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Introduction
Supervisory control theory, introduced by Ramadge and 

Wonham,5–7 provides a formal framework for analysing discrete-
event systems (DES). In this theory, automata are used to model the 
system to be controlled and the specification for the desired system 
behaviour. The theory provides methods and algorithms to obtain a 
supervisor that ensures the system will produce the desired behaviour. 

However, the base theory typically assumes that the system 
behaviour does not contain faults that would cause the actual system 
to deviate from the theoretical model. An example is a sensor that 
detects the presence of an approaching train. If the supervisor relies 
on this sensor to determine when the train should be stopped in order 
to prevent a collision, it could fail to enforce its control law if the 
sensor failed. 

In Mulahuwaish1,3,4 we introduced a discrete-event system-based 
fault tolerance approach that was designed to handle intermittent 
faults. An intermittent fault is a malfunction of a device or system 
that occurs at intervals, usually irregular, in a device or system that 
functions normally at other times. A loose connection is an example 
of this kind of fault.

In the above approach, we introduced uncontrollable fault events 
to the system’s plant model and then categorized some common fault 
scenarios. By scenarios, we refer to several common fault situations 
that we would want our supervisors to be able to handle. The scenarios 
range from simple situations that are easy to verify (for example, at 
most one faults are allowed to occur), to ones that are more flexible 
in the occurrence of faults, but more expensive to verify. We then 
developed some properties that allowed us to determine if a supervisor 
will still be controllable and nonblocking in these scenarios. We note 
that this is a passive approach that relies upon inherent redundancy in 
the system being controlled.

In this paper, we will extend the work of Mulahuwaish1 –4 to the 
timed DES (TDES) setting.8–10 Timed DES extends untimed DES 
theory by adding a new tick ( )τ event, corresponding to the tick of 

a global clock. The event set of a TDES contains the tick event as 
well as other non-tick events called activity events ( )actΣ . This is 
a powerful extension as TDES adds to untimed DES the ability to 
express when an event is possible, when it must occur by (possibly 
infinite upper bound), and the ability to force certain events (called 
forcible events) to occur in a specified time frame (before the next 
clock tick). As TDES is more expressive, both in modelling and 
enforcement, extending fault-tolerant supervisors to the TDES setting 
clearly will be useful.

The primary difference between our timed and untimed fault-
tolerant results is that the tick event must not be a fault event, and that 
the controllability condition for TDES differs from the untimed setting. 
We thus have to adapt the fault-tolerant definitions and algorithms to 
use the timed controllabilty definition (which also ensures forcing of 
events is done properly). Fortunately, verifying nonblocking (a weak 
check to make sure the system does not deadlock or livelock) is the 
same for both timed and untimed DES so we don’t have to develop 
timed nonblocking fault-tolerant properties; we can simply re-use the 
fault-tolerant nonblocking properties and algorithms developed in 
Mulahuwaish.1–4

Illustrative example

We now introduce an example to illustrate our method. We will 
briefly introduce the example here, and then use it to explain the 
various aspects of our approach as we introduce them. After we have 
fully introduced our method, we will provide the remaining portions 
of the example in Section 7, and then discuss the results of applying 
our approach to the example.

Example setting

Our example is based on the manufacturing testbed from Leduc.11 
The testbed was designed to simulate a manufacturing workcell 
using model train equipment, in particular problems of routing and 
collision. Figure 1 shows conceptually the structure of the full testbed 
and sensors. 
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In Mulahuwaish,1 –4 we investigated the problem of fault tolerance in the framework of 
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the untimed fault-tolerant nonblocking properties and algorithms from Mulahuwaish1 –4 can 
also be used in the timed setting without any changes. We then present algorithms to verify 
these properties followed by complexity analyses and correctness proofs of the algorithms. 
An example is then provided to illustrate our approach.
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Figure 1 Sensors in the testbed.

We will initially focus on only a single track loop, shown in Figure 
2. The loop contains eight sensors and two trains (train 1, train 2). 
Train 1 starts between sensors 9 and 10, while train 2 starts between 
sensors 15 and 16. Both trains can only traverse the tracks in a counter 
clockwise direction. 

Figure 2 Single train loop.

The sensor models, shown in Figure 3, indicate when a given train 
is present, and when no trains are present. Also, they state that only 
one train can activate a given sensor at a time. The figure shows the 
original sensor model, one for each sensor { }J 9,  . . . ,16∈ , before 
fault events were added to the plant model.

Figure 3 Sensor 11, ,15J = … .

Figure 4 Sensors 9,10,16J = with fault events.

Figures 5 and 6 show the sensor’s interdependencies with respect 
to a given train. With respect to the starting position of a particular 
train (represented by the initial state), sensors can only be reached in a 
particular order, dictated by their physical location on the track. Both 
DES already show the added fault events. 

Figure 5 Sensor interdependencies for train 1.

Figure 6 Sensor interdependencies for train 2.

We note that in the DES diagrams, circles represent unmarked 
states, while filled circles represent marked states. Two concentric, 
unfilled circles represent the initial state. If the initial state is also 
marked, the inner circle is filled. Uncontrollable events are indicated 
by an “!” preceding the event’s name, such as " _ "!t1 atJ .

Adding intermittent faults

To add faults to the model, we assumed that sensors 9, 10, and 
16 could have an intermittent fault; sometimes the sensor would 
detect the presence of a train, sometimes it would fail to do so. 
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We modelled this by adding to all the plant models a new event
{ }_ ,  9,  . . . ,16t1f atJ J∈ , for each _t1 atJ event. For each _t1 atJ

transition in a plant model, we added an identical _t1f atJ transition. 
The idea is we can now get the original detection event or the new 
fault one instead. We made similar changes for train 2. Figure 4 shows 
the new sensor models with the added fault events. We note that the 
fault events must be uncontrollable events as it would be unrealistic 
if supervisor could simply disable a fault event and prevent the fault 
from occurring.

Now consider the problem of preventing a second train from 
entering the track segment bounded by sensors 11 and 13, when this 
section is already occupied by the first train. Ideally, we would monitor 
sensor 10 for the arrival of the second train, and halt that train until 
the first train has left the protected track segment. However, if sensor 
10 faulted, the train would not stop and we would have a collision. 
We could make our controller more redundant by monitoring both 
sensors 9 and 10, and we could then safely stop the train as long as 
both sensors did not fail. In such a situation, we could tolerate a single 
fault, but not two in a row. 

We further note that we cannot allow our supervisor to make 
decisions based on the occurrence of the sensor fault events as we 
cannot realistically expect such faults to be observable. The supervisor 
must only change its control actions based on observing non fault 
events.

Literature review 
Currently in the DES literature, the most common approach when 

a fault is detected is to switch to a new supervisor to handle the system 
in its degraded mode. Such an approach focuses on fault recovery 
as opposed to fault tolerance. This requires the construction of a 
second supervisor, and requires that there be a means to detect the 
occurrence of the fault in order to initiate the switch. In our approach, 
we use a single supervisor that will behave correctly for the original 
system without faults, and for the system with added fault events that 
are restricted to the fault scenarios that we are addressing. This is a 
passive approach that relies on the inherent redundancy in the system 
being controlled. Our method has the advantage that we only need to 
design a single supervisor for our system, and that we do not need to 
detect that a fault has occurred for our approach to work. We will now 
discuss some relevant, related work. 

