
Submit Manuscript | http://medcraveonline.com

Introduction
Supervisory control theory, introduced by Ramadge and

Wonham,5–7 provides a formal framework for analysing discrete-
event systems (DES). In this theory, automata are used to model the
system to be controlled and the specification for the desired system
behaviour. The theory provides methods and algorithms to obtain a
supervisor that ensures the system will produce the desired behaviour.

However, the base theory typically assumes that the system
behaviour does not contain faults that would cause the actual system
to deviate from the theoretical model. An example is a sensor that
detects the presence of an approaching train. If the supervisor relies
on this sensor to determine when the train should be stopped in order
to prevent a collision, it could fail to enforce its control law if the
sensor failed.

In Mulahuwaish1,3,4 we introduced a discrete-event system-based
fault tolerance approach that was designed to handle intermittent
faults. An intermittent fault is a malfunction of a device or system
that occurs at intervals, usually irregular, in a device or system that
functions normally at other times. A loose connection is an example
of this kind of fault.

In the above approach, we introduced uncontrollable fault events
to the system’s plant model and then categorized some common fault
scenarios. By scenarios, we refer to several common fault situations
that we would want our supervisors to be able to handle. The scenarios
range from simple situations that are easy to verify (for example, at
most one faults are allowed to occur), to ones that are more flexible
in the occurrence of faults, but more expensive to verify. We then
developed some properties that allowed us to determine if a supervisor
will still be controllable and nonblocking in these scenarios. We note
that this is a passive approach that relies upon inherent redundancy in
the system being controlled.

In this paper, we will extend the work of Mulahuwaish1–4 to the
timed DES (TDES) setting.8–10 Timed DES extends untimed DES
theory by adding a new tick ()τ event, corresponding to the tick of

a global clock. The event set of a TDES contains the tick event as
well as other non-tick events called activity events ()actΣ . This is
a powerful extension as TDES adds to untimed DES the ability to
express when an event is possible, when it must occur by (possibly
infinite upper bound), and the ability to force certain events (called
forcible events) to occur in a specified time frame (before the next
clock tick). As TDES is more expressive, both in modelling and
enforcement, extending fault-tolerant supervisors to the TDES setting
clearly will be useful.

The primary difference between our timed and untimed fault-
tolerant results is that the tick event must not be a fault event, and that
the controllability condition for TDES differs from the untimed setting.
We thus have to adapt the fault-tolerant definitions and algorithms to
use the timed controllabilty definition (which also ensures forcing of
events is done properly). Fortunately, verifying nonblocking (a weak
check to make sure the system does not deadlock or livelock) is the
same for both timed and untimed DES so we don’t have to develop
timed nonblocking fault-tolerant properties; we can simply re-use the
fault-tolerant nonblocking properties and algorithms developed in
Mulahuwaish.1–4

Illustrative example

We now introduce an example to illustrate our method. We will
briefly introduce the example here, and then use it to explain the
various aspects of our approach as we introduce them. After we have
fully introduced our method, we will provide the remaining portions
of the example in Section 7, and then discuss the results of applying
our approach to the example.

Example setting

Our example is based on the manufacturing testbed from Leduc.11
The testbed was designed to simulate a manufacturing workcell
using model train equipment, in particular problems of routing and
collision. Figure 1 shows conceptually the structure of the full testbed
and sensors.

Int Rob Auto J. 2024;10(2):48‒61. 48
©2024 Mulahuwaish et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and build upon your work non-commercially.

Timed fault-tolerant supervisory control

Volume 10 Issue 2 - 2024

Aos Mulahuwaish,1 Amal Alsuwaidan,2 Ryan
J Leduc3
1Department of Computer Science and Information Systems,
Saginaw Valley State University, USA
2King Abdulaziz City for Science and Technology, King Abdullah
Rd, Saudi Arabia
3Department of Computing and Software, McMaster University,
Canada

Correspondence: Ryan J Leduc, Department of Computing
and Software, McMaster University, 1280 Main St. West,
Hamilton, ON, Canada, L8S 4K1, Email

