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Introduction
Over 40 years ago, Prof. Rubik invented the Rubik’s Snake toy.1 It 

consists of right isosceles triangular prisms (called blocks) that, except 
for the first and last, are connected to two other blocks at the centers 
of the square faces. The applications of the Rubik’s Snake include the 
study of protein folding2 and for the construction of reconfigurable 
modular robots.3,4 There are more applications of robots presented 
in.5,6 In previous papers that the first author published with others, 
some strategies have been given for the design of a Rubik’s Snake,7 
and some mathematical problems concerning a Rubik’s Snake have 
been studied.8 Rotations that are not integer multiple of 90 degrees 
were mentioned in7 but not much theoretical work is presented. On the 
other hand, there are quite some theoretical work but only concerned 
with integer multiple of 90 degree rotations in.8 In,9 general rotation 
angles were studied with theoretical work presented. In,10 more 
theorems about the Rubik’s Snake were presented and proved. In,11 

a counting formula and path designs were discussed for box shapes 
using a Rubik’s Snake. A comic book was also published to make 
some basic research accessible for kids.12

How could a Rubik’s Snake form a knot is not reported in the 
literature until our recent publication in which the shortest Rubik’s 
Snake trefoil knot paths with 34 blocks were presented.13 We extended 
the work in,14–17 to prime knots up to 6 crossings and composite knots 
up to 9 crossings. We also studied torus knot designs in.18

In this paper, we review our previous findings and present improved 
results for some knots studied in the past. By using the idea of key 
local structures, a prime knot 52 was found to have a shorter path. 
This was then used to improve the corresponding composite knots. 
We verified these improved results can no longer be shortened locally.

The rest of the paper is organized as follows: in Section 2, we 
summarize the previous results. In Section 3, we give the new 
shortest snake prime knot 52 beating the previously published result 
and explain the construction. In Section 4, we give the new shortest 
composite knots 31#52 and 41#52. We conclude in Section 5.

Previous results

The simplest non-trivial knot, the trefoil knot, needs at least 34 
blocks.13 The hole structure cannot be further reduced, and the rest of 

the paths are locally searched exhaustively in each of the two separate 
parts. The 41 knot (also called the figure-8 knot) had a 46-block 
construction early in14 but was improved to 44 blocks in16 using a [t 
, −t ,t , −t ] construction and exhaustive search under the constraint. 
The 51 knot had a 52-block construction early in14 but later improved 
to 50 blocks in17 using a non-local change. The 52 knot had a 56-block 
construction early in14 but later improved to 54 blocks in16 using a 
non-local change. The 61 knot had a 64-block construction (based 
on certain 41 construction) early in15 but later improved to 60 blocks 
in17 using a [t , −t ,t , −t ] 83 construction and local changes while 
keeping periodic two (though breaking the [t , −t ,t , −t ] pattern, as 
the knot 61 does not have such symmetry). The 62 knot had a 62-block 
construction (based on certain 41 construction) and 63 a 64-block 
construction (based on certain 31 construction) both in.15

For composite knots, we refer to16 and17 The main idea is to use 
prime knot structures and exhaustively search locally for connections.

The improved shortest 52

The motivation is to carefully study the structure of our 50-block 
51. It appears that it uses the key hole part of shortest 31 and another 
shortest structure to form a hole. Some local searches can be used to 
verify the rest. When we first constructed this 51, it was based on our 
previous 52-block construction with a non-local change and we did 
not study the key components this way.

Now we use the same idea. We include a key pattern [0, 1, 2, 1, 
0, 1, 0, 1, 2, 1, 0, 3] in shortest 31 path (also in shortest 51). We then 
immediately add [3, 1, 0, 0, 3, 1, 0, 1, 1, 0, 1, 0] to it. This turns one 
round forming a hole in the middle and cannot be further shortened 
assuming shared cube for the first and last block. The mathematical 
reasoning is as follows. Look at the projection of the Rubik’s Snake 
with a hole. The shortest has 8 projection pieces around. Since 
a Rubik’s Snake block cannot go from a face of a unit cube to the 
opposite face, the 4 sides must have at least two blocks, making it 
4*2+4=12 blocks at least. Further, Theorem 1 in [8] stated that a closed 
loop with integer multiple of 90 degree rotations (integer sequence) 
must have an even number of blocks and the color on triangular faces 
for two blocks sharing a unit cube within the same snake must be the 
same assuming alternating colors for a standard Rubik’s Snake toy. 
Clearly, with alternating colors and the same color for the first and last 
like GWGWGW...G, we must have odd number of blocks. Therefore 
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Abstract

A Rubik’s Snake is a toy that was invented over 40 years ago together with the more famous 
Rubik’s Cube. It can be twisted to many interesting shapes including complicated knots. 
Previously we have studied the shortest paths for Rubik’s Snake prime knots with up to 6 
crossings and composite knots with up to 9 crossings. Here we provide some improved 
results for some of the knots.