Two closely related topics to fault-tolerance and fault recovery are 
robust and adaptive supervisory control as discussed by.12–14 In both 
approaches, the system G of interest is not specified exactly, but either 
belongs to a set of possible plants, or we are given a set of “lower” 
and “upper” bounds. For robust control, the goal is to construct a 
supervisor that will achieve a desired behavior for all of the possible 
plants. This is 6 analogous to our passive approach to fault-tolerance.

Adaptive control, on the other hand, monitors system behavior 
and uses the information to resolve or reduce the uncertainty in the 
system’s behavior in order to improve the performance of the system. 
This is analogous to active fault recovery methods. It is worth noting 
that both methods involve synthesis, where our approach is based on 
user designed supervisors and verification. As synthesis algorithms 
have higher complexity than verification algorithms,15 our approach 
should be applicable to larger systems. Also, modular supervisors 
are typically easier to understand and implement than the results of 
synthesis. 

An additional drawback with active fault recovery methods is 
that they require that a fault be detected, and possibly identified if 

there are multiple faults, before the fault recovery response can be 
applied. Constructing a fault diagnoser can be expensive,16 and has the 
additional concern that it may not detect the fault in time to respond 
appropriately. As our approach is passive and can handle the original 
and faulted system, response time is not a concern for us. However, 
the tradeoff is that our approach may result in an overly cautious 
supervisor. 

While adaptive and robust control are related, neither has a concept 
of fault events and thus cannot be used directly for fault-tolerance 
or recovery as their supervisors could be designed to take action 
on the occurrence of a fault event which should be unobservable to 
supervisors. However, methods such as Saboori et al.,14 which make 
use of partial observations, could perhaps be adapted by setting fault 
events to be unobservable, and using a model without faults, and a 
post-fault model. 

This of course raises the question of how the post-fault model 
would be obtained. Simply adding fault events to an existing model 
often results in a system with strings that contain so many faults in 
them that no controllable and nonblocking supervisor would exist. 
Where it is true they could make use of the models generated by our 
approach, but then robust/adaptive control would be unnecessary as 
synthesis could just be done directly on the resulting model as there 
would be no uncertainty left. 

Finally, it might be possible to use robust/adaptive control on the 
original plant model without fault events, and new post-fault models 
without fault events. However if the system contains multiple faults, 
generating separate models for each possible post fault system (i.e. 
system behavior after a specific sequence of faults have occurred) 
could be tedious, error prone, and time consuming. Our approach 
on the other hand, uses a single system model with all faults already 
added. We provide a simple approach and methodology for adding 
faults to an existing system model that could be easily automated

Qin Wen et al.,17 introduces a framework for fault-tolerant 
supervisory control of discrete-event systems. In this framework, 
plants contain both normal behavior and behavior with faults, as well 
as a submodel that contains only the normal behavior. The goal of 
fault-tolerant supervisory control is to enforce a specification for the 
normal behavior of the plant and to enforce another specification 
for the overall plant behavior. This includes ensuring that the plant 
recovers from any fault within a bounded delay so that after the 
recovery, the system state is equivalent to a state in the normal plant 
behavior. They formulate this notion of fault-tolerant supervisory 
control and provide a necessary and sufficient condition for the 
existence of such a supervisor. The condition involves notions of 
controllability, observability and relative-closure together with the 
notion of stability.

In Paoli et al.,18 they propose to detect faults and switch to a 
different supervisor before the nominal system behaviour is violated. 
The controller is updated based on the information provided by 
online diagnostics. The supervisor needs to detect the malfunctioning 
component in the system in order to achieve the desired specification. 
The authors propose the idea of safe diagnosability as a step to achieve 
fault-tolerant control. 

In Park et al.,19 they present necessary and sufficient conditions 
for fault-tolerant robust supervisory control of discrete-event systems 
that belong to a set of models. When these conditions are satisfied, 
fault-tolerance can be achieved based on the identification of tolerable 
fault sequences. In the paper, the results were applied to the design, 
modelling, and control of a workcell consisting of arc welding 
(GMAW) robots, a sensor, and a conveyor. 
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Brandin et al.,8–10 added a new dimension to the basic DES theory 
by introducing timed discrete-event systems (TDES). They introduced 
the concept of a global clock and tick event. Also, they introduced the 
ability to specify when certain events must occur.

Research has been conducted to discuss faults in the TDES setting. 
However, this research focused on fault recovery and fault detection, 
as opposed to fault tolerance. 

In,20 the main goal of Allahham et al.,20 was to detect system faults 
as early as possible. Their proposed idea was to construct a TDES with 
two clocks: one clock would reflect the task state and and the other 
clock would measure the elapsed time since the task had been started. 
They assumed that each task had normal behavior with no faults, and 
acceptable behavior with intermittent faults within a bounded delay. 
Their approach was to give each task a time interval. Then, they would 
check if the task had finished in the defined time interval or before it, 
which means the system had no faults or it had intermittent faults that 
the system can tolerate. They monitored the TDES with stopwatch 
automaton that modeled the acceptable behavior for a specific task. 
The stopwatch had three locations: initial, normal execution, and 
interruption, to specify the task status.

In, Moosaei et al.,21 introduced fault recovery to TDES. Their 
system consists of the plant and a diagnosis system, both modeled 
using activity transition graphs (ATG). The plant model describes its 
behavior in both normal and faulty conditions. The diagnosis system 
was assumed to be available to detect and isolate faults whenever they 
occurred. They have introduced three modes for their system: normal 
when no faults occur, transient when a fault occurs, and recovery 
when the fault was detected and isolated. Their design consists of a 
normal-transient supervisor, and multiple recovery supervisors for 
each failure mode. 

As we will see in the following section, our approach is quite 
different to the preceding methods. Rather than focus on synthesis 
approaches, ours is based on verification. We assume that the designer 
has used their understanding of the given system and its possible faults 
to attempt to design a supervisor that is controllable and nonblocking 
for the system both without faults, and when faults occur according 
to our specified scenarios. Our goal is to provide a method to verify if 
they have achieved this.

Overview
This paper is organized as follows. Section 1 provides an 

introduction to our topic. Section 2 discusses DES preliminaries. 
Section 3 introduces fault events and the fault scenarios to which 
they apply. Section 4 presents our timed fault-tolerant controllability 
definitions. Section 5 presents algorithms to verify the timed fault-
tolerant controllability properties and provides a complexity analysis. 
Section 6 presents algorithm correctness proofs and Section 7 
provides a small manufacturing example to illustrate our approach. 
Finally, Section 8 provides conclusions and future work.

Preliminaries
We now present a summary of the DES terminology that we use in 

this paper. For more details, please refer to.22,34

Strings and languages

Let ∑ be a finite set of distinct symbols (events). Let +∑ denote 
the set of all finite, non-empty sequences of events, and *∑ be the set 
of all finite sequences of events including∈ , the empty string. We can 
then define { }: +∗∑ ∑ ∈ . For ,s s∗∈∑ equals the length (number of 
events) of the string. 

Let L ∗⊆∑ be a language over ∑ . A string t ∗∈∑ is a prefix of s 
s ∗∈∑  (written t s≤ ) if s tu= , for some u ∗∈∑ . The prefix closure 

of language L  (denoted L ) is defined as : {L t t s∗∑= ≤∈ for some
}s L∈ . Let Pwr( )∑ denote the set of all possible subsets of ∑ . For 

language L , the eligibility operator, )E rl w: (ig PL
∗∑ ∑→ , is given 

by }Elig ( ) : {L s s L∈∑σ σ∈=  for s ∗∈∑ .