Received: May 25, 2024 | Published: June 13, 2024

Abstract

In Mulahuwaish,1–4 we investigated the problem of fault tolerance in the framework of
untimed discrete-event systems (DES). This approach is different from the typical fault-
tolerant methodology as the approach does not rely on detecting faults and switching to a new
supervisor; it requires a supervisor to work correctly under normal and fault conditions. This
is a passive approach that relies upon inherent redundancy in the system being controlled.
In this paper we extend the work of Mulahuwaish1–4 to the timed DES (TDES) setting. We
introduce our setting, and then provide a set of timed fault tolerant definitions designed to
capture different types of fault scenarios and to ensure that our system remains controllable
in each scenario. As the nonblocking property is the same for timed and untimed DES,
the untimed fault-tolerant nonblocking properties and algorithms from Mulahuwaish1–4 can
also be used in the timed setting without any changes. We then present algorithms to verify
these properties followed by complexity analyses and correctness proofs of the algorithms.
An example is then provided to illustrate our approach.

Keywords: discrete-event systems, supervisory control, fault-tolerant

International Robotics & Automation Journal

Review Article Open Access

https://crossmark.crossref.org/dialog/?doi=10.15406/iratj.2024.10.00283&domain=pdf

Timed fault-tolerant supervisory control 49
Copyright:

©2024 Mulahuwaish et al.

Citation: Mulahuwaish A, Alsuwaidan A, Leduc RJ. Timed fault-tolerant supervisory control. Int Rob Auto J. 2024;10(2):48‒61.
DOI: 10.15406/iratj.2024.10.00283

Figure 1 Sensors in the testbed.

We will initially focus on only a single track loop, shown in Figure
2. The loop contains eight sensors and two trains (train 1, train 2).
Train 1 starts between sensors 9 and 10, while train 2 starts between
sensors 15 and 16. Both trains can only traverse the tracks in a counter
clockwise direction.

Figure 2 Single train loop.

The sensor models, shown in Figure 3, indicate when a given train
is present, and when no trains are present. Also, they state that only
one train can activate a given sensor at a time. The figure shows the
original sensor model, one for each sensor { }J 9, . . . ,16∈ , before
fault events were added to the plant model.

Figure 3 Sensor 11, ,15J = … .

Figure 4 Sensors 9,10,16J = with fault events.

Figures 5 and 6 show the sensor’s interdependencies with respect
to a given train. With respect to the starting position of a particular
train (represented by the initial state), sensors can only be reached in a
particular order, dictated by their physical location on the track. Both
DES already show the added fault events.

Figure 5 Sensor interdependencies for train 1.

Figure 6 Sensor interdependencies for train 2.

We note that in the DES diagrams, circles represent unmarked
states, while filled circles represent marked states. Two concentric,
unfilled circles represent the initial state. If the initial state is also
marked, the inner circle is filled. Uncontrollable events are indicated
by an “!” preceding the event’s name, such as " _ "!t1 atJ .

Adding intermittent faults

To add faults to the model, we assumed that sensors 9, 10, and
16 could have an intermittent fault; sometimes the sensor would
detect the presence of a train, sometimes it would fail to do so.

S1A

S
2
7
A

S
1
1
A

S
1
2
A

S
1
4
A

S
1
3
A

S
8
A

S
2
1
A

S
2
4
A

S
2
7
B

S
1
1
B

S
1
2
B

S
1
4
B

S
1
3
B

S
8
B

S
2
1
B

S
2
2
A

S
2
2
B

S
2
3
A

S
2
3
B

S
2
4
B

S19A S20A

S26AS25AS15A S16A

S19B S20B

S26BS25BS15B S16B S17B

S18B

S6B S7B

S9B S10B

S17A

S18A

S6A S7A

S9A S10A

S0A

S
2
A

S
3
A

S
5
A

S
4
A

S1B

S0B

S
2
B

S
3
B

S
5
B

S
4
B

S9 S10

S15 S16

S11

S13

S12

S14

tick

!nt_atJ

tick

tick

!t1_atJ

!t2_atJ

tick

0 1 2

3

����

k�������

����

����

k������

k������

k�������

k�������

����

�

�

�

�

����

��������

k�������

k��������

k�������
k�������

����

k�������

����

����

k������

k�������

����

k�������

k�������

k��������

����

k�������

�

�

� �� �

�

�

�

����

k�������

����

k�������

k������

����

k�������

����

k�������

����

k�������

����

��������

k�������

k��������

k�������

k��������

k�������

�� ��

�

�

�

� �

https://doi.org/10.15406/iratj.2024.10.00283

Timed fault-tolerant supervisory control 50
Copyright:

©2024 Mulahuwaish et al.

