

Review Article

Effect of non-hydrocarbon components on gas compressibility factor values and correlations

Abstract

Gas compressibility factor is necessary in most natural gas engineering calculations. The most common sources of z-factor values are experimental measurements, equation of state and empirical correlations. There are more than twenty correlations available with two variables for calculating the z-factor from fitting Standing-Katz chart values in EOS or through fitting technique. The theory of corresponding states dictates that the Z-factor can be uniquely defined as function of reduced pressure and temperature. Natural gases frequently contain material other than hydrocarbon components, such as nitrogen, carbon dioxide and hydrogen sulfide. Hydrocarbon gases are classified as sweet or sour depending on the hydrogen sulfide content. Both sweet and sour gases may contain nitrogen, carbon dioxide or both. The compositions of most natural gases are hydrocarbon of the same family (paraffin hydrocarbons), so the correlation of this type is possible but containing non-hydrocarbon on the gases, make the prediction difficult. This paper focuses on evaluating the correlations which calculate gas compressibility factor for natural gas reservoirs contains nonhydrocarbon components. It is found that gas pseudo-critical temperature decreases with the increase of N, and H,S. Also, it is observed that in the tested gas reservoirs which contain C₂, by Stewart Mixing Rules and Kay's there are some deviation on z factor between two methods that became negligible by using the correction method for non-hydrocarbon.

Keywords: mole fraction (H_2S+CO_2) , mole fraction of H_2S , temperature, pressure, impurities

Volume 2 Issue 4 - 2017

Hamada GM

Petroleum Engineering Department, Universiti Technologi Petronas, Malaysia

Correspondence: GM Hamada, Petroleum Engineering Department, Faculty of Geosciences and Petroleum Engineering, Universiti Technologi Petronas, Malaysia, Email ghareb.mostafa@utp.edu.my

Received: October 24, 2016 | Published: March 06, 2017

Abbreviations: P_e , critical pressure; P_{pr} , pseudo-reduced pressure; P_{pe} , pseudo critical pressure; P_{pe} , corrected pseudo critical pressure; T_e , critical temperature; T_{pr} , pseudo-reduced temperature; T_{pe} , pseudo-critical temperature; T_{pe} , corrected pseudo critical temperature; E, pseudo-critical temperature adjustment factor; E0, carbon dioxide; E1, standing and E2, dranchuk- abou- kassem; E3, stewart-burkhardt-voo

Introduction

Gas compressibility factor is involved in calculating gas properties such as formation volume factor, density, compressibility and viscosity. All these properties are necessary in the oil and gas industry for evaluating newly discovered gas reservoirs, calculating initial gas reserves, predicting future gas production and designing production tubing and pipelines. The accurate measurement of natural gas related fluids is difficult. The compressibility factor is a ubiquitous concept in measurement. It arises in many industry practices and standard. The industry standard is to measure gas properties, pressure-volumetemperature in the laboratory using reservoir samples. The drawback is that these isothermally measured PVT data is applicable at measures pressure and reservoir temperature. Calculation Methods such as correlations and equation of state are used to predict properties at other pressure and temperature. Also, laboratory analyses for PVT behavior are sometimes expensive and time consuming. Correlations, which are used to predict gas compressibility factor, are much easier and faster than equation of state. Natural gases frequently contain material other than hydrocarbon components, such as nitrogen, carbon dioxide and hydrogen sulfide. Hydrocarbon gases are classified as sweet or sour depending on the hydrogen sulfide content.

Both sweet and sour gases may contain nitrogen, carbon dioxide or both. Sometimes these correlations have comparable accuracy to equation of state. Predicting compressibility factor for gas containing non-hydrocarbon (impurities) is much difficult than that for sweet gas. The compositions of most natural gases are hydrocarbon of the same family (paraffin hydrocarbons), so the correlation of this type is possible but containing non-hydrocarbon on the gases, make the prediction difficult. Therefore, several attempts have been made to predict compressibility factor for sweet gases, Wichert and Aziz and Carr-Kobayashi-Burrows presented correction for the presences of hydrogen sulfide and carbon dioxide for determining the compressibility factor. The objective of this study is evaluating the pervious correlations which calculate gas compressibility factor for gases contain non-hydrocarbon component and observe the effect of these component on Z factor.^{1-5,8}

Correlation

The most common method is to use one of the forms of the principle of corresponding states. In this form, gas compressibility factor is expressed as function of pseudo-reduced pressure and temperature (P_{pr}, T_{pr}) . Compressibility factors are function of composition as well as temperature and pressure. Standing and Katz (SK) presented a chart for determining gas compressibility factor based on the principle of corresponding states. The SK chart was prepared for binary mixture of low molecular weight sweet gases. Several mathematical expressions fitting the SK chart have been proposed to calculate the gas compressibility factor. Dranchuk- Abou- Kassem (DK) correlation is the most accurate representation of SK chart. When dealing with gas mixture, the gas mixture is critical pressure (P_{pr}) and