Timed DES

Timed DES (TDES)8–10 extends untimed DES theory by adding a 
new tick (τ ) event, corresponding to the tick of a global clock. The 
event set of a TDES contains the tick event as well as other non-tick 
events called activity events ( )act∑ .

A TDES automaton is represented as a 5-tuple 
( ),  ,  ,  ,  o mQ q Q= Σ δG where Q is the state set, { }act τ∑ = ∑ 

 is 
the event set, the partial function :     Q Qδ × Σ → is the transition 
function, oq  is the initial state, and mQ is the set of marker states. 

We extend    :     to Q Qδ δ × Σ ∗→ in the natural way. The notation
( ), !q sδ means the transition is defined. The closed behavior of G is 

defined to be ( ) ( ){ }| :   ,  !oL s q s∗= δ∑∈G . The marked behavior is 

defined as ( ) ( ) ( ){ }|:     ,  m o mL s L G q s Q= ∈ δ ∈G .

The reachable state subset of DES G , denoted rQ , is:

( ){ })|:  ,  r oQ q Q s q s q∗ δ∑= ∈ ∃ =∈ . A DES G is reachable if

rQ Q= . We will always assume that a DES is reachable, has a finite 
state and event set, and is deterministic (single initial state and at most 
a single transition leaving a given state for a given event).

TDES contain forcible ( )forΣ , and prohibitable events ( )hibΣ  
Forcible events are non-tick events which can be relied upon to 
preempt tick, when needed. The method used by a TDES supervisor 
to indicate that an event forσ∈Σ  or should be forced (made to occur 
before the next tick) at a given state, is to “disable” tick at this state. 
This has the effect of removing the now impossible behavior that tick 
could occur before σ. Prohibitable events are non-tick events that can 
be disabled. The set of controllable events are { }c hibΣ = Σ τ

 , and the 
uncontrollable events are u cΣ = Σ − Σ .

Let 1 2 ,Σ = Σ Σ  *
1 1L ⊆ ∑ , and *

2 2L ⊆ ∑ . For i  1,  2,   s ∗= ∈∑ , 
and σ∈Σ , we define the natural projection * :i iP ∗ →∑ ∑ according 
to:

( ) ( ) ( ) ( ) ( )
if

, ,
if

i
i i i i i

i
P P P s P s P

∈ σ∉Σ
∈ = ∈ σ = σ = σ σ ∈∉Σ

The map ( )*1: iiP Pwr Pwr− ∗→∑ ∑  is the inverse image of  iP

such that for *
1L ⊆ ∑ , ( ){ }1 :  i iP L s P s L− ∗∑∈ ∈

Definition 1. For ( ) ( )  ,  ,  ,  , , ,   1,2i i i i o i m iQ q Q i= Σ δ =G , we define 

the synchronous product 1 2G = G G of the two DES as:

( )( )1 2 1 2 2 ,1 ,2 :    ,  ,  , ,1,  , ,    o o m mG Q Q q q Q Q= × Σ Σ δ ×

where ( )( )1 2,  ,  q qδ σ is only defined and equals

( ) ( ) ( ) ( )11 2 1 21 2 1 2 2f  , ,,  i , ,  qq q q qq′ σ δ′ ∈ Σ Σ σ δ= σ′ ′= or 

( ) ( )11 2 1 1 12f  , ,  , iq q qqσ ∈Σ − Σ σ ′=δ′ or 

( ) ( )11 2 22 2 2f  , i , ,  q q q qσ ∈Σ −′ σ ′=Σ δ .
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It follows that ( ) ( ) ( )1 1
1 1 2 2L P L P L− −=G G G and

( ) ( ) ( )1 1
1 1 2 2m m mL P L P L− −=G G G . We note that if 1 2Σ = Σ , we get 

( ) ( ) ( )1 2L L L=G G G and ( ) ( ) ( )1 2m m mL L L=G G G

For DES, the two main properties we want to check are nonblocking 
and controllability.

Definition 2. A DES G is said to be nonblocking if

( ) ( )  mL L=G G

Definition 3. Supervisor S is controllable with respect to plant G if for 
all ( ) ( )    s L L∈ S G ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
 

 

Elig f Elig 0

i
Elig

Elig f Elig 0

{

 

} iL u forL L
L

L u forL L

s s
s

s s

 Σ τ Σ =⊇ 
Σ Σ ≠

G S G
S

G S G





  

 

TDES properties

For TDES, we have the addition properties of activity loop free 
and proper timed behavior. The first definition ensures that the clock 
tick cannot be delayed indefinitely, while the second ensures that 
either a tick or an untimed event (which cannot be disabled) is always 
possible in the plant.

Definition 4. TDES ( ),  ,  ,  ,  o mQ q Q= Σ δG is activity-loop-free 
(ALF) if

( )( ) ( )*  ,   r actq Q s q s q∀ ∈ ∀ ∈ ≠∑ δ

Definition 5. A plant TDES G has proper time behavior if:

( )( ) ( )   ,  !r uq Q q∀ ∈ ∃σ ∈ Σ τ δ σ

Fault-tolerant setting

In this section, we will introduce our concept of fault events, a 
consistency property that our systems must satisfy, and the four 
fault scenarios that we want our supervisors to be able to handle. 
Our eventual goal will be to be able to determine if our supervisor 
will be controllable for our plant in a given fault scenario. In the 
following section, we will assume that all DES are deterministic, 
and that we are given plant ( )  ,  ,  ,  ,  o mY y Y= Σ δG  and supervisor 

( )  ,  ,  ,  ,  o mX x X= Σ ξS

Fault events

In this paper, our approach will be to add a set of uncontrollable 
events to our plant model to represent the possible faults in the 
system. Our goal will be to design supervisors that will still behave 
correctly (i.e. stay controllable and nonblocking) when a fault event 
occurs, even though they can’t detect the fault event directly. We start 
by defining a group of 0m ≥ mutually exclusive sets of fault events.

,  1,  . . . ,Fi u i mΣ ⊆ Σ =

The idea here is to group related faults into sets such that faults of a 
given set represent a common fault situation, while faults of a different 
set represent a different fault situation. Consider our illustrative 
example from Section 1.1, specifically the track loop shown in Figure 
2. It would make sense to group the fault events for sensors 9 and 10 
as they could both be used to detect a train before it enters the next 
track segment. However, a fault event for sensor 16 would not be 
relevant for this task so we would put it into a different fault set.

Definition 6. We refer to faults in ,  1,  . . . , ,Fi i mΣ = collectively as 
standard fault events: 

1, . . . ,
 :  F Fi

i m=
Σ = Σ



We note that for 0,  0Fm = Σ = .

The standard fault events are the faults that will be used to define 
the various fault scenarios that our supervisors will need to be able 
to handle. However, there are two additional types of faults that we 
need to define in order to handle two special cases. The first type 
is called unrestricted fault events, denoted F uΣ ⊆ ΣΩ . These are 
faults that a supervisor can always handle and thus are allowed to 
occur unrestricted. For our example in Section 1.1, this might be a 
fault associated with a sensor that is not used at all by the system’s 
supervisor and could thus be safely ignored.

The second type is called excluded fault events, denoted F u∆Σ ⊆ Σ
. These are faults that cannot be handled at all and thus are essentially 
removed in our scenarios. The idea is that this would allow us to still 
design a fault-tolerant supervisory for the remaining faults.

