Appendix

Proposition and theorem proofs
This appendix contains the proofs for Propositions 1-2 and Theorem 2.

Proposition 1:

Proof. Let G, be the TDES constructed in Algorithm 1

Let G, be the DES constructed in Algorithm 1 in Mulahuwaish.®

We note that the two are identical except that G, adds tick to its event set, and tick is selflooped at every state.
Let G'=G || G, as per Algorithm 3.

Let G =G| G, as per Algorithm 3 in Mulahuwaish.*

As the event set of G already contains tick, and tick is selflooped at every state of G, , it follows that
L(G')=L(G")

The result then follows from Proposition 1 of Mulahuwaish® which states:

(VseL(G)sgL,e <seL(G").

Proposition 2:

Proof. Let Gur and Gygg .- Gurr,, D€ the TDES constructed in Algorithms 1 and 2.

Let Gyr and Gy, ,....Grr,, D the DES constructed from Algorithms 1 and 2 in Mulahuwaish.?

We note that each pair is identical except that Gy and Gyge ... Gugr,, @dd tick to their event sets, and tick is
selflooped at every state.

Let G'=G|Gue||Gure |- || Gure,, as per Algorithm 4.

Let G"=G|Gy||Gigg |- || Girr, @S per Algorithm 5 in Mulahuwaish.?

As the event set of G already contains tick , and tick is selflooped at every state of Gy and Gygg, - -, g, » it
follows that L(G" )=L(G").

The result then follows from Proposition 2 of Mulahuwaish,? which states:

(Vs €L(G)(s# L) A(s € Lip, ) =5€L(G"))

Theorem 2

Proof. Assume initial conditions for the theorem.

We first note that ifm=0, we have = =& and the proof is identical to the proof of Theorem 1. We can thus
assume m >1for the rest of the proof without any loss of generality.

Must show S is timed m-one-repeatable fault-tolerant controllable for G < S is controllable forG'.

From Algorithm 4 we have G'=G |Gy | Gyrr.s

|- || Gure -

From Algorithm 1, we know that G, is defined over £, U{t}, and from Algorithm 2, we know that Gqe , is
defined over =, U{c}, i=1...m.

Let Ryr :X° = (Zyr U{t)) ", and Rg, :X" — (T {t))", i=1...,m, be natural projections.

As G is defined overz, we have that L(G')=L(G)nPRixtL(Gyur) RaL(Gyres).--N Pk L(Gugem)-
(T4.1)

Part A Show (=).

Assume S is timed m-one-repeatable fault-tolerant controllable for G . (T4.2)
Must show implies: (vseL(S)nL(G"))
EIigL(G')(S)m(ZU ult) if Elig (5)- () ()N I =0

Elig s (s) N2, it Eligy( 5) (g (S) N Zgor # D

EIigL(s)(s);{

LetseL(S)nL(G). (T4.3)



We have two cases: (A.1) Elig, () (S) " Zror =@, aNd (A.2) Elig, 5 () () " Z1or =D
Case A.1 Elig,(s) ) (S) N Zror =D

Letoex, u{t}. AssumescelL(G'). (T4.4)
Must show implies sc e L(S).

To apply (T4.2), we need to show thats e L(S)NL(G),soeL(G), s# Ly ,and se Ly , and
EIigL(S)ﬁL(G)(s)mZfor =g.

We first note that (T4.1), (T4.3) and (T4.4) imply:
seL(S), seL(G),and sceL(G)

As seL(G") by (T4.3), we conclude by Proposition 2 that: s & Lyg , and s e Ly -

We will now show that Elig, s (c)(S) "Zror =2 -

It is sufficient to show:

(Vo'eZiy)so'eL(S)NL(G)

Leto'e Xy, . Must show implies so'¢ L(S)NL(G).

We note that, by assumption, Elig, (s, (s (S) " Zrr =2

This implies: (Vo"e X, )so"eL(S)NL(G)

It thus follows that so' ¢ L(S)NL(G").

=56"'¢ L(S) N L(G) NPatL(Gur ) M PHL(Gure, ) - Per L(Gure m ) » DY (T4.1)

To showss'¢ L(S)NL(G), it is sufficient to show s’ e Pyt L (G ) ™ P L(Gure s ) -+ P L(Guire ) -
As S and G are timed fault-tolerant consistent andx,, <=
= Par (56") = Rar (S)Rar (') = Rar (5)

Similarly, we have R (sc')=PRg (s), i=1...,m.

As seL(G") by (T4.3), we have sePR,rL(Gur ) NPEL(Gyre ) M.--0 P L(Guge m ) Y (T4.1).
=Py (3)eL(Gur ), and Py (s) € L(Gupe ) » 1 =L-.,m

= PRur(50") € L(Gye ), and Py, (s6") € L(Gype ) » 1 =1--,m

=350" € RarL(Gye ) N PtEI:LL(thRF,l)m"'m Pt;;] L(thRF,m)
We thus conclude that Elig, (s () () "Zror =

act ?

it follows that X, N (S, UEe U{t})=2

We can now conclude by (T4.2) that sc e L(S), as required.
Case A.2 Elig (s ()T =D

LetoeX,. AssumesceL(G").
Must show impliessc e L(S).
Proof is identical to proof of Case (A.1) except without the need to show Elig s\ () "Zr =2 -

Part B Show (<).