125

temperature (T_{nc}) are required. Critical properties of natural gas are calculated from either gas composition or gas gravity. Several Mixing rules have been proposed to calculate mixture critical properties of natural gases. Among these methods, Kay's mixing rule and stewart-Burkhardt-Voo (SBV) are the most widely used. Kay's mixing rule is simple and provides an accurate determination of gas compressibility factor for sweet gases of low molecular weight. Satter and Campbell evaluated several mixing rules for calculating properties of natural gases. 6-8 They concluded that Stewart-Burkhardt-Voo rule known as SBV provided the most satisfactory results especially for gases of high molecular weight. Sutton studied the performance of several mixing rule for calculating compressibility factor for gas condensates that contain a large amount of heptanes plus fraction. Sutton modified SBV mixing rule to account for the presence of heptanes plus in the natural gases. Standard laboratory analysis gives composition of natural gases through hexane and lump components heavier than hexane in heptane plus fraction known as C₇₊ critical properties of pure components are well documents as shown Table 1. The critical properties of the C_{7+} , fraction are calculated from correlations using molecular weight and specific gravity of the heptanes plus. Standing presented correlation of pseudo critical properties to gas gravity based on low molecular weight which are:

$$P_{pc} = 706 - 51.7\gamma_g - 11.1\gamma_g^2 \tag{1}$$

$$T_{pc} = 187 + 330\gamma_g - 71.5\gamma_g \tag{2}$$

The previous correlation work only when there no non-hydrocarbon gases present on the gases. Sutton developed the following correlation work with high molecular weight of gases.

$$P_{pc} = 756.8 - 131.0\gamma_g - 3.6\gamma_g^2 \tag{3}$$

$$T_{pc} = 169.2 + 349.5\gamma_g - 74.0\gamma_g^2 \tag{4}$$

The gases which Suttton used to develop previous correlation were sweet gases with minor amount of carbon dioxide and nitrogen and no hydrogen sulfide. Then, Elsharkawy et al.¹ developed Sutton correlation but will cover heavier hydrocarbons and minor of hydrogen sulfide.

$$P_{pc} = 787.06 - 147.34\gamma_g - 7.916\gamma_g^2 \tag{6}$$

$$T_{pc} = 149.18 + 345.14\gamma_g - 66.976\gamma_g^2 \tag{7}$$

Methods of Calculating the Pseudo-critical Gas Properties

The pseudo-critical properties provide a mean to correlate the physical properties of mixtures with principle of the corresponding states. The principle of corresponding states suggests that pure but similar gases have the same gas deviation or Z factor at the same values of reduced pressure and temperature. The mixture of chemically similar gases can be correlated with reduced temperature and reduced pressure. 9.10 There are several methods which are:

- a. Mixing Rules developed by Stewart et al and Kay's requires the gas composition to be known.
- Estimating pseudo-critical properties when the gas composition is not known, developed by Sutton.

The theory corresponding states dictates that the Z-factor can be uniquely defined as function of reduced pressure and temperature. The reduce pressure and temperatures are:

$$T_{pr} = \frac{P}{P_{pc}}$$

$$P_{pr} = \frac{T}{T_{pc}}$$
(7)

The values of pseudo-critical pressure and temperature can be estimated from the following equations if the composition of the gas and the critical properties of the individual component are known (kay):

$$T_{pc} = \sum_{i=1}^{n} P_{ci} y_i$$

$$P_{pc} = \sum_{i=1}^{n} T_{ci} y_i$$
(8)

Procedures for Stewart Mixing Rules

i. Estimate the boiling temperature of the C_{7+} fraction.

$$T_{bc7+} = (4.5579M_{C7+}^{0.15178} \gamma_{C7+}^{0.15427})^3 \tag{9}$$

ii. Estimate the pseudo-critical pressure of the C_{7+} fraction.

$$P_{pcC7+} = \exp \left[8.3634 - \frac{0.0566}{\gamma_{C7+}} - \left(0.24244 + \frac{2.2898}{\gamma_{C7+}} + \frac{0.11857}{\gamma_{C7+}^2} \right) \frac{T_{bC7+}}{1000} + \left(1.4685 + \frac{3.648}{\gamma_{C7+}} + \frac{0.47227}{\gamma_{C7+}^2} \right) \frac{T_{bC7+}^2}{10^7} - \left(0.42019 + \frac{1.6977}{\gamma_{C7+}^2} \right) \frac{T_{bC7+}^3}{10^{10}} \right]$$
(10)

iii. Estimate the pseudo-critical temperature of the C_{7+} fraction.

$$T_{pcC7+} = \left(341.7 + 811\gamma_{C7+}\right) + \left(0.4244 + 0.1174\gamma_{C7+}\right)T_{bC7+} + \left(0.4669 - 3.2623\gamma_{C7+}\right)\frac{10^5}{T_{bC7+}}$$

$$\tag{11}$$

iv. Determine the correction factor Fj,ξj and ξk for high-molecular weight component using Sutton's method.

$$F_{j} = \frac{1}{3} \left(\frac{yT_{c}}{P_{c}} \right)_{C7+} + \frac{2}{3} \left(\frac{y^{2}T_{c}}{P_{c}} \right)_{C7+}$$
(12)

$$\xi_{j} = 0.6081F_{j} + 1.1325F_{j}^{2} - 14.004F_{j}y_{C7+} + 64.434F_{j}y_{C7+}^{2}$$

$$\tag{13}$$

$$\xi_K = \left(\frac{T_c}{\sqrt{P_c}}\right)_{C7+} \left(0.3129y_{C7+} - 4.8156y_{C7+}^2 + 27.3751y_{C7+}^3\right)$$