From our example in Section 1.1, consider sensor 13 from Figure 
2. If we wished to stop a train at this sensor so it could be loaded 
by a crane, we would be unable to do so if the sensor failed as there 
is not a second sensor located close enough to stop the train at the 
correct location. If we modelled a fault at this sensor, we would have 
to make it an excluded fault or the system would fail all fault-tolerant 
tests. This is an example of a fault that could not be handled by a 
supervisor, and would need to be addressed by adding an additional 
backup sensor to the system.

For each fault set, ,  1,  . . . , ,Fi i mΣ = we also need to define a 
matching set of reset events, denoted TiΣ ⊆ Σ . These events will 
be explained in Section 3.3, when we describe the resettable fault 
scenario.

Timed fault-tolerant consistency

We now present a consistency requirement that our timed system 
must satisfy, the timed fault-tolerant (TFT) consistency definition. 
This is an extension of the faulttolerant (FT) consistency definition 
from Mulahuwaish,1,3,4 where the only difference is that Point 7 is 
new. It thus follows that if a system is TFT consistent it is also FT 
consistent. We note that as the tick event is controllable, Definition 7 
implies that tick cannot be a fault event.

Definition 7. A system, with a plant ( )  ,  ,  ,  ,  ,o mY y Y= Σ δG
a supervisor ( )  ,  ,  ,  ,  o mX x X= Σ ξS and fault and reset sets 

( ),     1,  ..,  ,  ,Fi Ti Fi m ∆Σ Σ = Σ and FΣΩ is timed fault-tolerant (TFT) 
consistent if:

(1) F F F u∆Σ Σ Σ ⊆ Σ Ω

(2) ( ),  ,     0,  ..,  ,F F Fi i m∆Σ Σ Σ =Ω are pair-wise disjoint.

(3) ( )  1,  ..,  0Fii m∀ ∈ Σ ≠

(4) ( )  1,  ..,  0Fi Tii m∀ ∈ Σ Σ =

(5) Supervisor S is deterministic.

(6) ( ) ( )( ) ( ) ,  F F Fx X x x∆∀ ∈ ∀σ∈ Σ Σ Σ ξ σ = Ω

(7) ( ) 0F F F for∆Σ Σ Σ Σ =  Ω

Point (1) says that fault events are uncontrollable since allowing 
a supervisor to disable fault events would be unrealistic. Point (2) 
requires that the indicated sets of faults be disjoint since they must 
each be handled differently. Point (3) says that fault sets FiΣ are non-
empty. Point (4) says a fault set must be disjoint from its corresponding 
set of reset events so we can distinguish them.

Points (5) and (6) say that S is deterministic and that at every state 
in S, there is a selfloop for each fault event in the system. This 
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means a supervisor cannot change state (and thus change enablement 
information) based on a fault event. This is a key concept as it 
effectively makes fault events unobservable to supervisors. If S is 
defined over a subset Σ′ ⊂ Σ instead, we could equivalently require 
that Σ′ contain no fault events.

Point (7) says that there are no forcible, fault events. This is because 
it would be unrealistic to be able to make a fault event occur on 
command. 

We note that the above definition implies that we do not need to 
make use of the observability property,36 saving us the cost of verifying 
it. Essentially, the observability property is used to check if a partial 
observation supervisor (one that can only see a subset of the available 
events) exists that will provide the same closed-loop behavior as an 
existing supervisor, who can observe all events. As our approach is 
a verification method that assumes we are given a supervisor that 
is already forced by the fault-tolerant consistency definition to treat 
fault events as effectively unobservable (it can’t change state based 
on them), there is no need to verify the observability property as our 
existing supervisor is already sufficient for our needs.

Fault scenarios

When faults are added to a plant model, we typically can have 
strings containing so many faults in a row that any controllability or 
nonblocking test would fail. However, we are typically only interested 
in knowing if a system will be controllable and nonblocking if only 
a certain pattern of faults have occurred. For example, we might 
only want to know if at most one fault occurs, will our system be 
controllable and nonblocking? Our fault scenarios are an attempt 
to characterize common fault situations that we would want our 
supervisors to handle.

In this paper, we will use five faults scenarios that were presented 
in Mulahuwaish et al.,1–4 as they are still applicable in the TDES 
setting. The scenarios range from simple situations easy to verify, to 
ones that are more flexible in terms of how faults can occur and how 
often, but more expensive to verify. They are by no means exhaustive, 
but we felt that they represented a good characterization of situations 
that would likely be of interest.

The first is the default fault scenario where the supervisor must 
be able to handle any non-excluded fault event that occurs. The 
second scenario is the 0N ≥ fault scenario where the supervisor 
is only required to handle at most N non-excluded fault events and 
all unrestricted fault events. Consider our illustrative example from 
Section 1.1, specifically the track loop shown in Figure 2. If we 
wished to prevent a collision in the track segment bounded by sensors 
11 and 13, we could stop the train at sensors 9 or 10. We could handle 

1N = faults (i.e. sensor 9 or 10 failed but not both), but we could not 
handle 2N = faults (both sensors failed at the same time).

The next scenario is the one-repeatable fault scenario where the 
supervisor is only required to handle at most one non-excluded fault 
event and all unrestricted fault events. This is similar to the N fault 
scenario with 1N = , except that once a given fault has occurred, it 
can continue to occur, but no other standard fault events may occur.

Consider our illustrative example from Section 1.1, specifically 
the track loop shown in Figure 2. Applying this scenario, we could for 
example have a fault occur at sensor 10, but once that occurs we could 
no longer have faults at sensors 9 and 16, but could continue to have 
faults at sensor 10. Rather than focusing on how many fault events 
occurred, the one-repeatable fault scenario focuses on how many 
components fail. It essentially says at most one component in the 

system can have a fault, but doesn’t restrict how often the component 
exhibits this fault.

The next scenario is the m-one-repeatable fault scenario where the 
supervisor is required to handle all unrestricted fault events, but no 
more than one fault event from any given ( ) 0,  . . . ,  Fi i mΣ = fault 
set, but those events can occur multiple times. This definition allows 
the designer to group faults together in fault sets such that a fault 
occurring from one set does not affect a supervisor’s ability to handle 
a fault from a different set.

This scenario extends the one-repeatable fault scenario to allow at 
most one component to fail per system area associated with a given 
fault set. If we assume the fault sets from the example in Section 3.1, 
then this scenario would allow multiple faults to occur at sensors 10 
and 16 as they are from separate fault sets, but once a fault occurs at 
sensor 10, we could no longer get faults at sensor 9 as it is from the 
same fault set. The last scenario we consider is the resettable fault 
scenario. This is designed to capture the situation where at most one 
fault event from each ( )   1,  . . . ,  Fi i mΣ =  fault set can be handled 
by the supervisor during each pass through a part of the system, but 
this ability resets for the next pass. For this to work, we need to be 
able to detect when the current pass has completed and it is safe for 
another fault event from the same fault set to occur. We use the fault 
set’s corresponding set of reset events to achieve this. The idea is that 
once a reset event has occurred, the current pass can be considered 
over and it is safe for another fault event to occur.

If we continue the above example, we could have sensors 9 and 
10 in one fault set, and set the corresponding reset event set to only 
contain the detection event for sensor 11. If we get a fault event 
from sensor 9 and 10 in a row, we would be unable to stop the train. 
However, if we got a fault from sensor 10 only and then the detection 
event for sensor 11, we would know we could now safely get a second 
fault event from sensor 9 or 10 (but not both) and still be able to stop 
the train. Such a supervisor could handle an infinite number of faults 
from sensors 9 and 10, as long as they don’t both fail during the same 
pass.