Citation: Mulahuwaish A, Alsuwaidan A, Leduc RJ. Timed fault-tolerant supervisory control. Int Rob Auto J. 2024;10(2):48‒61.
DOI: 10.15406/iratj.2024.10.00283

We modelled this by adding to all the plant models a new event
{ }_ , 9, . . . ,16t1f atJ J∈ , for each _t1 atJ event. For each _t1 atJ

transition in a plant model, we added an identical _t1f atJ transition.
The idea is we can now get the original detection event or the new
fault one instead. We made similar changes for train 2. Figure 4 shows
the new sensor models with the added fault events. We note that the
fault events must be uncontrollable events as it would be unrealistic
if supervisor could simply disable a fault event and prevent the fault
from occurring.

Now consider the problem of preventing a second train from
entering the track segment bounded by sensors 11 and 13, when this
section is already occupied by the first train. Ideally, we would monitor
sensor 10 for the arrival of the second train, and halt that train until
the first train has left the protected track segment. However, if sensor
10 faulted, the train would not stop and we would have a collision.
We could make our controller more redundant by monitoring both
sensors 9 and 10, and we could then safely stop the train as long as
both sensors did not fail. In such a situation, we could tolerate a single
fault, but not two in a row.

We further note that we cannot allow our supervisor to make
decisions based on the occurrence of the sensor fault events as we
cannot realistically expect such faults to be observable. The supervisor
must only change its control actions based on observing non fault
events.

Literature review
Currently in the DES literature, the most common approach when

a fault is detected is to switch to a new supervisor to handle the system
in its degraded mode. Such an approach focuses on fault recovery
as opposed to fault tolerance. This requires the construction of a
second supervisor, and requires that there be a means to detect the
occurrence of the fault in order to initiate the switch. In our approach,
we use a single supervisor that will behave correctly for the original
system without faults, and for the system with added fault events that
are restricted to the fault scenarios that we are addressing. This is a
passive approach that relies on the inherent redundancy in the system
being controlled. Our method has the advantage that we only need to
design a single supervisor for our system, and that we do not need to
detect that a fault has occurred for our approach to work. We will now
discuss some relevant, related work.

Two closely related topics to fault-tolerance and fault recovery are
robust and adaptive supervisory control as discussed by.12–14 In both
approaches, the system G of interest is not specified exactly, but either
belongs to a set of possible plants, or we are given a set of “lower”
and “upper” bounds. For robust control, the goal is to construct a
supervisor that will achieve a desired behavior for all of the possible
plants. This is 6 analogous to our passive approach to fault-tolerance.

Adaptive control, on the other hand, monitors system behavior
and uses the information to resolve or reduce the uncertainty in the
system’s behavior in order to improve the performance of the system.
This is analogous to active fault recovery methods. It is worth noting
that both methods involve synthesis, where our approach is based on
user designed supervisors and verification. As synthesis algorithms
have higher complexity than verification algorithms,15 our approach
should be applicable to larger systems. Also, modular supervisors
are typically easier to understand and implement than the results of
synthesis.

An additional drawback with active fault recovery methods is
that they require that a fault be detected, and possibly identified if

there are multiple faults, before the fault recovery response can be
applied. Constructing a fault diagnoser can be expensive,16 and has the
additional concern that it may not detect the fault in time to respond
appropriately. As our approach is passive and can handle the original
and faulted system, response time is not a concern for us. However,
the tradeoff is that our approach may result in an overly cautious
supervisor.

While adaptive and robust control are related, neither has a concept
of fault events and thus cannot be used directly for fault-tolerance
or recovery as their supervisors could be designed to take action
on the occurrence of a fault event which should be unobservable to
supervisors. However, methods such as Saboori et al.,14 which make
use of partial observations, could perhaps be adapted by setting fault
events to be unobservable, and using a model without faults, and a
post-fault model.