- v. Obtain the critical pressure and temperature of the remaining component from Table 1.
- vi. Determine the pseudo-critical pressure and temperature of the gas
- vii. Calculate the parameters J and K

$$J = \frac{1}{3} \sum_{i=1}^{nc} \left(\frac{yT_c}{P_c} \right)_i + \frac{2}{3} \left[\sum_{i=1}^{nc} \left(y\sqrt{\frac{T_c}{P_c}} \right)_i \right]^2$$
 and

$$K = \sum_{i=1}^{nc} \left(\frac{yT_c}{\sqrt{P_c}} \right)_i \tag{13}$$

viii. Correct the parameters J and K for the C₇₄ fraction.

$$J' = J - \xi_{j}$$

$$K' = K - \xi_{K}$$
(14)

ix. Calculate the pseudo-critical temperature and pressure

$$T_{pc} = \frac{K^{2'}}{J'}$$

$$P_{pc} = \frac{T_{pc}}{J'}$$
(15)

- x. Calculated the Pseudo-reduced pressure and temperature by using equation7
- xi. Finding z factor from Standing & Katz compressibility factors Figure 1.

Table I Physical properties of defined component

Component	Molecular weight	Critical pressure (Psia)	Critical temperature(R°)
H ₂ S	34.08	1300	672.45
CO ₂	44.01	1071	547.45
N_2	28.01	493	227.27
C	16.04	667.8	343.04
C_2	30.07	707.8	549.76
C ₃	44.01	616.3	665.68
i-C ₄	58.12	529.1	734.65
n-C ₄	58.12	550.7	765.32
i-C ₅	72.15	490.4	828.77
n-C ₅	72.15	488.6	845.37
C ₆	86.18	436.9	913.37

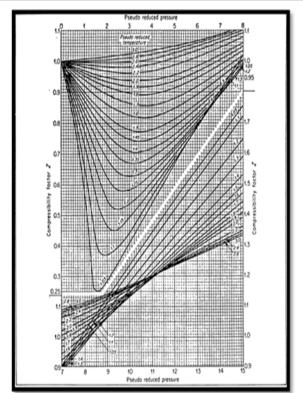


Figure I Standing and Katz compressibility factors chart.3

Procedures for Sutton's correlations of sweet gas

- I. Estimate the gas gravity of the mixture
- II. Calculate the pseudo-critical pressure and temperature for the hydrocarbon component by using the following equation:

$$P_{pch} = 756.8 - 131.0\gamma_h - 3.6\gamma_h^2$$

$$T_{pch} = 169.2 + 349.5\gamma_h - 74.0\gamma_h^2$$
(16)

III. Ignore the nitrogen contamination, then

$$P_{pc} = P_{pch}$$

$$T_{pc} = T_{pch}$$
(17)

- IV. Calculated the Pseudo-reduced pressure and temperature from equation 7.
- V. Finding z factor from Standing & Katz compressibility factors chart.

Procedures for Sutton's correlations of Sour gas

 Determine the gravity of the hydrocarbon components of the Mixture

$$\gamma_h = \frac{\gamma_w - 1.1767 y_{H2S} - 1.5196 y_{co2} - 0.9672 y_{N2} - 0.6220 y_{H2O}}{1 - y_{H2S} - y_{Co2} - y_{N2} - y_{H2O}} \tag{18}$$

b) Calculate the pseudo-critical pressure and temperature for the hydrocarbon component by using the following equations.

$$\begin{split} P_{pch} &= 756.8 - 131.0 \gamma_h - 3.6 \gamma_h^2 \\ T_{pch} &= 169.2 + 349.5 \gamma_h - 74.0 \gamma_h^2 \end{split} \tag{19}$$

c) Calculate the Pesudo-critical properties of the total mixture.

$$P_{pc} = (1 - y_{H2S} - y_{CO2} - y_{N2} - y_{H2O})P_{pch} + 1,306y_{H2S}$$

$$+1,071y_{CO2} + 493.1y_{N2} + 3200.1y_{H2O}$$

$$T_{pc} = (1 - y_{H2S} - y_{CO2} - y_{N2} - y_{H2O})T_{pch} + 672.35y_{H2S}$$

$$+547.58y_{CO2} + 227.16y_{N2} + 1164.9y_{H2O}$$
(20)

Methods of correction the pseudo-critical gas properties for H₂S and CO₂ contamination.

Natural gases, which contain H_2S and CO_2 frequently, exhibit different compressibility factor behavior than do sweet gases. Wichert and Aziz developed a simple, easy to use calculation procedure to account for these differences.

