadmium-induced toxicity is rescued by curcumin: A review. *Biofactors*. 2017;43(5): 645–661.

111. Eybl V, Kotyzová D, Lešetický L, et al. The influence of curcumin and manganese complex of curcumin on cadmium-induced oxidative damage and trace elements status in tissues of mice. *J Appl Toxicol*. 2006;26(3):207–212.

112. Gupta RS, Gupta ES, Dhakal BK, et al. Vitamin C and vitamin E protect the rat testes from cadmium-induced reactive oxygen species. *Mol Cells*. 2004;17(1):132–139.

113. Singh R, Gautam N, Mishra A, et al. Heavy metals and living systems: An overview. *Indian J Pharmacol*. 2011;43(3):246.

114. Mikolić A, Schönwald N, Piasek M. Cadmium, iron and zinc interaction and hematological parameters in rat dams and their offspring. *J Trace Elem Med Biol*. 2016;38:108–116.

115. Turgut S, Polat A, Inan M, et al. Interaction between anemia and blood levels of iron, zinc, copper, cadmium and lead in children. *Indian J Pediatr*. 2007;74:(9):827–830.

116. Koehler FM, Rossier M, Waelle M, et al. Magnetic EDTA: coupling heavy metal chelators to metal nanomagnets for rapid removal of cadmium, lead and copper from contaminated water. *Chem Commun*. 2009;32:4862.

117. Kosnett MJ. Heavy Metal Intoxication & Chelators. *Basic & Clinical Pharmacology*. 2012.

118. Sears ME. Chelation: Harnessing and enhancing heavy metal detoxification-A review. *The Scientific World Journal*. 2013;2013:1–13.

119. Flora SJS, Pachauri V. Chelation in metal intoxication. *Int J Environ Res Public Health*. 2010;7(7):2745–2788.

120. Flora SJS. Metal poisoning: threat and management. *Al Ameen J Med Sci*. 2009;2(2):4–26.