This of course raises the question of how the post-fault model
would be obtained. Simply adding fault events to an existing model
often results in a system with strings that contain so many faults in
them that no controllable and nonblocking supervisor would exist.
Where it is true they could make use of the models generated by our
approach, but then robust/adaptive control would be unnecessary as
synthesis could just be done directly on the resulting model as there
would be no uncertainty left.

Finally, it might be possible to use robust/adaptive control on the
original plant model without fault events, and new post-fault models
without fault events. However if the system contains multiple faults,
generating separate models for each possible post fault system (i.e.
system behavior after a specific sequence of faults have occurred)
could be tedious, error prone, and time consuming. Our approach
on the other hand, uses a single system model with all faults already
added. We provide a simple approach and methodology for adding
faults to an existing system model that could be easily automated

Qin Wen et al.,17 introduces a framework for fault-tolerant
supervisory control of discrete-event systems. In this framework,
plants contain both normal behavior and behavior with faults, as well
as a submodel that contains only the normal behavior. The goal of
fault-tolerant supervisory control is to enforce a specification for the
normal behavior of the plant and to enforce another specification
for the overall plant behavior. This includes ensuring that the plant
recovers from any fault within a bounded delay so that after the
recovery, the system state is equivalent to a state in the normal plant
behavior. They formulate this notion of fault-tolerant supervisory
control and provide a necessary and sufficient condition for the
existence of such a supervisor. The condition involves notions of
controllability, observability and relative-closure together with the
notion of stability.

In Paoli et al.,18 they propose to detect faults and switch to a
different supervisor before the nominal system behaviour is violated.
The controller is updated based on the information provided by
online diagnostics. The supervisor needs to detect the malfunctioning
component in the system in order to achieve the desired specification.
The authors propose the idea of safe diagnosability as a step to achieve
fault-tolerant control.

In Park et al.,19 they present necessary and sufficient conditions
for fault-tolerant robust supervisory control of discrete-event systems
that belong to a set of models. When these conditions are satisfied,
fault-tolerance can be achieved based on the identification of tolerable
fault sequences. In the paper, the results were applied to the design,
modelling, and control of a workcell consisting of arc welding
(GMAW) robots, a sensor, and a conveyor.

https://doi.org/10.15406/iratj.2024.10.00283

Timed fault-tolerant supervisory control 51
Copyright:

©2024 Mulahuwaish et al.

Citation: Mulahuwaish A, Alsuwaidan A, Leduc RJ. Timed fault-tolerant supervisory control. Int Rob Auto J. 2024;10(2):48‒61.
DOI: 10.15406/iratj.2024.10.00283

Brandin et al.,8–10 added a new dimension to the basic DES theory
by introducing timed discrete-event systems (TDES). They introduced
the concept of a global clock and tick event. Also, they introduced the
ability to specify when certain events must occur.

Research has been conducted to discuss faults in the TDES setting.
However, this research focused on fault recovery and fault detection,
as opposed to fault tolerance.

In,20 the main goal of Allahham et al.,20 was to detect system faults
as early as possible. Their proposed idea was to construct a TDES with
two clocks: one clock would reflect the task state and and the other
clock would measure the elapsed time since the task had been started.
They assumed that each task had normal behavior with no faults, and
acceptable behavior with intermittent faults within a bounded delay.
Their approach was to give each task a time interval. Then, they would
check if the task had finished in the defined time interval or before it,
which means the system had no faults or it had intermittent faults that
the system can tolerate. They monitored the TDES with stopwatch
automaton that modeled the acceptable behavior for a specific task.
The stopwatch had three locations: initial, normal execution, and
interruption, to specify the task status.

In, Moosaei et al.,21 introduced fault recovery to TDES. Their
system consists of the plant and a diagnosis system, both modeled
using activity transition graphs (ATG). The plant model describes its
behavior in both normal and faulty conditions. The diagnosis system
was assumed to be available to detect and isolate faults whenever they
occurred. They have introduced three modes for their system: normal
when no faults occur, transient when a fault occurs, and recovery
when the fault was detected and isolated. Their design consists of a
normal-transient supervisor, and multiple recovery supervisors for
each failure mode.

