

For a $r \times c$ frequency table, n_{ij} is the frequency in the ij cell, where $i = 1, \dots, r$ and $j = 1, \dots, c$. We denote the expected frequency (under the hypothesis of independence) in cell ij as m_{ij} .

Then, a saturated Log-Linear model for a two-dimensional table such as ours is:

$$\log(m_{ij}) = u + u_{C(i)} + u_{S(j)} + u_{CS(ij)}$$

where u is the overall mean:

$$u = \frac{r c}{\sum \sum} \frac{\log(m_{ij})}{rc}$$

$u_{C(i)}$ is the factor C (here, chromosomes) main effect:

$$u_{C(i)} = \sum_1^c \frac{\log(m_{ij})}{c} - u$$

$u_{S(j)}$ is the factor S (here, sites) main effect:

and $u_{CS(ij)} = \log(m_{ij}) - u - u_{C(i)} - u_{S(j)}$ is parameter representing the interaction between the main factors (CS).