Timed fault-tolerant controllability definitions

In this section, we introduce new timed fault-tolerant controllability 
definitions so that we can verify if our TDES supervisor will stay 
controllable for the fault scenarios that we introduced in the previous 
section. In essence, these definitions characterize strings that belong 
to the desired fault scenario, and only require supervisors to satisfy the 
controllability definitions for these strings.

We note that we don’t need to introduce corresponding timed fault-
tolerant nonblocking definitions, as the ones from Mulahuwaish,1–4 
still apply. This is because the nonblocking property is the same for 
both the timed and untimed setting. It is also important that the tick 
event can’t be a fault event as this ensures that the nonblocking fault-
tolerant properties do not have conflicting definitions.

Due to space limitations, we will only present results for the 
default, one-repeatable and m-one-repeatable fault scenarios. Please 
refer to Alsuwaidan23 for timed properties, algorithms, and correctness 
proofs for the 0N ≥  and resettable fault scenarios.

Timed fault-tolerant controllability

The first fault-tolerant property that we present is designed to 
handle the default fault scenario. First, we need to define the language 
of excluded faults. This is the set of all strings that include at least one 
fault from F∆Σ .
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Definition 8. We define the language of excluded faults as:
* *  . .F FL∆ ∆= Σ Σ Σ

Definition 9. A system, with a plant ( )  ,  ,  ,  ,  ,o mY y Y= Σ δG
a supervisor ( )  ,  ,  ,  ,  o mX x X= Σ ξS and fault sets 

( )   1,  . . . ,  Fi i mΣ =  and F∆Σ , is timed fault-tolerant (T-FT) 
controllable if it is TFT consistent and:

( ) ( )( )( )    Fs L L s L∆∀ ∈ ∉ ⇒S G

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
 

 

Elig f Elig 0

i
Elig

Elig f Elig 0

{

 

} iL u forL L
L

L u forL L

s s
s

s s

 Σ τ Σ =⊇ 
Σ Σ ≠

G S G
S

G S G





  

 

For brevity, when it clear to which fault sets we are referring, we 
can state this property more concisely as S is timed fault-tolerant 
controllable for G.

The above definition is essentially the standard timed controllability 
definition but ignores strings that include excluded fault events. 
We note that if 0F∆Σ = , then Definition 9 reduces to the standard 
controllability definition.

Timed one-repeatable fault-tolerant controllability

The next fault-tolerant property that we introduce is designed to 
handle the onerepeatable fault scenario. First, we need to define the 
language of one-repeatable fault events. This is the set of strings that 
contain at most one fault event from FΣ , but that event can occur 
multiple times in the string.

Definition 10. We define the language of one-repeatable fault events 
as:

( ) ( ) ( )( )( )1 . { }  .RF F
F

L F F∗ ∗

σ∈Σ
= Σ − Σ ∪ Σ − Σ σ Σ − Σ − σ ∗

Definition 11. A system, with a plant ( )  ,  ,  ,  ,  ,o mY y Y= Σ δG  
a supervisor ( )  ,  ,  ,  ,  o mX x X= Σ ξS  and fault sets 

( )   1,  . . . ,  Fi i mΣ = and F∆Σ is timed one repeatable fault-tolerant 
(T-1-R-FT) controllable if it is TFT consistent and:

( ) ( )( )( ) ( )1       F RFs L L s L s L∆∀ ∈ ∩ ∉ ∧ ∈ ⇒S G

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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L
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s s

 Σ τ Σ =⊇ 
Σ Σ ≠

G S G
S

G S G





  

 

The above definition is essentially the standard timed controllability 
definition, but ignores strings that include excluded fault events, and 
strings that contain more than two unique fault events from FΣ . We 
note that if 0m = we get 0FΣ = . This means Definition 11 simplifies 
to the TFT controllable definition.

Timed m-one-repeatable fault-tolerant controllability

The next fault-tolerant property that we introduce is designed to 
handle the m-one repeatable fault scenario. First, we need to define 
the language of m-one-repeatable fault events. This is the set of all 
strings that contain at most one fault event from a given fault set

( )   1,  . . . ,  Fi i mΣ = , but that event can occur multiple times in 
the string. We note that a string in 1RFmL could potentially contain a 
unique event from each different fault set, but no two unique events 
from the same fault set.

Definition 12. We define the language of m-one-repeatable fault 
events as:

( ) ( )( ) )1
1

 ( ) * * . . { } *
m

RF i i im
i Fi

L F F F
= σ∈Σ

= Σ − Σ Σ − Σ σ Σ − Σ − σ

 

Definition 13. A system, with plant ( )  ,  ,  ,  ,  ,o mY y Y= Σ δG supervisor 
( )  ,  ,  ,  ,  o mX x X= Σ ξS and fault sets ( )   1,  . . . ,  Fi i mΣ = and F∆Σ

is timed m-one-repeatable fault tolerant (T-m-1-R-FT) controllable, if 
it is TFT consistent and:

( ) ( )( )( ) ( )     1F ms L L s L s L RF∆∀ ∈ ∩ ∉ ∧ ∈ ⇒S G

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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The above definition is essentially the standard timed controllability 
definition, but ignores strings that include excluded fault events, and 
strings that contain more than one unique fault event from the same 
fault set. We note that if 0m = we get 0FΣ = . This means Definition 
13 simplifies to the TFT controllable definition.

Algorithms
In this section, we will present algorithms to construct and verify 

the timed faulttolerant controllability properties that we defined in 
Section 4. We will not present an algorithm for the TFT consistency 
property as its individual points can easily be checked by adapting 
various standard algorithms.

We assume that the our TDES system consists of a plant
( )  ,  ,  ,  ,  ,o mY y Y= Σ δG supervisor ( )  ,  ,  ,  ,  o mX x X= Σ ξS  

and 

fault and reset sets FiΣ , ( )   1,  . . . ,  Ti i mΣ = , F∆Σ , and FΣΩ . We 
also assume that the timed controllability and synchronous product 
algorithms are given. We use vTCont (Plant, Sup) to indicate timed 
controllability verification, and to indicate timed controllability 
verification, and || to indicate the synchronous product operation.

Similar to the untimed fault-tolerant algorithms in Mulahuwaish,1–4 
our approach will be to construct plant components to synchronize 
with our plant G such that the new TDES will restrict the occurrence 
of faults to match the given timed fault-tolerant controllability 
definitions. We can then synchronize the plant components together 
and then use a standard controllability algorithm to check the 
property. This approach allows us to automatically take advantage of 
existing scalability methods such as incremental24 and binary decision 
diagram-based (BDD) algorithms.25–30

Since every TDES must contain the tick event, we add a tick event 
selflooped at every state in the plants we construct. Moreover, all the 
constructed plants have all of their states marked so that we do not 
directly change the system’s marked behavior.

Algorithms to construct plants

We will now discuss the algorithms required to construct the 
needed plant components for the various timed fault-tolerant 
algorithms. This will require the construction of two different types 
of plants. Figures 7 and 8 show examples of these plants. We will not 
discuss the plant component needed to verify the timed one-repeatable 
fault-tolerant properties as it is essentially a special case of the timed 
m-one-repeatable fault-tolerant plant component. Please refer to 
Mulahuwaish1 for details.

Figure 7 Timed excluded faults plant t FG ∆ . 

tick

0
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Figure 8 Timed m-One-Repeatable fault plant { }1 , 1 3, , ,t RF i FiG ∑ = σ … σ .