As we will see in the following section, our approach is quite
different to the preceding methods. Rather than focus on synthesis
approaches, ours is based on verification. We assume that the designer
has used their understanding of the given system and its possible faults
to attempt to design a supervisor that is controllable and nonblocking
for the system both without faults, and when faults occur according
to our specified scenarios. Our goal is to provide a method to verify if
they have achieved this.

Overview
This paper is organized as follows. Section 1 provides an

introduction to our topic. Section 2 discusses DES preliminaries.
Section 3 introduces fault events and the fault scenarios to which
they apply. Section 4 presents our timed fault-tolerant controllability
definitions. Section 5 presents algorithms to verify the timed fault-
tolerant controllability properties and provides a complexity analysis.
Section 6 presents algorithm correctness proofs and Section 7
provides a small manufacturing example to illustrate our approach.
Finally, Section 8 provides conclusions and future work.

Preliminaries
We now present a summary of the DES terminology that we use in

this paper. For more details, please refer to.22,34

Strings and languages

Let ∑ be a finite set of distinct symbols (events). Let +∑ denote
the set of all finite, non-empty sequences of events, and *∑ be the set
of all finite sequences of events including∈ , the empty string. We can
then define { }: +∗∑ ∑ ∈ . For ,s s∗∈∑ equals the length (number of
events) of the string.

Let L ∗⊆∑ be a language over ∑ . A string t ∗∈∑ is a prefix of s
s ∗∈∑ (written t s≤) if s tu= , for some u ∗∈∑ . The prefix closure

of language L (denoted L) is defined as : {L t t s∗∑= ≤∈ for some
}s L∈ . Let Pwr()∑ denote the set of all possible subsets of ∑ . For

language L , the eligibility operator,)E rl w: (ig PL
∗∑ ∑→ , is given

by }Elig () : {L s s L∈∑σ σ∈= for s ∗∈∑ .

Timed DES

Timed DES (TDES)8–10 extends untimed DES theory by adding a
new tick (τ) event, corresponding to the tick of a global clock. The
event set of a TDES contains the tick event as well as other non-tick
events called activity events ()act∑ .

A TDES automaton is represented as a 5-tuple
(), , , , o mQ q Q= Σ δG where Q is the state set, { }act τ∑ = ∑ 

 is
the event set, the partial function : Q Qδ × Σ → is the transition
function, oq is the initial state, and mQ is the set of marker states.

We extend : to Q Qδ δ × Σ ∗→ in the natural way. The notation
(), !q sδ means the transition is defined. The closed behavior of G is

defined to be () (){ }| : , !oL s q s∗= δ∑∈G . The marked behavior is

defined as () () (){ }|: , m o mL s L G q s Q= ∈ δ ∈G .

The reachable state subset of DES G , denoted rQ , is:

(){ })|: , r oQ q Q s q s q∗ δ∑= ∈ ∃ =∈ . A DES G is reachable if

rQ Q= . We will always assume that a DES is reachable, has a finite
state and event set, and is deterministic (single initial state and at most
a single transition leaving a given state for a given event).

TDES contain forcible ()forΣ , and prohibitable events ()hibΣ
Forcible events are non-tick events which can be relied upon to
preempt tick, when needed. The method used by a TDES supervisor
to indicate that an event forσ∈Σ or should be forced (made to occur
before the next tick) at a given state, is to “disable” tick at this state.
This has the effect of removing the now impossible behavior that tick
could occur before σ. Prohibitable events are non-tick events that can
be disabled. The set of controllable events are { }c hibΣ = Σ τ

 , and the
uncontrollable events are u cΣ = Σ − Σ .

Let 1 2 ,Σ = Σ Σ *
1 1L ⊆ ∑ , and *

2 2L ⊆ ∑ . For i 1, 2, s ∗= ∈∑ ,
and σ∈Σ , we define the natural projection * :i iP ∗ →∑ ∑ according
to:

() () () () ()
if

, ,
if

i
i i i i i

i
P P P s P s P

∈ σ∉Σ
∈ = ∈ σ = σ = σ σ ∈∉Σ

The map ()*1: iiP Pwr Pwr− ∗→∑ ∑ is the inverse image of iP

such that for *
1L ⊆ ∑ , (){ }1 : i iP L s P s L− ∗∑∈ ∈

Definition 1. For () () , , , , , , 1,2i i i i o i m iQ q Q i= Σ δ =G , we define

the synchronous product 1 2G = G G of the two DES as:

()()1 2 1 2 2 ,1 ,2 : , , , ,1, , , o o m mG Q Q q q Q Q= × Σ Σ δ ×

where ()()1 2, , q qδ σ is only defined and equals

() () () ()11 2 1 21 2 1 2 2f , ,, i , , qq q q qq′ σ δ′ ∈ Σ Σ σ δ= σ′ ′= or

() ()11 2 1 1 12f , , , iq q qqσ ∈Σ − Σ σ ′=δ′ or

() ()11 2 22 2 2f , i , , q q q qσ ∈Σ −′ σ ′=Σ δ .

https://doi.org/10.15406/iratj.2024.10.00283

Timed fault-tolerant supervisory control 52
Copyright:

©2024 Mulahuwaish et al.

Citation: Mulahuwaish A, Alsuwaidan A, Leduc RJ. Timed fault-tolerant supervisory control. Int Rob Auto J. 2024;10(2):48‒61.
DOI: 10.15406/iratj.2024.10.00283

It follows that () () ()1 1
1 1 2 2L P L P L− −=G G G and

() () ()1 1
1 1 2 2m m mL P L P L− −=G G G . We note that if 1 2Σ = Σ , we get

() () ()1 2L L L=G G G and () () ()1 2m m mL L L=G G G

For DES, the two main properties we want to check are nonblocking
and controllability.

Definition 2. A DES G is said to be nonblocking if

() () mL L=G G

Definition 3. Supervisor S is controllable with respect to plant G if for
all () () s L L∈ S G ,

() () () () () () () ()

() () () () ()

Elig f Elig 0

i
Elig

Elig f Elig 0

{

} iL u forL L
L

L u forL L

s s
s

s s

 Σ τ Σ =⊇ 
Σ Σ ≠

G S G
S

G S G





  

 

TDES properties

For TDES, we have the addition properties of activity loop free
and proper timed behavior. The first definition ensures that the clock
tick cannot be delayed indefinitely, while the second ensures that
either a tick or an untimed event (which cannot be disabled) is always
possible in the plant.

Definition 4. TDES (), , , , o mQ q Q= Σ δG is activity-loop-free
(ALF) if

()() ()* , r actq Q s q s q∀ ∈ ∀ ∈ ≠∑ δ

Definition 5. A plant TDES G has proper time behavior if:

()() () , !r uq Q q∀ ∈ ∃σ ∈ Σ τ δ σ

Fault-tolerant setting

In this section, we will introduce our concept of fault events, a
consistency property that our systems must satisfy, and the four
fault scenarios that we want our supervisors to be able to handle.
Our eventual goal will be to be able to determine if our supervisor
will be controllable for our plant in a given fault scenario. In the
following section, we will assume that all DES are deterministic,
and that we are given plant () , , , , o mY y Y= Σ δG and supervisor

() , , , , o mX x X= Σ ξS

Fault events

In this paper, our approach will be to add a set of uncontrollable
events to our plant model to represent the possible faults in the
system. Our goal will be to design supervisors that will still behave
correctly (i.e. stay controllable and nonblocking) when a fault event
occurs, even though they can’t detect the fault event directly. We start
by defining a group of 0m ≥ mutually exclusive sets of fault events.

, 1, . . . ,Fi u i mΣ ⊆ Σ =

The idea here is to group related faults into sets such that faults of a
given set represent a common fault situation, while faults of a different
set represent a different fault situation. Consider our illustrative
example from Section 1.1, specifically the track loop shown in Figure
2. It would make sense to group the fault events for sensors 9 and 10
as they could both be used to detect a train before it enters the next
track segment. However, a fault event for sensor 16 would not be
relevant for this task so we would put it into a different fault set.

Definition 6. We refer to faults in , 1, . . . , ,Fi i mΣ = collectively as
standard fault events:	

1, . . . ,
 : F Fi

i m=
Σ = Σ



We note that for 0, 0Fm = Σ = .