Wichert-Aziz correction method

This method permits the use of the standing-Katz chart, by using a pseudo-critical temperature adjustment factor, which is function of the concentration of CO_2 and $\mathrm{H}_2\mathrm{S}$ in the sour gas. The following

Wichert and Aziz correlation is also can obtain from Figure 2:

$$\xi = 120 \left(A^{0.9} - A^{1.6} \right) + 15 \left(B^{0.5} - B^4 \right) \tag{20}$$

Where the pseudo-critical temperature, $T'_{\ pc}$ and pressure $P'_{\ pc}$, adjusted for CO_2 and H_2S contamination are :

$$T_{pc} = T_{pc} - \xi$$

$$P_{pc}' = \frac{T_{pc}P_{pc}}{\left[T_{pc} + B(1-B)\xi\right]}$$
(21)

Where.

- A: Sum of the mole fractions of H₂S and CO₂ in the gas mixture
- B: Mole fraction of H₂S in the gas mixture.

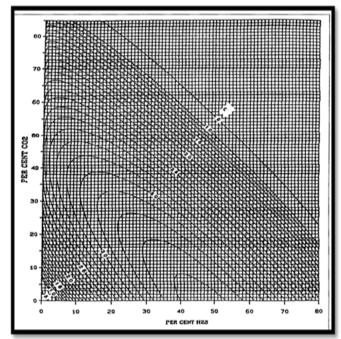


Figure 2 Show the pseudo-critical property correction for H₂S and CO₂.³

Methods of correction the pseudo-critical gas properties for N_2 and H_2O vapor contamination

Carr-Kobayashi and Burrows developed a simple procedure to adjust the pseudo-critical properties of natural gases when non-hydrocarbon components are present.

Carr-Kobayashi and burrows correction method

The procedures to obtain the correction are following:

A. Known the specific gravity of the natural gas, calculate the pseudo-critical temperature and pressure from Figure 3 or by the following equation:

$$T_{pc} = 168 + 325\gamma_g - 12.5\gamma_g^2$$

$$P_{pc} = 677 + 15\gamma_g - 37.5\gamma_g^2$$
(22)

B. Calculate the corrections for nitrogen and water vapor.

$$T_{pc,cor} = -246.1y_{N2} + 400y_{H2O}$$

$$P_{pc,cor} = -162.0y_{N2} + 1270y_{H2O}$$
(23)

 C. Calculate the pseudo-critical temperature and pressure for nitrogen and water vapor.

$$T_{pc}^{"} = \frac{T_{pc}^{'} - (227.2)y_{N2} - (1,165)y_{H2O}}{(1 - y_{N2} - y_{H2O})} + T_{pc,cor}$$

$$P_{pc}^{"} = \frac{P_{pc}^{'} - (493.1)y_{N2} - (3,200)y_{H2O}}{(1 - y_{N2} - y_{H2O})} + P_{pc,cor}$$
(24)

Where, T'_{Pc} and P'_{pc} are the pseudo-critical temperature and pressure corrected for H_2S and CO_2 with wichert and Aziz correlation.

If there is no H_2S or CO_2 in the gas mixture, then $T'_p = T_{pc}$ and

$$P'_{pc} = P_{pc}$$

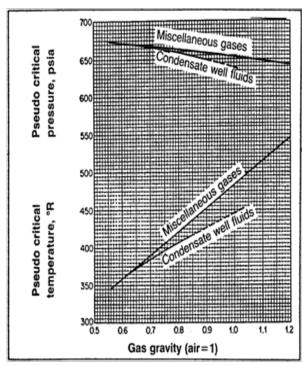
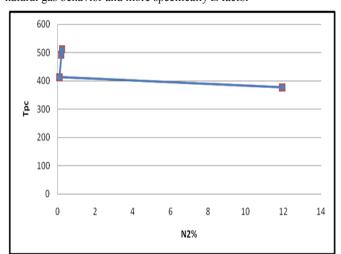



Figure 3 Show the pseudo-critical property of natural gases.³

Results and discussion

The data are analyzed and Stewart method and Kay's mixing rules for predicting pseudo-reduce pressure and temperatures are used for these data with knowing composition. Moreover, according to present of non-hydrocarbon on the data I used the correction methods which are Wichert-Aziz and Carr-Kobayashi and Burrows. The data of three reservoirs (A,B,C) with water vapor, carbon dioxide and hydrogen sulfide but with light molecular weight while ,the others (D,E,F) have C_{7+} and without water vapor are shown in Table 2, so I used Stewart Mixing Rules and Kays, The calculation and result for six reservoir are appear in Tables 3-14. From calculation, it is found that gas pseudo-critical temperature decrease with increase of N₂ as shown in Figure 4. Moreover, pseudo-critical temperature with increasing H₂S is decreases with limitation as shown in Figure 5 then slightly increase with increase temperature maybe it related to the behavior of H₂S in reservoir. In addition, gas pseudo-critical pressure increase with increase N, and H,S as shown in Figure 5 & 8. Also, it is observed that in the tested gas reservoirs which contain C_{7+} by Stewart Mixing Rules and Kay's there are some deviation on z factor between two methods that became negligible by using the correction method for non-hydrocarbon as shown in Figure 8 and Table 10 & 14. It is obvious from the error of Z factor calculated by Stewart for reservoirs D, E and F (Table 10) is lower than Z error for reservoirs A, B and C (Table 6) with Kay's technique, therefore it is recommended to adopt Stewart Mixing Rules to solve the problem on non-hydrocarbon impurities in natural gas behavior and more specifically Z factor

Figure 4 Show the mole percent of nitrogen verses pseudo-critical temperature.

