Appendix

Proposition and theorem proofs

This appendix contains the proofs for Propositions 1-2 and Theorem 2.

Proposition 1:

Proof. Let $G_{t\Delta F}$ be the TDES constructed in Algorithm 1

Let $G_{\Delta F}$ be the DES constructed in Algorithm 1 in Mulahuwaish.³

We note that the two are identical except that $G_{t\Delta F}$ adds *tick* to its event set, and *tick* is selflooped at every state. Let $G' = G \parallel G_{t\Delta F}$ as per Algorithm 3.

Let $G'' = G \parallel G_{\Delta F}$ as per Algorithm 3 in Mulahuwaish.¹

As the event set of G already contains *tick*, and *tick* is selflooped at every state of $G_{t\Delta F}$, it follows that L(G') = L(G'')

The result then follows from Proposition 1 of Mulahuwaish¹ which states: $(\forall s \in L(G) s \notin L_{\Delta F} \Leftarrow s \in L(G"))$.

Proposition 2:

Proof. Let $G_{t\Delta F}$ and $G_{t1RF_1}, \dots, G_{t1RF_m}$ be the TDES constructed in Algorithms 1 and 2.

Let $G_{\Delta F}$ and $G_{1RF_1}, \dots, G_{1RF_m}$ be the DES constructed from Algorithms 1 and 2 in Mulahuwaish.²

We note that each pair is identical except that $G_{t\Delta F}$ and $G_{t_1RF_1}, \dots, G_{t_1RF_m}$ add *tick* to their event sets, and *tick* is selflooped at every state.

Let $G' = G \| G_{t\Delta F} \| G_{t1RF_1} \| \dots \| G_{t1RF_m}$ as per Algorithm 4.

Let $G'' = G \| G_{\Delta F} \| G_{1RF_1} \| \dots \| G_{1RF_m}$ as per Algorithm 5 in Mulahuwaish.²

As the event set of G already contains *tick*, and *tick* is selflooped at every state of $G_{t\Delta F}$ and $G_{t1RF_1}, \dots, G_{t1RF_m}$, it follows that L(G') = L(G'').

The result then follows from Proposition 2 of Mulahuwaish,² which states:

 $\left(\forall s \in L(G)(s \notin L_{\Delta F}) \land \left(s \in L_{1RF_m}\right) \Leftarrow s \in L(G")\right)$

Theorem 2

Proof. Assume initial conditions for the theorem.

We first note that if m = 0, we have $\Sigma_F = \emptyset$ and the proof is identical to the proof of Theorem 1. We can thus assume $m \ge 1$ for the rest of the proof without any loss of generality.

Must show S is timed m-one-repeatable fault-tolerant controllable for $G \Leftrightarrow S$ is controllable for G'.

From Algorithm 4 we have $G' = G \|G_{t\Delta F}\| G_{t1RF,1} \| \dots \|G_{t1RF,m}$.

From Algorithm 1, we know that $G_{t\Delta F}$ is defined over $\Sigma_{\Delta F} \cup \{\tau\}$, and from Algorithm 2, we know that $G_{t1RF,m}$ is defined over $\Sigma_{F_i} \cup \{\tau\}$, i = 1, ..., m.

Let $P_{t\Delta F}: \Sigma^* \to (\Sigma_{\Delta F} \cup \{\tau\})^*$, and $P_{tF_i}: \Sigma^* \to (\Sigma_{F_i} \cup \{\tau\})^*$, i = 1, ..., m, be natural projections.

As *G* is defined over Σ , we have that $L(G') = L(G) \cap P_{t\Delta F}^{-1}L(G_{t\Delta F}) \cap P_{tF_1}^{-1}L(G_{t1RF,1}) \cap \dots \cap P_{tF_m}^{-1}L(G_{t1RF,m})$. (T4.1)

Part A Show (\Rightarrow) .

Assume *S* is timed m-one-repeatable fault-tolerant controllable for *G*. (T4.2) Must show implies: $(\forall s \in L(S) \cap L(G'))$

$$Elig_{L(S)}(s) \supseteq \begin{cases} Elig_{L(G')}(s) \cap (\Sigma_{u} \cup \{\tau\}) & \text{if } Elig_{L(S)\cap L(G')}(s) \cap \Sigma_{for} = \emptyset \\ Elig_{L(G')}(s) \cap \Sigma_{u} & \text{if } Elig_{L(S)\cap L(G')}(s) \cap \Sigma_{for} \neq \emptyset \end{cases}$$

(T4.3)

Let $s \in L(S) \cap L(G')$.