Figure 7 shows an example timed excluded faults plant, tG F∆ . 
This is a TDES with event set { }F∆Σ ∪ τ one selflooped transition for 
tick, and a marked, initial state. This will have the effect of removing 
any F∆Σ transitions from any DES it is synchronized with. The 
algorithm to construct tG F∆  is given by Algorithm 1.

Algorithm 1 construct- 

1: 

2: 

3: 

4: return  

Figure 8 shows an example timed m-one-repeatable faults plant, 
( )}   1,  . . . ,  {i m∈t1RF,iG .  This is a TDES with event set { }FiΣ ∪ τ

, and 1k +  marked states, where Fik = Σ . It has a transition for 
each fault event in FiΣ from the initial state to a new state unique to 
that fault event. There is also a selflooped transition at that state for 
that event. Moreover, it creates one selflooped transition for tick at 
each state. Synchronizing with this TDES will allow at most on unique 
fault event from FiΣ to occur, but that event can occur multiple times. 
The algorithm to construct t1RF,iG is given by Algorithm 2.

Algorithm 2 construct-

1: 

2: 

3: 

4: 

5: 

6: 

7: for  Fi∑σ∈

8:

9:

10: end for

11: return  

Verify timed fault-tolerant controllability

We will now discuss the algorithms to verify our timed fault-
tolerant controllability properties. We will not discuss the algorithms 
to verify the timed one-repeatable fault-tolerant controllability 
property as they are essentially a special case 1m = of the timed 
m-one-repeatable fault-tolerant controllability property. Please refer 
to Mulahuwaish1 for details. 1m =

Algorithm 3 shows how to verify timed fault-tolerant controllability 
for G  and S . TDES tG F∆  contains the excluded fault events but no 
transitions except for a   tick  selfloop at the initial state, synchronizing 
with tG F∆  will remove all the excluded fault transitions, but allow   
tick  transitions to occur without restriction. Checking that S  is 
controllable for the resulting behavior will have the effect of verifying 
timed fault-tolerant controllability.

Algorithm 3 Verify timed fault-tolerant controllability

1: 

2: 

3: pass←vTCont 

4: return pass 

Algorithm 4 shows how to verify timed m-one-repeatable fault-
tolerant controllability for G  and S . As tG F∆  removes any excluded 
fault transitions, and each t1RF,iG allows at most one unique fault 
event but that event can occur multiple times, checking that S  is 
controllable for the resulting behavior will have the effect of verifying 
timed m-one-repeatable fault-tolerant controllability.

Algorithm 4 Verify timed m-one-repeatable fault-tolerant 
controllability 

1: 

2: for

3: 

4: end for 

5:

6: pass ← vTCont
7: return pass 

Algorithm complexity analysis

In this section, we provide a complexity analysis for the timed 
fault-tolerant controllability algorithms. In the following subsections, 
we assume that our system consists of a plant ( ),G  ,  ,  ,  ,  o mY y Y= Σ δ  
supervisor ( )  ,  ,  ,  ,  o mX x X= Σ ξS , and fault and reset sets 

( ) Ä,     1,  . . . ,  ,  ,Fi Ti Fi mΣ Σ = Σ  and FΩΣ .

In this paper, we will base our analysis on the complexity analysis 
from Cassandras  et al.,22 that states that the untimed controllability 
algorithms have a complexity of ( )| |O Y XΣ , where Σ  is the size 
of the system event set, Y is the size of the plant state set, and X  is 

the size of the supervisor state set. In the analysis that follows, t FY ∆

is the size of the state set for t FY ∆  (constructed by Algorithm 1).

Examining untimed and timed controllability algorithms, (see 
Rudie15 and Alsuwaidan23) it’s easy to see they differ in the constant 
number of operations they each perform per transition that leaves 

σ1

σ1

tick
tick

tick

tick

σ2

σ2

σ3

σ3

0 1

2

3

tG F∆

,1 1mY Y←

( ){ }1 1 0 0,  ,   y yδ ← δ ∪ τ

{ }( )1 1 ,1,  ,  ,  ,  F o mY y Y∆Σ ∪ τ δ

{ }1 0Y y←

t1RF,iG

,1 1mY Y←

1 0δ ←

1j ←

( ) ( ){ }1 1 0 0, , , , ,j jy y y yδ ← δ ∪ τ τ

( ) ( ){ }1 1 0, , , , ,j j jy y y yδ ← δ ∪ σ σ

Fik ∑←

{ }1 0, , kY y y← …

1j j← +

{ }( )1 1 ,1, , , ,F o miY y Y∑ ∪ τ δ

t F t FG G ( )Fconstruct∆ ∆ ∆← − ∑

t F' || G ∆←G G

( )',SG

t F t FG G ( )Fconstruct∆ ∆ ∆← − ∑

1, ,i m= …

( ) ,Ficonstruct i∑← −t1RF,i t1RF,iG G

t F' G ∆← …t1RF,1 t1RF,mG G G G

( )',SG
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each reachable state of the closed-loop system. As such, timed 
controllability also has complexity ( )| |O Y XΣ .

Timed FT controllability algorithm
In Algorithm 3, we replace our plant DES by t FG' G || G ∆← . This 

gives us a worst case state space of t  FY Y ∆  for G' . Substituting 
this into our base algorithm’s complexity for the size of our plant’s 
state set gives ( )t | |  FO Y Y X∆Σ . As t 1FY ∆ =  by Algorithm 1, it 
follows that our complexity is ( )| |O Y XΣ which is the same as our 
base algorithm.

Timed one-repeatable FT controllability algorithm

The complexity of the timed one-repeatable FT controllability 
algorithm can be obtained from the analysis of the timed m-one-
repeatable FT controllability algorithm by taking F FN = Σ  and 

1m = . It thus follows that verifying timed one-repeatable FT 
controllability increases the complexity of verifying controllability by 
a factor of 1FΣ + .
Timed m-one-repeatable FT controllability algorithm

For Algorithm 4, we replace our plant DES by 

1 ,1 1 ,G G G G  . . . Gt F t RF t RF m∆′ = . This gives us a worst case state 

space of 1 ,1 1 , . . . t F t RF t RF mY Y Y Y∆  for 'G , where 1 ,Yt RF i  is the 

size of the state set for 1 ,t RF iG ( )1, ,i m= … , which is constructed by 
Algorithm 2. Substituting this into our base algorithm’s complexity 
gives

( )tÄF t1RF,1 t1RF,m  . | . | .O Y Y Y Y XΣ .

We note that  1FY∆ =  by Algorithm 1, and 1 ,Y  1  1,  . . . ,  )(t RF i Fi i m= Σ + =  
by Algorithm 2. If we take FN  as an upper bound of all FiΣ , we get

( )( )| | 1O NF m Y XΣ . It thus follows that verifying timed m-one-
repeatable FT controllability increases the complexity of verifying 
controllability by a factor of ( 1)m

FN + .

Algorithm correctness

In this section, we introduce several propositions and theorems 
that show that the algorithms introduced in Section 5 correctly verify 
that a TFT consistent system satisfies the corresponding timed fault-
tolerant controllability properties from Section 4.

Timed fault-tolerant propositions

The propositions in this section will be used to support the timed 
fault-tolerant controllability theorems in Section 6.2. Timed fault-
tolerant controllability definitions are essentially controllability 
definitions with the added restriction that a string s is only tested if it is 
satisfies the appropriate timed fault-tolerant property from Section 4.