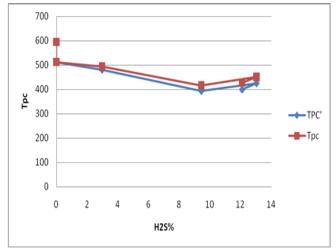


Figure 5 Show the mole percent of H₂S verses pseudo-critical temperature.

Table 2 Six different reservoir in Abu-Dhabi

	Α	В	С	D	E	F
Pressure(psia)	6000	5200	5000	4010	2640	2748
Temperature (R°)	673.8	657.6	657.6	711.6	672	690
C	59.59	69.14	71.32	57.95	61.83	40
C ₂	0.02	2.27	0.1	12.59	7.7	11.93
C ₃	0.01	1.96	0	7.94	7.63	14
i-C ₄	0	0.46	0	1.13	1.73	4.7
n-C ₄	0	1.46	0	3.16	4.38	7.37
i-C ₅	0	0	0	1.42	2.38	2.38
n-C _s	0	0	0	2.01	2.6	5.6
C ₆	0	0	0	2.18	4.34	7.54
C ₇₊	0	0	0	4.54	6.87	5.93
CO ₂	12.59	7.9	9.05	3.9	0.3	0.34
N ₂	11.95	0.1	6.35	0.2	0.24	0.21
H ₂ S	12.09	13.03	9.44	2.98	0	0
H ₂ O	3.75	3.68	3.74	0	0	0

Table 3 Reservoir A using Kay's rule at P=6000psi and T=673.8R°

Component	\mathbf{Y}_{i}	\mathbf{M}_{i}	$\mathbf{Y}_{i}\mathbf{M}_{i}$	T_{ci}	$\mathbf{Y}_{i}\mathbf{T}_{ci}$	\mathbf{P}_{ci}	$\mathbf{Y}_{i}\mathbf{P}_{ci}$
CO ₂	0.1259	44	5.5396	547.6	68.94284	1071	134.8389
N_2	0.1198	28	3.3544	239.3	28.66814	507.5	60.7985
H ₂ S	0.1209	34	4.1106	672.35	81.28712	1306	157.8954
H ₂ 0	0.0375	18	0.675	1164.85	43.68188	3200.1	120.0038
$C_{_{I}}$	0.5956	16	9.5296	343	204.2908	666.4	396.9078
C_2	0.0002	30	0.006	549.6	0.10992	706.5	0.1413
C ₃	0.0001	45	0.0045	665.7	0.06657	616	0.0616
i-C ₄	0	58	0	734. I	0	527.9	0
n-C ₄	0	58	0	765.3	0	550.6	0
Total	1		23.2197		427.0473		870.6473

Table 4 Reservoir B using Kay's rule at P=5200psi and T=657.6R $^{\circ}$

Component	\mathbf{Y}_{i}	$\mathbf{M}_{_{\mathrm{i}}}$	$\mathbf{Y}_{i}\mathbf{M}_{i}$	T _{ci}	$\mathbf{Y}_{i}\mathbf{T}_{ci}$	\mathbf{P}_{ci}	$\mathbf{Y}_{i}\mathbf{P}_{ci}$
CO ₂	0.079	44	3.476	547.6	43.2604	1071	84.609
N_2	0.001	28	0.028	239.3	0.2393	507.5	0.5075
H_2S	0.1303	34	4.4302	672.35	87.60721	1306	170.1718
H ₂ 0	0.0368	18	0.6624	1164.85	42.86648	3200. I	117.7637
C	0.6914	16	11.0624	343	237.1502	666.4	460.749
C_2	0.0227	30	0.681	549.6	12.47592	706.5	16.03755
C ₃	0.0196	45	0.882	665.7	13.04772	616	12.0736
i-C ₄	0.0046	58	0.2668	734. I	3.37686	527.9	2.42834
n-C ₄	0.0146	58	0.8468	765.3	11.17338	550.6	8.03876
Total	I		22.3356		451.1975		872.3792

Table 5 Reservoir C using Kay's rule at P=5000psi and T=657.6R°

Component	Y	M _i	$\mathbf{Y}_{i}\mathbf{M}_{i}$	T _{ci}	$\mathbf{Y}_{i}\mathbf{T}_{ci}$	P _{ci}	Y _i P _{ci}
CO ₂	0.0905	44	3.982	547.6	49.5578	1071	96.9255
N ₂	0.0635	28	1.778	239.3	15.19555	507.5	32.22625
H ₂ S	0.0944	34	3.2096	672.35	63.46984	1306	123.2864
H ₂ 0	0.0374	18	0.6732	1164.85	43.56539	3200.1	119.6837
C	0.7132	16	11.4112	343	244.6276	666.4	475.2765
C ₂	0.001	30	0.03	549.6	0.5496	706.5	0.7065
C ₃	0	45	0	665.7	0	616	0
i-C ₄	0	58	0	734. I	0	527.9	0
C ₅	0	72	0	828.77	0	490.4	0
Total	1		21.084		416.9658		848.1049