We have two cases: (A.1) $Elig_{L(S) \cap L(G')}(s) \cap \Sigma_{for} = \emptyset$, and (A.2) $Elig_{L(S) \cap L(G')}(s) \cap \Sigma_{for} \neq \emptyset$.

Case A.1 $Elig_{L(S) \cap L(G')}(s) \cap \Sigma_{for} = \emptyset$ Let $\sigma \in \Sigma_u \cup \{\tau\}$. Assume $s\sigma \in L(G')$. (T4.4) Must show implies $s\sigma \in L(S)$. To apply (T4.2), we need to show that $s \in L(S) \cap L(G)$, $s\sigma \in L(G)$, $s \notin L_{\Delta F}$, and $s \in L_{1RF_m}$, and $Elig_{L(S) \cap L(G)}(s) \cap \Sigma_{for} = \emptyset$. We first note that (T4.1), (T4.3) and (T4.4) imply: $s \in L(S)$, $s \in L(G)$, and $s\sigma \in L(G)$ As $s \in L(G')$ by (T4.3), we conclude by Proposition 2 that: $s \notin L_{\Delta F}$, and $s \in L_{1RF_m}$. We will now show that $Elig_{L(S) \cap L(G)}(s) \cap \Sigma_{for} = \emptyset$. It is sufficient to show: $(\forall \sigma' \in \Sigma_{for}) s \sigma' \notin L(S) \cap L(G)$ Let $\sigma' \in \Sigma_{for}$. Must show implies $s\sigma' \notin L(S) \cap L(G)$. We note that, by assumption, $Elig_{L(S) \cap L(G')}(s) \cap \Sigma_{for} = \emptyset$. This implies: $(\forall \sigma" \in \Sigma_{for}) s \sigma" \notin L(S) \cap L(G')$ It thus follows that $s\sigma' \notin L(S) \cap L(G')$. $\Rightarrow s\sigma' \notin L(S) \cap L(G) \cap P_{t\Delta F}^{-1}L(G_{t\Delta F}) \cap P_{tF_{1}}^{-1}L(G_{t1RF,1}) \cap \ldots \cap P_{tF_{m}}^{-1}L(G_{t1RF,m}), \text{ by (T4.1)}$ To show $s\sigma' \notin L(S) \cap L(G)$, it is sufficient to show $s\sigma' \in P_{t\Delta F}^{-1}L(G_{t\Delta F}) \cap P_{tF_1}^{-1}L(G_{t1RF,1}) \cap \dots \cap P_{tF_m}^{-1}L(G_{t1RF,m})$. As *S* and *G* are timed fault-tolerant consistent and $\Sigma_{for} \subseteq \Sigma_{act}$, it follows that $\Sigma_{for} \cap (\Sigma_{\Delta F} \cup \Sigma_F \cup \{\tau\}) = \emptyset$ $\Rightarrow P_{t\Delta F}(s\sigma') = P_{t\Delta F}(s)P_{t\Delta F}(\sigma') = P_{t\Delta F}(s)$ Similarly, we have $P_{tF_i}(s\sigma') = P_{tF_i}(s)$, i = 1, ..., m. As $s \in L(G')$ by (T4.3), we have $s \in P_{t\Delta F}^{-1}L(G_{t\Delta F}) \cap P_{tF_1}^{-1}L(G_{t_1RF,1}) \cap \dots \cap P_{tF_m}^{-1}L(G_{t_1RF,m})$ by (T4.1). $\Rightarrow P_{t\Delta F}(s) \in L(G_{t\Delta F})$, and $P_{tF_i}(s) \in L(G_{t1RF,m})$, i = 1, ..., m $\Rightarrow P_{t\Delta F}(s\sigma') \in L(G_{t\Delta F}), \text{ and } P_{tF_i}(s\sigma') \in L(G_{t1RF.m}), i = 1, \dots, m$ $\Rightarrow s\sigma' \in P_{t\Delta F}^{-1}L(G_{t\Delta F}) \cap P_{tF_1}^{-1}L(G_{t1RF,1}) \cap \ldots \cap P_{tF_m}^{-1}L(G_{t1RF,m})$ We thus conclude that $Elig_{L(S) \cap L(G)}(s) \cap \Sigma_{for} = \emptyset$. We can now conclude by (T4.2) that $s\sigma \in L(S)$, as required.