Assume S is controllable forG'. (T4.5)

Must show implies S and G are timed fault-tolerant consistent (follows automatically from initial assumptions)
and that:

(VseL(S)NL(G))s &Ly ASELigr, =
Elig, . (5) > EIigL(G)(s)m(Zu Uit}) if Elig gy, (o) () N Eper =D
MRS Blig o) (s)nE, if Eligy gy (o) () N S % D



LetseL(S)nL(G). (T4.6)
We have two cases: (B.1) EIigL(S)mL(G)(s)mzfor =@, and (B.2) EIigL(S)mL(G)(s)mZfor 0.

Case B.1 Elig, (s)(c)(S) "Zror =@

LetoeX, U{t}. Assume scel(G)andsg Ly ASelpgy - (T4.7)
Must show impliessc e L(S).
We have two cases: (B 1.1) ceX,r uZ:,and (B1.2) cgX,f UZ:.

CaseB1l1l) ceX,r U

As the system is timed fault-tolerant consistent, it follows that o is self-looped at every state in S .
As seL(S)by (T4.6), it thus follows that so  L(S), as required.

CaseBl2 o¢gX,f U3,

To apply (T4.5), we need to showse L(S)nL(G'"), sceL(G"), and EIigL(S)ﬁL(G.)(s) NZir =D .

By (T4.6), (T4.7) and Proposition 2, we conclude: seL(G') (T4.8)
We will next show thatss e L(G").

AsseL(G'), we have by (T4.1) thats € Ryt L(Ge ) M ReL(Gure, ) - R L(Gure.m) -

It thus follows that R,x (s) € L(Gwr ), and R, (s) € L(Guge ) » =1...,m. (T4.9)
We have two cases: (B 1.2.1) c#1,and (B 1.2.2) c=r.

CaseB 121 oc#1

AscgX, UZe U{t}, we have By (o) =¢c.

= Pur (50) =PRye (5) Par (5) =Pur (5)

Similarly, we have Rg, (so)= Pr (s), i=1...,m.

= Ryur (50) € L(Gwe ), and R, (s0) € L(Gupe ) » 1=1....,m, by (T4.9)

=50 €ReL(Gur ) PtlzllL(thRF,l) M...n Pn;;] L(GuRF,m)
CaseB 122 c=1

By Algorithms 1, and 2, we know that 7 is selflooped at every state in Gy , and Gype r, i=1,...,m.
= PRur(5)o€L(Gye ), and Py, (s)o € L(Guge ) » 1 =1....m, by (T4.9)

= Ryr (50) € L(Gye ), and R, (so) € L(Gyge ) » Dy definitions of Bye , and B, i=1...,m

=56 € Ryt L (G ) M PEL(Gyre ) M- P L(Gure m)

By Cases (B 1.2.1) and (B 1.2.2), we can conclude that so e Pt L(Gyr ) M PeL(Gure, ) -0 P L(Gugem) -
Combining with (T4.1) and (T4.7), we have sceL(G"). (T4.10)

We will now show Elig, s ) ($) " Zror =2

Itis sufficient to show: (Vo'e X, )so'e L(S)NL(G)

Let c'e X, . We will now show this implies ss'¢ L(S)nL(G").

We note that by assumption, we have Elig, (s, ) (S) "Zor =2

= (VG" € Zfor)SG" ¢L(S)nL(G)

=sc'¢L(S)NL(G)

This implies so' & L(S) N L(G) M ParL(Gue ) "ReL(Gure i) M- P L(Gure ) @S



L(S)NL(G) "PatL(Gur ) " PHL(Gure, ) M- - Pk L(Guge . ) S L(S) N L(G) -
=sc'¢L(S)NL(G"), by (T4.1)

We thus conclude Elig, ) ) (S) " Zor =2

Combining with (T4.6), (T4.8), and (T4.10), we have:

seL(S)NL(G"), soceL(G"),and Elig, g () (s) " Zror =2

We can now conclude by (T4.5) that sc e L(S), as required.

We thus conclude by Cases (B 1.1) and (B 1.2) that sceL(S).

Case B.2 Elig, (s) ()(S) "Zor =D

Let ceX,. Assume sceL(G) and sg Ly ASe L -
Must show implies soeL(S).
Proof is identical to proof of Case (B.1) except without the need to show Elig, (s (S) MZgor =2

We now conclude by Parts (A) and (B) that S is timed m-one-repeatable fault-tolerant controllable for G iff S is
controllable for G'.