Table 6 Properties and compressibility factor for the three reservoirs

	A	В	С
P_{Pc}	870.647	872.379	848.105
T_{Pc}	427.047	451.197	416.966
P_{Pr}	6.891	5.961	5.895
T_{Pr}	1.578	1.457	1.577
Z	0.928	0.848	0.872
T _{pc} '	400.563	426.246	394.149
P _{pc} '	811.305	819.004	797.964
T _p "	376.709	412.673	373.208
P _P "	778.462	774.854	756.788
T _r	1.789	1.594	1.762
P_r	7.708	6.711	6.607
z	1.004	0.92	0.946
(Z- Error)	0.0089	0.0065	0.0178

Table 7 Reservoir D using Stewart mixing rules

Component	Y	M _i	$\mathbf{y_i}\mathbf{M_i}$	T _{ci} (°R)	P _{ci} (psia)	y _i T _{ci} /P _{ci}	$\mathbf{y_i} \sqrt{\mathbf{T_{ci}}} / \mathbf{P_{ci}}$	$\mathbf{y_iT_{ci}}/\sqrt{\mathbf{P_{ci}}}$
N ₂	0.002	28.01	0.06	227.16	493.1	0	0	0.02
CH₄	0.5795	16.04	9.3	343	666.4	0.3	0.42	7.7
C ₂ H ₆	0.1259	30.07	3.79	549.59	706.5	0.1	0.11	2.6
C_3H_8	0.0794	44.1	3.5	665.73	616	0.09	0.08	2.13
$i-C_4H_{10}$	0.0113	58.12	0.66	734.13	527.9	0.02	0.01	0.36
$n-C_4H_{10}$	0.0316	58.12	1.84	765.29	550.6	0.04	0.04	1.03
$i-C_5H_{12}$	0.0142	72.15	1.02	828.77	490.4	0.02	0.02	0.53
$n-C_5H_{12}$	0.0201	72.15	1.45	845.47	488.6	0.03	0.03	0.77
C ₆ H ₁₄	0.0218	86.18	1.88	913.27	436.9	0.05	0.03	0.95
C ₇₊	0.0454	114.23	5.19	1005.3	375.5	0.12	0.07	2.36
CO ₂	0.039	44.01	1.72	547.45	1071	0.02	0.03	0.65
H ₂ S	0.0298	34	1.01	672.35	1306	0.02	0.02	0.55
Σ	1		30.39			0.8	0.86	19.66

Table 8 Reservoir E using Stewart mixing rules

Component	\mathbf{Y}_{i}	$\mathbf{M}_{_{\mathbf{i}}}$	$\mathbf{y_iM_i}$	T _{ci} (°R)	P _{ci} (psia)	$\mathbf{y_iT_{ci}/P_{ci}}$	$\mathbf{y_i} \sqrt{\mathbf{T_{ci}}} / \mathbf{P_{ci}}$	$\mathbf{y_iT_{ci}}/\!\!\!\!/\mathbf{P_{ci}}$
N ₂	0.0024	28.01	0.07	227.16	493.1	0	0	0.02
CH₄	0.6183	16.04	9.92	343	666.4	0.32	0.44	8.22
C ₂ H ₆	0.077	30.07	2.32	549.59	706.5	0.06	0.07	1.59
C_3H_8	0.0763	44. I	3.36	665.73	616	0.08	0.08	2.05
$i-C_4H_{10}$	0.0173	58.12	1.01	734.13	527.9	0.02	0.02	0.55
$n-C_4H_{10}$	0.0438	58.12	2.55	765.29	550.6	0.06	0.05	1.43
$i-C_5H_{12}$	0.0238	72.15	1.72	828.77	490.4	0.04	0.03	0.89
$n-C_5H_{12}$	0.026	72.15	1.88	845.47	488.6	0.04	0.03	0.99
C ₆ H ₁₄	0.0434	86.18	3.74	913.27	436.9	0.09	0.06	1.9
C ₇₊	0.0687	114.23	7.85	1005.3	375.5	0.18	0.11	3.56
CO ₂	0.003	44.01	0.13	547.45	1071	0	0	0.05
Σ	1		34.4			0.91	0.91	21.26