Case A.2 $Elig_{L(S) \cap L(G')}(s) \cap \Sigma_{for} \neq \emptyset$

Let $\sigma \in \Sigma_u$. Assume $s\sigma \in L(G')$. Must show implies $s\sigma \in L(S)$.

Proof is identical to proof of Case (A.1) except without the need to show $Elig_{L(S) \cap L(G)}(s) \cap \Sigma_{for} = \emptyset$.

Part B Show (\Leftarrow).

Assume *S* is controllable for G'. (T4.5) Must show implies *S* and *G* are timed fault-tolerant consistent (follows automatically from initial assumptions) and that:

$$\begin{aligned} (\forall s \in L(S) \cap L(G)) s \notin L_{\Delta F} \land s \in L_{1RF_m} \Rightarrow \\ Elig_{L(S)}(s) \supseteq \begin{cases} Elig_{L(G)}(s) \cap (\Sigma_u \cup \{\tau\}) & \text{if } Elig_{L(S) \cap L(G)}(s) \cap \Sigma_{for} = \emptyset \\ Elig_{L(G)}(s) \cap \Sigma_u & \text{if } Elig_{L(S) \cap L(G)}(s) \cap \Sigma_{for} \neq \emptyset \end{cases} \end{aligned}$$

Let $s \in L(S) \cap L(G)$. (T4.6) We have two cases: (B.1) $Elig_{L(S) \cap L(G)}(s) \cap \Sigma_{for} = \emptyset$, and (B.2) $Elig_{L(S) \cap L(G)}(s) \cap \Sigma_{for} \neq \emptyset$.

Case B.1 $Elig_{L(S) \cap L(G)}(s) \cap \Sigma_{for} = \emptyset$

Let $\sigma \in \Sigma_u \cup \{\tau\}$. Assume $s\sigma \in L(G)$ and $s \notin L_{\Delta F} \land s \in L_{1RF_m}$. (T4.7) Must show implies $s\sigma \in L(S)$. We have two cases: (B 1.1) $\sigma \in \Sigma_{\Delta F} \cup \Sigma_F$, and (B 1.2) $\sigma \notin \Sigma_{\Delta F} \cup \Sigma_F$.

Case B 1.1) $\sigma \in \Sigma_{\Delta F} \cup \Sigma_F$

As the system is timed fault-tolerant consistent, it follows that σ is self-looped at every state in *S*. As $s \in L(S)$ by (T4.6), it thus follows that $s\sigma \in L(S)$, as required.

Case B 1.2 $\sigma \notin \Sigma_{\Delta F} \cup \Sigma_F$

To apply (T4.5), we need to show $s \in L(S) \cap L(G')$, $s\sigma \in L(G')$, and $Elig_{L(S) \cap L(G')}(s) \cap \Sigma_{for} = \emptyset$. By (T4.6), (T4.7) and Proposition 2, we conclude: $s \in L(G')$ (T4.8) We will next show that $s\sigma \in L(G')$. As $s \in L(G')$, we have by (T4.1) that $s \in P_{t\Delta F}^{-1}L(G_{\Delta F}) \cap P_{tE_1}^{-1}L(G_{t1RF,1}) \cap \ldots \cap P_{tE_m}^{-1}L(G_{t1RF,m})$. It thus follows that $P_{t\Delta F}(s) \in L(G_{t\Delta F})$, and $P_{tE_i}(s) \in L(G_{t1RF,m})$, i = 1, ..., m. (T4.9) We have two cases: (B 1.2.1) $\sigma \neq \tau$, and (B 1.2.2) $\sigma = \tau$.