The standard fault events are the faults that will be used to define
the various fault scenarios that our supervisors will need to be able
to handle. However, there are two additional types of faults that we
need to define in order to handle two special cases. The first type
is called unrestricted fault events, denoted F uΣ ⊆ ΣΩ . These are
faults that a supervisor can always handle and thus are allowed to
occur unrestricted. For our example in Section 1.1, this might be a
fault associated with a sensor that is not used at all by the system’s
supervisor and could thus be safely ignored.

The second type is called excluded fault events, denoted F u∆Σ ⊆ Σ
. These are faults that cannot be handled at all and thus are essentially
removed in our scenarios. The idea is that this would allow us to still
design a fault-tolerant supervisory for the remaining faults.

From our example in Section 1.1, consider sensor 13 from Figure
2. If we wished to stop a train at this sensor so it could be loaded
by a crane, we would be unable to do so if the sensor failed as there
is not a second sensor located close enough to stop the train at the
correct location. If we modelled a fault at this sensor, we would have
to make it an excluded fault or the system would fail all fault-tolerant
tests. This is an example of a fault that could not be handled by a
supervisor, and would need to be addressed by adding an additional
backup sensor to the system.

For each fault set, , 1, . . . , ,Fi i mΣ = we also need to define a
matching set of reset events, denoted TiΣ ⊆ Σ . These events will
be explained in Section 3.3, when we describe the resettable fault
scenario.

Timed fault-tolerant consistency

We now present a consistency requirement that our timed system
must satisfy, the timed fault-tolerant (TFT) consistency definition.
This is an extension of the faulttolerant (FT) consistency definition
from Mulahuwaish,1,3,4 where the only difference is that Point 7 is
new. It thus follows that if a system is TFT consistent it is also FT
consistent. We note that as the tick event is controllable, Definition 7
implies that tick cannot be a fault event.

Definition 7. A system, with a plant () , , , , ,o mY y Y= Σ δG
a supervisor () , , , , o mX x X= Σ ξS and fault and reset sets

(), 1, .., , ,Fi Ti Fi m ∆Σ Σ = Σ and FΣΩ is timed fault-tolerant (TFT)
consistent if:

(1) F F F u∆Σ Σ Σ ⊆ Σ Ω

(2) (), , 0, .., ,F F Fi i m∆Σ Σ Σ =Ω are pair-wise disjoint.

(3) () 1, .., 0Fii m∀ ∈ Σ ≠

(4) () 1, .., 0Fi Tii m∀ ∈ Σ Σ =

(5) Supervisor S is deterministic.

(6) () ()() () , F F Fx X x x∆∀ ∈ ∀σ∈ Σ Σ Σ ξ σ = Ω

(7) () 0F F F for∆Σ Σ Σ Σ =  Ω

Point (1) says that fault events are uncontrollable since allowing
a supervisor to disable fault events would be unrealistic. Point (2)
requires that the indicated sets of faults be disjoint since they must
each be handled differently. Point (3) says that fault sets FiΣ are non-
empty. Point (4) says a fault set must be disjoint from its corresponding
set of reset events so we can distinguish them.

Points (5) and (6) say that S is deterministic and that at every state
in S, there is a selfloop for each fault event in the system. This

https://doi.org/10.15406/iratj.2024.10.00283

Timed fault-tolerant supervisory control 53
Copyright:

©2024 Mulahuwaish et al.

Citation: Mulahuwaish A, Alsuwaidan A, Leduc RJ. Timed fault-tolerant supervisory control. Int Rob Auto J. 2024;10(2):48‒61.
DOI: 10.15406/iratj.2024.10.00283

means a supervisor cannot change state (and thus change enablement
information) based on a fault event. This is a key concept as it
effectively makes fault events unobservable to supervisors. If S is
defined over a subset Σ′ ⊂ Σ instead, we could equivalently require
that Σ′ contain no fault events.

Point (7) says that there are no forcible, fault events. This is because
it would be unrealistic to be able to make a fault event occur on
command.

We note that the above definition implies that we do not need to
make use of the observability property,36 saving us the cost of verifying
it. Essentially, the observability property is used to check if a partial
observation supervisor (one that can only see a subset of the available
events) exists that will provide the same closed-loop behavior as an
existing supervisor, who can observe all events. As our approach is
a verification method that assumes we are given a supervisor that
is already forced by the fault-tolerant consistency definition to treat
fault events as effectively unobservable (it can’t change state based
on them), there is no need to verify the observability property as our
existing supervisor is already sufficient for our needs.