Table 9 Reservoir F using Stewart mixing rule

Component	\mathbf{Y}_{i}	$\mathbf{M}_{_{\mathrm{i}}}$	$\mathbf{y_iM_i}$	$T_{ci}(^{c}R)$	P _{ci} (psia)	$\mathbf{y_iT_{ci}/P_{ci}}$	$\mathbf{y_i} \sqrt{\mathbf{T_{ci}}} / \mathbf{P_{ci}}$	$\mathbf{y_iT_{ci}}\!/\!\sqrt{\mathbf{P_{ci}}}$
N ₂	0	28.01	0.06	227.16	493.1	0	0	0.02
CH₄	0.4	16.04	6.42	343	666.4	0.21	0.29	5.31
C ₂ H ₆	0.12	30.07	3.59	549.59	706.5	0.09	0.11	2.47
C ₃ H ₈	0.14	44.1	6.17	665.73	616	0.15	0.15	3.76
i-C ₄ H ₁₀	0.05	58.12	2.73	734.13	527.9	0.07	0.06	1.5
n-C4H ₁₀	0.07	58.12	4.28	765.29	550.6	0.1	0.09	2.4
i-C ₅ H ₁₂	0.02	72.15	1.72	828.77	490.4	0.04	0.03	0.89
$n-C_5H_{12}$	0.06	72.15	4.04	845.47	488.6	0.1	0.07	2.14
C ₆ H ₁₄	0.08	86.18	6.5	913.27	436.9	0.16	0.11	3.29
C ₇₊	0.06	114.23	6.77	1005.3	375.5	0.16	0.1	3.08
CO ₂	0	44.01	0.15	547.45	1071	0	0	0.06
Σ	1		42.43			1.07	0.99	24.92

Table 10 Properties and compressibility factor for the three reservoirs

	D	E	F
Fj	0.044	0.07	0.059
Ej	0.007	0.002	0.004
Ek	0.355	0.397	0.38
J	0.762	0.851	1.017
K	19.66	21.256	24.924
J'	0.756	0.849	1.013
K'	19.305	20.859	24.544
T_{pc}	493.256	512.496	594.9
P_{pc}	652.851	603.662	587.495
T _{pc} '	481.534	511.864	594.193
P _{pc} '	636.898	602.917	586.797
T _p "	493.263	511.958	594.448

Table Continu	Table Continued								
	D	E	F						
P_{P} "	653.206	602.792	586.654						
T_r	1.478	1.313	1.161						
\mathbf{P}_{r}	6.296	4.379	4.684						
Z	0.874	0.69	0.666						
Z-Error %	0.0023	0.0056	0.0102						

Table II Reservoir D using Kay's mixing rules

Component	y _i	M _i	T _{ci} (°R)	P _{ci} (psia)	y _i T _{ci}	y _i P _{ci}
N ₂	0.002	28	227.2	493.1	0.5	I
CH₄	0.58	16	343	666.4	198.8	386.2
C ₂ H ₆	0.126	30.1	549.6	706.5	69.2	88.9
C ₃ H ₈	0.079	44. I	665.7	616	52.9	48.9
$i-C_4H_{10}$	0.011	58.1	734. I	527.9	8.3	6
$n-C_4H_{10}$	0.032	58.1	765.3	550.6	24.2	17.4
$i-C_5H_{12}$	0.014	72.2	828.8	490.4	11.8	7
$n-C_5H_{12}$	0.02	72.2	845.5	488.6	17	9.8
C ₆ H ₁₄	0.022	86.2	913.3	436.9	19.9	9.5
C ₇₊	0.045	114.2	1005.3	375.5	45.6	17
CO ₂	0.039	44	547.5	1071	21.4	41.8
H ₂ S	0.03	34	672.4	1306	20	38.9
Σ	1		8097.5	7728.9	489.5	672.4

Table 12 Reservoir E using Kay's mixing rules

Component	\mathbf{y}_{i}	$\mathbf{M}_{_{\mathrm{i}}}$	T _{ci} (○ R)	P _{ci} (psia)	$\mathbf{y_iT_{ci}}$	$\boldsymbol{y_iP_{ci}}$
N ₂	0.0024	28	227.2	493.1	0.5	1.2
CH₄	0.6183	16	343	666.4	212.1	412
C ₂ H ₆	0.077	30.1	549.6	706.5	42.3	54.4
C ₃ H ₈	0.0763	44.1	665.7	616	50.8	47
$i-C_4H_{10}$	0.0173	58.1	734.I	527.9	12.7	9.1
$n-C_4H_{10}$	0.0438	58.1	765.3	550.6	33.5	24.1
$i-C_5H_{12}$	0.0238	72.2	828.8	490.4	19.7	11.7
$n-C_5H_{12}$	0.026	72.2	845.5	488.6	22	12.7
C ₆ H ₁₄	0.0434	86.2	913.3	436.9	39.6	19
C ₇₊	0.0687	114.2	1005.3	375.5	69.1	25.8
CO ₂	0.003	44	547.5	1071	1.6	3.2
Σ	1		7425.2	6422.9	504	620.2

Table 13 Reservoir F using Kay's mixing rules

Component	\mathbf{y}_{i}	\mathbf{M}_{i}	T _{ci} (° R)	P _{ci} (psia)	$\boldsymbol{y_i T_{ci}}$	$\boldsymbol{y_iP_{ci}}$
N ₂	0.0021	28	227.2	493.1	0.5	I
CH₄	0.4	16	343	666.4	137.2	266.6
C ₂ H ₆	0.1193	30.1	549.6	706.5	65.6	84.3
C ₃ H ₈	0.14	44. I	665.7	616	93.2	86.2
$i-C_4H_{10}$	0.047	58.1	734. I	527.9	34.5	24.8