The timed fault-tolerant controllability verification algorithms are 
intended to replace the original plant with a new plant 'G , such that 

'G is restricted to strings with the desired property. Propositions 1-2 
essentially assert that strings belongs to the closed behaviour of 'G , if 
and only ifs satisfies the appropriate timed fault-tolerant controllable 
property from Section 4 (i.e. the string belongs to the desired scenario).

The first proposition asserts that strings belongs to the closed 
behaviour of 'G , if and only ifs  satisfies the needed pre-requisite for 
the timed fault-tolerant controllable property.

Proposition 1  Let system with supervisor ( )S  ,  ,  ,  ,  o mX x X= Σ ξ  
and plant ( )G  ,  ,  ,  ,  o mY y Y= Σ δ  be TFT consistent, and let G'  be 
the plant constructed in Algorithm 3. Then: 

( )( ) ( ) Fs L G s L s L G∆∀ ∈ ∉ ⇔ ∈ ′

Proof. See Appendix. 

The next proposition asserts that string S  belongs to the closed 
behaviour of 'G , if and only if S  satisfies the needed pre-requisite for 
the timed m-one-repeatable fault-tolerant controllable property.

Proposition 2  Let system with supervisor ( )S  ,  ,  ,  ,  o mX x X= Σ η
and plant ( ),  ,  ,  ,  o mG Y y Y= Σ δ be TFT consistent, and let 'G be the 
plant constructed in Algorithm 4. Then: 

    ( )( )( ) ( ) ( )1F RFms L G s L s L s L G∆∀ ∈ ∉ ∧ ∈ ⇔ ∈ ′

Proof. See Appendix.

Timed fault-tolerant controllable theorems

In this section we present theorems that show the timed fault-
tolerant controllable algorithms in Section 5 will return  true if and only 
if the timed fault-tolerant consistent system satisfies the corresponding 
timed fault-tolerant controllability property. Due to space limitations, 
we will not present results for the timed one-repeatable fault-tolerant 
controllability and nonblocking properties as they can be handled as 
a special case ( 1m = ) of the timed m-one-repeatable fault-tolerant 
properties. Please refer to Mulahuwaish3 for details.

Theorem 1 states that verifying that our system is timed fault-
tolerant controllable is equivalent to verifying that our supervisor is 
controllable for the plant 'G  constructed by Algorithm 3. We will 
only give the proof for Theorem 2 as it is very similar, but more 
complicated.

Theorem 1 

Let system with supervisor ( )S  ,  ,  ,  ,  o mX x X= Σ ξ and plant 
( )G  ,  ,  ,  ,  o mY y Y= Σ δ be TFT consistent, and let G' be the plant 

constructed in Algorithm 3. Then S is timed fault-tolerant controllable 
for G iff S is controllable for G' . 

Proof. See Alsuwaidan.23

Theorem 2 states that verifying that our system is timed m-one-
repeatable fault-tolerant controllable is equivalent to verifying that our 
supervisor is controllable for the plant G' constructed by Algorithm 4.

Theorem 2  Let system with supervisor ( )S  ,  ,  ,  ,  o mX x X= Σ ξ and 
plant ( )G  ,  ,  ,  ,  o mY y Y= Σ δ be TFT consistent, and let G' be the 
plant constructed in Algorithm 4. Then S  is timed m-one repeatable 
fault-tolerant controllable for G iff S is controllable for G' .  

Proof. See Appendix.

Manufacturing example

This example is based on the small example from Mulahuwaish,2,3 
which in turn was based on the system described in Leduc.32 The 
testbed was designed to simulate a manufacturing workcell using 
model train equipment, in particular problems of routing and collision. 
We will discuss a single-loop version of the example, as shown in 
Figure 2. This example consists of eight sensors and two trains ( train 
1,  train 2). Train 1 starts between sensors 9 and 10, while train 2 starts 
between sensors 15 and 16. Both trains can only traverse the tracks in 
a counter-clockwise direction.

This example builds upon the illustrative example that we 
introduced in Section 1.1, providing the remaining plant models for 
the example, as well as the details of how we applied our timed fault-

https://doi.org/10.15406/iratj.2024.10.00283
https://medcraveonline.com/IRATJ/IRATJ-10-00283A.pdf
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tolerant approach to the example. We recommend that you reread 
Section 1.1 to refresh your memory of the details presented there, as 
they will not be repeated below.

Plant models

The plant models, for the portion of the testbed we are currently 
considering, consists of the following basic elements: sensors, trains 
and the relationship between sensors and trains.

 Sensor Models

 In Section 1.1, we introduced the eight TDES plant models for our 
eight sensors. We first presented the original sensor models (without 
fault events added) in Figure 3. We then presented new models, for 
sensors { }9,10,16J ∈ , with the added fault events. For this example, 
we will use the original models for sensors { }11, ,15J ∈ … , and the 
new models for sensors { }9,10,16J ∈ as we are assuming that only 
these sensors have faults. This restriction is done to simplify the 
example and make it easier to illustrate our approach.

We now need to define our fault and reset event sets for the example. 
We set F 0F∆Σ = Σ =Ω  as our example does not require any fault 
events of this type. We also set 4m = , { }1 _ 9,  _F t1F at t1F at10Σ = ,

{ }2 _F t1F at16Σ = , { }3   _ ,  _F t2F at9 t2F at10Σ = , { }4 .  _F t2F at16Σ =  
We group our fault events in this manner as sensors 9 and 10 are 
both relevant to preventing a train from entering the track segment 
delineated by sensors 11 and 13, while sensor 16 is not. Also, the 
faults in detecting one train, are not relevant to the faults in detecting 
the other train, for our example.

Finally, we define our corresponding reset event sets as follows: 
{ }1  _T t1 at11Σ = , { }2   _T t1 at14Σ = , { }3   T t2_at11Σ = , and

{ }4   _T t2 at14Σ = . These are chosen as they represent the given 
train reaching a section of track past the sensors associated with the 
given fault set.

Train models

The train models are shown in Figure 9 for train K ( )1,2K = . Train 
K can only move when its enablement event  en_trainK occurs, and 
then it can move at most a single unit of distance (event  umv_trainK), 
before another  en_trainK must occur. This allows a supervisor to 
precisely control the movement of the train by enabling and disabling 
event en_trainK as needed.

Figure 9 Train K ( )1,2K = with tick events.

Relationship between sensors and trains models

Figure 10 shows the relationship between train K’s ( )1,2K =
movement, and a sensor detecting the train. It captures the idea that 
a train can reach at most one sensor during a unit movement, and no 

sensors if it is disabled, also Figure 10 shows the replacement model, 
one for each train, with fault events added. We now seen that our plant 
model contains 14 DES in total.

Figure 10 Sensors and Train K ( )1,2K =  with fault and tick events.

Adding forcing

To extend Alsuwaidan’s example, we have added forcing for 
events en_trainK ( )1,2K = . However, this is not straightforward 
to do in a modular way as these events are not always possible in 
the plant. Also, multiple supervisors will need to enable and force 
these events. If a supervisor tries to force the event when either it isn’t 
possible in the plant or disabled by another supervisor, the result could 
be uncontrollable.

To handle this problem, we have introduced two new controllable 
events forceT1 and forceT2, shown in Figures 11 and 12. Now, the 
collision protection supervisors in Section 7.2 will disable these 
events instead of en_trainK events, to signal when the train is allowed 
to move or not. We note that as these events are added as part of the 
supervisor’s implementation, they are assumed to occur very quickly 
after they are enabled.

Figure 11 Add forceT1 event.

