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Introduction
The plant microbiomes (epiphytic, endophytic and rhizospheric) 

have been isolated and have ability to promote plant growth are 
referred as plant growth-promoting (PGP) microbes. The plant 
microbiomes have been sorted out from diverse sources belongs to 
all three domian archaea, bacteria and fungi. Among three domain 
systems the members of domain bacteria are well characterized and 
reported as from diverse abiotic stresses, such as alkaline soil,1,2 
saline soil,3 acidic soil1 low temperature4–11 high temperature,12–17 
and drought.1 Among all three domain, there are very few report 
on archaea as plant growth promotion such as halophilic archaea 
including Natronoarchaeum, Natrinema, Natrialba, Haloterrigena, 
Halostagnicola, Halolamina, Haloferax, Halococcus, Halobacterium 
and Haloarcula having phosphorus solubilizing attributes under the 
hypersaline conditions.3,18 

The microbes associated the plant rhizosphere are termed as 
rhizospheric microbes and rhizospheric actinobacteria are most 
dominant in nature. The study of different microbial diversity in 
form of plant microbiomes it can be concluded the members of 
phylum actinobacteria has been reported from different genera such 
as Streptomyces, Sanguibacter, Rhodococcus, Pseudonocardia, 
Propionibacterium, Nocardia, Mycobacterium, Micrococcus, 
Microbacterium, Frankia, Corynebacterium, Clavibacter, 
Cellulomonas, Bifidobacterium, Arthrobacter, Actinomyces, and 
Acidimicrobium.19 Actinobacteria have been represents a large portion 
of soil microbiomes in the plant root systems.20–24 The Actinobacteria 
has been isolated from diverse sources study e.g. chickpea (Cicer 
arietinum),25,26 maize (Zea mays),23,27,28 pea (Pisum sativum),24,29,30 
rice (Oryza sativa),21,31,32 soybean (Glycine max),24,33–35 Sugarcane 
(Saccharum officinarum),36–38 sunflower (Helianthus annuus),22,39,40 
and wheat (Triticum aestivum).41–46 

The Gram-positive organisms with a high G+C content belong to 
phylum Actinobacteria, constitute one of the largest phyla within the 
domain bacteria and consist of six classes namely, Thermoleophilia, 
Rubrobacteria, Nitriliruptoria, Coriobacteriia, Actinobacteria, and 
Acidimicrobiia, 3900 distinct species of 391 genera belonging to 67 
families of 29 orders.19 Among 3900 distinct species of actinobacteria, 

thirty genera namely Streptosporangium, Streptomyces, 
Saccharothrix, Saccharopolyspora, Rhodococcus, Pseudonocardia, 
Nonomuraea, Nocardiopsis, Nocardioides, Nocardia, Mycobacterium, 
Micromonospora, Microbacterium, Leucobacter, Kribbella, Kocuria, 
Kitasatospora, Gordonia, Geodermatophilus, Corynebacterium, 
Cellulomonas, Brevibacterium, Brachybacterium, Bifidobacterium, 
Arthrobacter, Amycolatopsis, Agromyces, Actinoplanes, Actinomyces, 
and Actinomadura. Among all genera Streptomyces have been most 
dominant with 961 disticnt species followed by Mycobacterium (186 
species).19

Microbes and their applications as bioinoculants have strategies 
to increase the current crops for sustainable agriculture. Microbes 
as bioinoculants and biopesticides are an alternative to chemical 
fertilisers to reduced environmental pollutions. The microbes having 
the plant growth promoting attributes such as nitrogen fixation and 
other plant growth promoting attributes such as solubilization of 
micronutrients phosphorus, potassium and zinc and production 
of Fe-chelating compounds, phytohormones. The nitrogen fixing 
actinobacteria such as Agromyces sp. ORS 1437,47 Arthrobacter 
humicola IARI-IIWP-42,48 Arthrobactermethylotrophus IARI-
HHS1-25,49 Arthrobacter nicotinovorans IARI-HHS1-1 49, 
Corynebacterium sp. AN1,50 Microbacterium,51 Microbacterium 
FS-01,52 and Pseudonocardia dioxanivorans CBI190,53 have been 
isolated from the rhizosphere of various crops, which contribute fixed 
nitrogen to the associated plants.