Component	\mathbf{y}_{i}	$\mathbf{M}_{_{\mathrm{i}}}$	T _{ci} (° R)	P _{ci} (psia)	$\boldsymbol{y_i T_{ci}}$	$\mathbf{y_iP_{ci}}$
n-C₄H ₁₀	0.0737	58.1	765.3	550.6	56.4	40.6
i-C5H ₁₂	0.0238	72.2	828.8	490.4	19.7	11.7
$n-C_5H_{12}$	0.056	72.2	845.5	488.6	47.3	27.4
C ₆ H ₁₄	0.0754	86.2	913.3	436.9	68.9	32.9
C ₇₊	0.0593	114.2	1005.3	375.5	59.6	22.3
CO ₂	0.0034	44	547.5	1071	1.9	3.6
Σ	I		6877.7	5351.9	584.8	601.4

Table 14 Properties and compressibility factor for the three reservoirs

	D	E	F
T _{pc}	489.453	504.005	584.759
\mathbf{P}_{pc}	672.432	620.215	601.395
T _{pc} '	477.731	503.373	584.052
P_{pc}	655.874	619.437	600.668
T _P "	477.741	503.446	584.759
P _P "	655.876	619.352	601.395
$T_{\!_{r}}$	1.49	1.335	1.181
$\mathbf{P}_{\mathbf{r}}$	6.114	4.263	4.576
Z	0.865	0.691	0.663

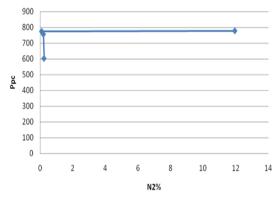


Figure 6 Show the mole percent of nitrogen verses pseudo-critical Pressure.

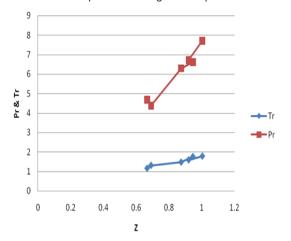
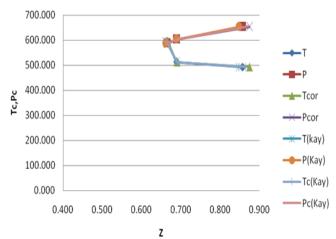



Figure 7 Show the Z-factor verses pseudo-reduce temperature & pressure.

Figure 8 Z-factor obtained from Stewart & Kay and correction with impurities verses pseudo-critical temperature& pressure.

Conclusion

Natural gases, which contain H2S and CO2 frequently, exhibit different compressibility factor behavior than do sweet gases. Wichert and Aziz & Carr-Kobayashi and Burrows developed a simple procedure to account for these differences and adjust the pseudocritical properties of natural gases. During this study, I observe that pseudo-critical temperature decreases if the mole percent of N, increase. While, pseudo-critical pressure was increase with increasing the percentage of nitrogen. Also, the z factor increases with increasing pseudo- reduce pressure and temperature. In addition, pseudo-critical temperature decreases if the mole percent of H₂S increase. I also notice that when I calculate the z-factor for reservoirs which contain C_{74} by Stewart Mixing Rules and Kay's there are some deviation on z factor between two methods but it reduce when I used the correction method for non-hydrocarbon and it is recommended to use Stewart Mixing Rules to investigate the impact of non-hydrocarbon impurities on natural gas properties.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

 Elsharkawy AM, Ali Elkamel. compressibility factor for sour gas reservoir. SPE Asia pacific oil and gas conference and Exhibition, Brisbane, Australia: Society of petroleum engineers; 2000.

- Savidge JL. Comprssibility of natural gas class 1040 The first requirement of gas measurement is accuracy, ISHM Lawrence Reid Award Recipient, USA: CRT 2000.
- 3. John Lee W, Wattenbarger RA. *Gas Reservoir Engineering*. Australia: Society of petroleum engineers; 1996;5:349.
- 4. Rushing JA, Newsham KE, Van Fraassen KC, et al. Natural Gas z-Factor at HP/HT reservoir conditions: comparing laboratory measurements with industry-standard correlations for a Dry Gas. CIPC/SPE gas technology symposium 2008 joint conference, Alberta, Canada: Society of petroleum engineers; 2008.
- Sutton RP. Fundamental PVT Calculation for Associated and Gas/ Condensate natural Gas SystemS. USA: SPE Reservoir Evaluation & Engineering; 2005;10(3).

- 6. Tarek A. Reservoir engineering Handbook. 3rd ed. USA: Elsevier; 2006.
- Kareem LA. Z Factor: Implicit correlation, convergence problem and pseudo-reduced compressibility. SPE Nigeria annual international conference and exhibition, Lagos, Nigeria: Society of petroleum engineers; 2014.
- Verri G, Sorbie KS, Singleton MA, et al. *Iron Sulfide Scale Management in High H₂S and CO₂ Carbonate Reservoirs*. Aberdeen, UK: SPE Production & Operations; 2016.
- Ehsan H, Jamshid M, Masoud R. New correlations to predict natural gas viscosity and compressibility factor. *Journal of Petroleum Science and Engineering*. 2010;73(1-2):67–72.
- Obuba J, Oubaani IC, Ikeki CK, et al. Natural gas compressibility factor correlation evaluation for niger delta gas fields. *IOSR-JEEE*. 2013;6(4):1–10.