Keywords: Rubik’s Snake, prime knot, composite knot, shortest path

International Robotics & Automation Journal

Mini Review Open Access

https://crossmark.crossref.org/dialog/?doi=10.15406/iratj.2026.12.00312&domain=pdf


Improved results on shortest path of some Rubik’s Snake knots 19
Copyright:

©2026 Hou et al.

Citation: Hou S, Su J. Improved results on shortest path of some Rubik’s Snake knots. Int Rob Auto J. 2026;12(1):18‒21. DOI: 10.15406/iratj.2026.12.00312

13 blocks, that is, 12 joints in the sequence is the minimum. Then the 
rest can be broken into three local exhaustive searches. In the end, we 
present the following as one of the solutions:

[0,1,2,1,0,1,0,1,2,1,0,3,3,1,0,0,3,1,0,1,1,0,1,0,0,0,3,2,0,0,1,0,1,2,1
,0,3,3,0,2,3,0,0,1,0,3,2,3,0,3]

Figure 1 shows the Rubik’s Snake 52 with 50 blocks and Figure 
2 shows the line representation to reveal the knot structure. DT code 
confirms that it is indeed 52.

Figure 1 A Rubik’s Snake 52 knot with 50 blocks with labels.

Figure 2 The line representation of a Rubik’s Snake 52 revealing the prime 
knot structure

31#52 and 41#52

Once we have a shorter construction of 52, it is natural to expect 
that the corresponding composite knots 31#52 and 41#52 (and other 
composite knots with more crossings involving 52) can be improved 
to have shorter paths as well.

Let A and B be partial sequences corresponding to shortest paths 
we found for two prime knots. Here partial sequence means we omit a 
part that is not knotted. For a prime knot there are multiple candidates 
for such partial sequences. We search for closed loops using [A, x, 
B, y], [A, x, −B, y], [A, x, reverse(B), y] or [A, x, −reverse(B), y]. The 
shortest we found for 31#52 has 72 blocks, improving the previously 
published result of 76. Below is an example:

[0,1,2,1,0,1,0,1,2,1,0,3,0,0,1,2,0,1,1,0,1,2,1,1,3,0,0,1,0,0,0,3,2,0,
0,1,0,1,2,1,0,3,3,0,2,3,0,0,1,0,3,2,3,0,3,0,1,2,1,0,1,0,1,2,1,0,3,3,1,0,0
,3]

Figure 3 and Figure 4 shows the snake and path.

Figure 3 A Rubik’s Snake 31#52 knot with 72 blocks with labels

Figure 4 The line representation of a Rubik’s Snake 31#52 revealing the knot 
structure with two components
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Similarly, the shortest we found for 41#52 has 82 blocks, improving 
the previous result of 86. Below is an example:

[0,0,0,1,0,1,1,0,2,1,0,0,0,0,3,0,3,3,0,2,3,0,0,0,0,1,0,1,1,0,2,1,0,0,0
,0,3,0,0,3,2,3,0,3,0,0,2,1,0,0,0,3,0,3,3,0,3,1,0,0,3,1,1,0,3,2,3,0,3,0,3,
2,3,0,1,0,1,2,1,0,3,0]

Figure 5 and Figure 6 shows the snake and path.

Figure 5 A Rubik’s Snake 41#52 knot with 82 blocks with la-bels

Figure 6 The line representation of a Rubik’s Snake 41#52 revealing the knot 
structure with two components

Conclusions
Finding the shortest path for a Rubik’s Snake non-trivial knot 

is challenging. We used local hole patterns and local searches to 
improve our previously shortest 52 knot with 54 block to only 50 
blocks. We then applied it to improve our previously shortest 31#52 
from 76 blocks to 72 blocks and improve 41#52 from 86 blocks to 82 
blocks. The complete improved list of length of shortest paths found is 
in Table 1. The prime knot results up to 6 crossings can be found in the 
second column and the composite knot results up to 9 crossings can 
be found in the third column. We verified that no local improvement 

is possible for any of these results. We will study more complicated 
knots in the future.

Table 1 The complete improved list of length of shortest paths found for 
prime knots up to 6 crossings and composite knots up to 9 crossings

Shortest A Shortest B Shortest composite
31:34 31:34 31#31: 34+34-12=56
41:44 41:44 41#41: 44+44-12=76
31:34 41:44 31#41: 34+44-10=68
31:34 51:50 31#51: 34+50-12=72
31:34 52: 50 (new) 31#52: 34+50-12=72 (new)
31:34 61: 60 31#61: 34+60-10=84
31:34 62: 62 31#62: 44+62-12=84
31:34 63: 64 31#63: 34+64-10=88
41:44 51:50 41#51: 34+50-12=82
41:44 52: 50 (new) 41#52: 34+50-12=82 (new)
31:34 31:34 31#31#31: 34+34+34-20=82
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