Case B 1.2.1 $\sigma \neq \tau$

As
$$\sigma \notin \Sigma_{\Delta F} \cup \Sigma_F \cup \{\tau\}$$
, we have $P_{t\Delta F}(\sigma) = \epsilon$.
 $\Rightarrow P_{t\Delta F}(s\sigma) = P_{t\Delta F}(s)P_{t\Delta F}(\sigma) = P_{t\Delta F}(s)$
Similarly, we have $P_{tF_i}(s\sigma) = P_{tF_i}(s)$, $i = 1, ..., m$.
 $\Rightarrow P_{t\Delta F}(s\sigma) \in L(G_{t\Delta F})$, and $P_{tF_i}(s\sigma) \in L(G_{t1RF,m})$, $i = 1, ..., m$, by (T4.9)
 $\Rightarrow s\sigma \in P_{t\Delta F}^{-1}L(G_{t\Delta F}) \cap P_{tF_i}^{-1}L(G_{t1RF,1}) \cap ... \cap P_{tF_m}^{-1}L(G_{t1RF,m})$

Case B 1.2.2 $\sigma = \tau$

By Algorithms 1, and 2, we know that τ is selflooped at every state in $G_{t\Delta F}$, and $G_{t1RF,m}$, i = 1,...,m. $\Rightarrow P_{t\Delta F}(s) \sigma \in L(G_{t\Delta F})$, and $P_{tF_i}(s) \sigma \in L(G_{t1RF,m})$, i = 1,...,m, by (T4.9) $\Rightarrow P_{t\Delta F}(s\sigma) \in L(G_{t\Delta F})$, and $P_{tF_i}(s\sigma) \in L(G_{t1RF,m})$, by definitions of $P_{t\Delta F}$, and P_{tF_i} , i = 1,...,m $\Rightarrow s\sigma \in P_{t\Delta F}^{-1}L(G_{t\Delta F}) \cap P_{tF_1}^{-1}L(G_{t1RF,1}) \cap \ldots \cap P_{tF_m}^{-1}L(G_{t1RF,m})$ By Cases (B 1.2.1) and (B 1.2.2), we can conclude that $s\sigma \in P_{t\Delta F}^{-1}L(G_{t\Delta F}) \cap P_{tF_1}^{-1}L(G_{t1RF,1}) \cap \ldots \cap P_{tF_m}^{-1}L(G_{t1RF,m})$. Combining with (T4.1) and (T4.7), we have $s\sigma \in L(G')$. (T4.10) We will now show $Elig_{L(S)\cap L(G)}(s) \cap \Sigma_{for} = \emptyset$. It is sufficient to show: $(\forall \sigma' \in \Sigma_{for}) s\sigma' \notin L(S) \cap L(G')$ Let $\sigma' \in \Sigma_{for}$. We will now show this implies $s\sigma' \notin L(S) \cap L(G')$. We note that by assumption, we have $Elig_{L(S)\cap L(G)}(s) \cap \Sigma_{for} = \emptyset$. $\Rightarrow (\forall \sigma'' \in \Sigma_{for}) s\sigma'' \notin L(S) \cap L(G)$ $\Rightarrow s\sigma' \notin L(S) \cap L(G)$ This implies $s\sigma' \notin L(S) \cap L(G) \cap P_{tF}^{-1}L(G_{t\Delta F}) \cap P_{tF}^{-1}L(G_{t1RF,m})$ as $L(S) \cap L(G) \cap P_{t\Delta F}^{-1}L(G_{t\Delta F}) \cap P_{tF_1}^{-1}L(G_{t1RF,1}) \cap \dots \cap P_{tF_m}^{-1}L(G_{t1RF,m})) \subseteq L(S) \cap L(G) .$ $\Rightarrow s\sigma' \notin L(S) \cap L(G'), \text{ by (T4.1)}$ We thus conclude $Elig_{L(S) \cap L(G')}(s) \cap \Sigma_{for} = \emptyset$. Combining with (T4.6), (T4.8), and (T4.10), we have: $s \in L(S) \cap L(G'), s\sigma \in L(G'), \text{ and } Elig_{L(S) \cap L(G')}(s) \cap \Sigma_{for} = \emptyset$. We can now conclude by (T4.5) that $s\sigma \in L(S)$, as required. We thus conclude by Cases (B 1.1) and (B 1.2) that $s\sigma \in L(S)$.

Case B.2 $Elig_{L(S) \cap L(G)}(s) \cap \Sigma_{for} \neq \emptyset$

Let $\sigma \in \Sigma_u$. Assume $s\sigma \in L(G)$ and $s \notin L_{\Delta F} \land s \in L_{1RF_m}$.

Must show implies $s\sigma \in L(S)$.

Proof is identical to proof of Case (B.1) except without the need to show $Elig_{L(S) \cap L(G')}(s) \cap \Sigma_{for} = \emptyset$.

We now conclude by Parts (A) and (B) that S is timed m-one-repeatable fault-tolerant controllable for G iff S is controllable for G'.