Phosphorus is an essential element for the establishment and 
development of plants because it improves the entire root system, 
consequently improving the shoot. Phosphate solubilization is a 
common trait among microbes such as archaea, bacteria and fungi. 
There are many reports on PGP Actinobacteria with phosphate 
solubilizing attributes and a vast numbers of P-solubilizing microbes 
have been reported which include members belonging to Streptomyce 
djakartensis TB-4, Streptomyces sp. WA-1, 54 Micrococcus SP 
N11- 0909,55 , Microbacterium FS-01 52, Cellulosimicrobium sp. 
PB-09,56 Arthrobacter agilis strain L77,57 Micrococcus luteus IARI-
THW-25,58 Arthrobacter humicola IARI-IIWP-42, Micrococcus 
luteus IARI-IHD-5, Micrococcus sp. IARI-IIWP-20 48, Arthrobacter 
methylotrophus IARI-HHS1-25, Arthrobacter nicotinovorans IARI-
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Abstract

Actinobacteria is a phylum and class of Gram-positive bacteria. The phylum Actinobacteria 
are classified into six classes namely Acidimicrobiia, Actinobacteria, Coriobacteriia, 
Nitriliruptoria, Rubrobacteria and Thermoleophilia. Members of phylum Actinobacteria 
are ubiquitous in nature. Actinobacteria can be utilized as biofertilizers for sustainable 
agriculture as they can enhance plant growth and soil health though different plant growth 
promoting attributes such as solubilization of phosphorus, potassium and zinc, production 
of Fe-chelating compounds, phytohormones hormones such indole acetic acids, cytokinin, 
and gibberellins as well as by biological nitrogen fixation. The Actinobacteria also plays an 
important role in mitigation of different abiotic stress conditions in plants. The members of 
phylum Actinobacteria such as Actinomyces, Arthrobacter, Bifidobacterium, Cellulomonas, 
Clavibacter, Corynebacterium, Frankia, Microbacterium, Micrococcus, Mycobacterium, 
Nocardia, Propionibacterium, Pseudonocardia, Rhodococcus, Sanguibacter and 
Streptomyces exhibited the multifarious plant growth promoting attributes and could be 
used as biofertilizers for crops growing under natural as well as under the abiotic stress 
conditions for plant growth and soil health for sustainable agriculture.

Keywords: abiotic stress, actinobacteria, plant growth promotion, soil health, sustainable 
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HHS1-1, and Kocuria kristinae IARI-HHS2-64 49. Along with the 
phosphorus solubilization, potassium solubilization is also help for 
plant growth promotion and there are many reports on potassium 
solubilizing Actinobacteria such as Arthrobacter sp. 42, Arthrobacter 
sp. 4, and Microbacterium FS-01.52 The ability to synthesize 
phytohormones is widely distributed among plant-associated bacteria 
and indole acetic acids may potentially be used to promote plant growth 
or suppress weed growth. There are many reports on production of 
phytohormones by Actinobacteria including Micrococcus SP N11- 
0909 55, Cellulosimicrobium sp. PB-09 56, Arthrobacter sp. AS,18,59 
Micrococcus luteus IARI-THW-25,58 Micrococcus luteus IARI-
IHD-5, Micrococcus sp. IARI-IIWP-20, Arthrobacter humicola IARI-
IIWP-42, Kocuria sp. IARI-IHD-9 48, Arthrobacter methylotrophus 
IARI-HHS1-25, Arthrobacter nicotinovorans IARI-HHS1-1, Kocuria 
kristinae IARI-HHS2-64 49, Micrococcus luteus IARI-NIAW1-1, 
Arthrobacter sp. IARI-NIAW1-4, Micrococcus luteus IARI-NIAW1-1 
60.60–67

Iron is an essential nutrient for virtually all organisms and 
a necessary co-factor for many enzymatic reactions. The Fe-
chelating compounds producing microbes shows for both direct and 
indirect enhancement of plant growth by beneficial Actinobacteria 
including Streptomyces, Micrococcus, Microbacterium, Kocuria, 
Corynebacterium, and Arthrobacter.56–60 There are many insecticidal 
compounds spinosyns, polynactins, milbemycin, emamectin, 
avermectin, and abamectin, have been reported to produced by 
Actinomycetes and applied for the biocontrol of insect. 61–65 Termites 
are the most problematic pest threatening agriculture and the urban 
environment. They cause significant losses to annual and perennial 
crops. They are responsible for the loss of 15–25% of maize yield 
and about 1478 million Rupees.66 Most tropical crops are susceptible 
to termite attack worldwise, which included wheat, tomato, tobacco, 
tea, sunflower, sugarcane, soybean, rice, potatoes, pigeon pea, pearl 
millet, mulberry, mango, maize, groundnut, eucalyptus, cowpea, 
cotton, citrus, chickpea, beans, barley, banana, and almond.67 The pest 
management by microbes are effective, eco-friendly, economically 
viable, and socially acceptable method for sustainable agriculture and 
environments.67

Conclusion
The need of today’s world is high output yield and enhanced 

production of the crop as well as fertility of soil to get in an eco-
friendly manner. Actinobacteria should be explored for the use 
of bio-inoculants for different crops growing under the abiotic 
stresses such as temperature, pH, drought and salinity. In view of 
the medical, biotechnological, and ecological importance of the 
Actinobacteria, an understanding of the evolutionary relationships 
among members of this large phylum and what unique biochemical or 
physiological characteristics distinguish species of different classes of 
Actinobacteria is of great importance and significance. The members 
of Actinobacteria can be applied for biofortification of minerals for 
different cereal crops as well as many most dominant Actinobacteria 
can be used as probiotics as functional foods for human health.
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