Figure 12 Add forceT2 event.

We now need to add supervisors to force the en_trainK events to 
occur right away, as long as they are eligible and not disabled. This 
is accomplished by the doForceTK supervisors, shown in Figures 13 
and 14. These supervisors handle the forcing by first waiting until 
the en_trainK event is possible in the plant, and then waiting for 
the forceTK event to occur. Once forceTK occurs, the tick event is 
disabled until the en_trainK event has occurred, forcing the event. The 
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forceTK event is required to coordinate with the collision protection 
supervisors so that doForceTk doesn’t try to force the en_trainK event 
when it has been disabled, which would have caused the supervisor 
to be uncontrollable.

Figure 13 Force_en train1 for train 1.

Figure 14 Force_en train2 for train 2.

Modular supervisors

After the plant models were developed, four supervisors were 
designed to prevent collisions in the track sections with sensors 11-
13, 15-16, 12-14, and 9-10. The idea is to ensure that only one train 
uses this track section at a time. 

Below we present two versions of the collision protection 
supervisors. The first version is based upon the original collision 
protection supervisors from Leduc11 which were designed with the 
assumption that the system did not contain faults. The second version 
is a new fault-tolerant version with added redundancy.

Collision protection supervisors  

Figure 15 shows the fault-tolerant collision protection supervisor 
(CPS-11-13FT) for the track section containing sensors 11 and 13. 
The original version (CPS-11-13) is identical except that the t1_at9 
and the t2_at9 transitions are not present. Once a train has reached 
sensor 11, the other train is stopped at sensor 10 until the first train 
reaches sensor 15, which indicates it has left the protected area. The 
stopped train is then allowed to continue. Figures 17, and show similar 
fault-tolerant supervisors for two of the remaining track sections. 
Again, the original version is identical except that the t1_at9 and the 
t2_at9 transitions are not present.

Figure 16, shows the final collision protection supervisor. It is 
unchanged as it does not depend on the sensors with faults. We also 

note that supervisors CPS-15-16 and CPS-9-10 have nonstandard 
initial states in order to reflect the starting locations of the two trains.

It’s easy to see that the original supervisor CPS-11-13 will not be 
fault-tolerant as it relies solely on sensor 10 to detect when a second 
train arrives. If sensor 10 fails, the train continues and could collide 
with the first train. Supervisors CPS-9-10 and CPS-12-14 will also 
not be fault-tolerant because of sensor 10. A failure at sensor 10 could 
cause supervisor CPS-9-10 to miss a train entering the protected zone, 
and could cause supervisor CPS-12-14 to miss a train leaving the 
protected zone.

Fault-tolerant collision protection supervisors

We next modified supervisor CPS-11-13 to make it more fault-
tolerant. The result is shown in Figure 15. We have added at states 1 
and 4 a check for both sensor 9 or sensor 10. That way if sensor 10 
fails but sensor 9 doesn’t, we can still stop the train at sensor 9 and 
avoid the collision. We made similar changes to supervisors CPS-12-
14, and CPS-9-10, as shown in Figures 17, and 18.

Figure 15 CPS-11-13FT supervisor.

Figure 16 CPS15-16 supervisor.
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Figure 17 CPS-12-14FT supervisor.

Figure 18 CPS-9-10FT supervisor.

Discussion of results
Using our software research tool, DESpot,32 we were able to 

determine that the system is timed one-repeatable FT controllable, and 
timed m-one-repeatable FT controllable. We also not that the system 
failed the FT controllable and nonblocking properties as expected, 
since they would allow the fault events to occur unrestricted. Table 
1 shows the test results, system state sizes, and runtime for these 
tests. Runtime data is from DESpot’s binary decision diagram-based 
(BDD)25 –30 algorithms as the timed m-one-repeatable fault-tolerant 
statesize was too large for the automata-based algorithms.

Table 1 Example results

   Verification Time (seconds)

Property State Size Timed Cont. Nonblocking

Timed fault-tolerant 10,502,000 0        F 0            F

Timed one-repeatable 
fault-tolerant 49,933,600 0      P 1            P

Timed m-one-
repeatable fault-
tolerant 

271,118,000 0       P 1            P

We next examine the state sizes of each evaluated system, which 
includes the plant components added as part of the verification process. 
We first note that for our   example,  we have 4m = , 35FΣ = , 

2FN = , and a base-system state size of 10,502,000. From Section 
5.3, we expect that (worst case) the one-repeatable FT and m-one-
repeatable FT algorithms would multiply our base-system state size 
by factors of 1 36FΣ + =  and 4( 1) 3 81m

FN + = = , respectively.

Examining Table 1, we see that these two algorithms actually 
contribute multiplying factors of 4.75, and 25.82, respectively. We see 
immediately that the actual increase in complexity for this example 
is much less than expected, in particular for the one-repeatable FT 
algorithms.

Conclusions and future work
In this paper we investigated the problem of fault-tolerance (FT) 

for timed discreteevent systems. We extended the existing fault-
tolerant supervisory control approach of Mulahuwaish1–4 to include 
timing information. We introduced our setting and providing different 
fault scenarios. We then provide three timed fault-tolerant definitions 
to verify that the system will remain controllable in each scenario. 

This approach is different from the typical fault-tolerant 
methodology as the approach does not rely on detecting faults and 
switching to a new supervisor; it requires a supervisor to work 
correctly under normal and fault conditions. This is a passive approach 
that relies upon inherent redundancy in the system being controlled. 

Our approach provides an easy method for users to add fault 
events to a system model and is based on user designed supervisors 
and verification. As synthesis algorithms have higher complexity than 
verification algorithms, our approach should be applicable to larger 
systems than existing active fault-recovery methods that are synthesis 
based. Also, modular supervisors are typically easier to understand 
and implement than the results of synthesis.

Finally, our approach does not require expensive (in terms of 
algorithm complexity) fault diagnosers to work. Diagnosers are, 
however, required by existing methods to know when to switch to a 
recovery supervisor. As a result, the response time of diagnosers is not 
an issue for us. Our supervisors are designed to handle the original 
and the faulted system. However, the tradeoff is that our approach 
may result in an overly cautious supervisor.

We then present a set of algorithms to verify timed controllability for 
each scenario. We then proved that the algorithms correctly evaluated 
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the timed fault-tolerant controllability properties that we introduced. 
They can instantly take advantage of existing controllability and 
nonblocking software, as well as scalability approaches such as 
incremental verification and binary decision diagrams (BDD).

We then present a set of algorithms to verify the timed fault-
tolerant properties. As these algorithms involve adding new plant 
components and then checking standard timed controllability, they 
can instantly take advantage of existing controllability software, as 
well as scalability approaches such as incremental verification and 
binary decision diagrams (BDD).

For each algorithm, we provide a complexity analysis showing 
that the TFT algorithms multiply the complexity of the standard 
algorithms by a factor of (1), ( )1FΣ + , and ( 1)m

FN +  where m is 

the number of fault sets, FΣ is the number of fault events, and FN  

is an upper bound of all ( )   1,  . . . ,  Fi i mΣ = . We then prove the 
correctness of the algorithms.

We finish with a small manufacturing example that illustrates how 
the theory can be applied.

For future work, it would be useful to extend a timed fault-tolerant 
method to the sampled-data setting32 in order to address concurrency 
and implementation issues. We would also like to extend the approach 
to the hierarchical interface-based supervisory control (HISC).33–36 
The information hiding and encapsulation properties of HISC should 
allow us to scale our approach up to handle much larger systems.
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