Fault scenarios

When faults are added to a plant model, we typically can have
strings containing so many faults in a row that any controllability or
nonblocking test would fail. However, we are typically only interested
in knowing if a system will be controllable and nonblocking if only
a certain pattern of faults have occurred. For example, we might
only want to know if at most one fault occurs, will our system be
controllable and nonblocking? Our fault scenarios are an attempt
to characterize common fault situations that we would want our
supervisors to handle.

In this paper, we will use five faults scenarios that were presented
in Mulahuwaish et al.,1–4 as they are still applicable in the TDES
setting. The scenarios range from simple situations easy to verify, to
ones that are more flexible in terms of how faults can occur and how
often, but more expensive to verify. They are by no means exhaustive,
but we felt that they represented a good characterization of situations
that would likely be of interest.

The first is the default fault scenario where the supervisor must
be able to handle any non-excluded fault event that occurs. The
second scenario is the 0N ≥ fault scenario where the supervisor
is only required to handle at most N non-excluded fault events and
all unrestricted fault events. Consider our illustrative example from
Section 1.1, specifically the track loop shown in Figure 2. If we
wished to prevent a collision in the track segment bounded by sensors
11 and 13, we could stop the train at sensors 9 or 10. We could handle

1N = faults (i.e. sensor 9 or 10 failed but not both), but we could not
handle 2N = faults (both sensors failed at the same time).

The next scenario is the one-repeatable fault scenario where the
supervisor is only required to handle at most one non-excluded fault
event and all unrestricted fault events. This is similar to the N fault
scenario with 1N = , except that once a given fault has occurred, it
can continue to occur, but no other standard fault events may occur.

Consider our illustrative example from Section 1.1, specifically
the track loop shown in Figure 2. Applying this scenario, we could for
example have a fault occur at sensor 10, but once that occurs we could
no longer have faults at sensors 9 and 16, but could continue to have
faults at sensor 10. Rather than focusing on how many fault events
occurred, the one-repeatable fault scenario focuses on how many
components fail. It essentially says at most one component in the

system can have a fault, but doesn’t restrict how often the component
exhibits this fault.

The next scenario is the m-one-repeatable fault scenario where the
supervisor is required to handle all unrestricted fault events, but no
more than one fault event from any given () 0, . . . , Fi i mΣ = fault
set, but those events can occur multiple times. This definition allows
the designer to group faults together in fault sets such that a fault
occurring from one set does not affect a supervisor’s ability to handle
a fault from a different set.

This scenario extends the one-repeatable fault scenario to allow at
most one component to fail per system area associated with a given
fault set. If we assume the fault sets from the example in Section 3.1,
then this scenario would allow multiple faults to occur at sensors 10
and 16 as they are from separate fault sets, but once a fault occurs at
sensor 10, we could no longer get faults at sensor 9 as it is from the
same fault set. The last scenario we consider is the resettable fault
scenario. This is designed to capture the situation where at most one
fault event from each () 1, . . . , Fi i mΣ = fault set can be handled
by the supervisor during each pass through a part of the system, but
this ability resets for the next pass. For this to work, we need to be
able to detect when the current pass has completed and it is safe for
another fault event from the same fault set to occur. We use the fault
set’s corresponding set of reset events to achieve this. The idea is that
once a reset event has occurred, the current pass can be considered
over and it is safe for another fault event to occur.

If we continue the above example, we could have sensors 9 and
10 in one fault set, and set the corresponding reset event set to only
contain the detection event for sensor 11. If we get a fault event
from sensor 9 and 10 in a row, we would be unable to stop the train.
However, if we got a fault from sensor 10 only and then the detection
event for sensor 11, we would know we could now safely get a second
fault event from sensor 9 or 10 (but not both) and still be able to stop
the train. Such a supervisor could handle an infinite number of faults
from sensors 9 and 10, as long as they don’t both fail during the same
pass.

Timed fault-tolerant controllability definitions

In this section, we introduce new timed fault-tolerant controllability
definitions so that we can verify if our TDES supervisor will stay
controllable for the fault scenarios that we introduced in the previous
section. In essence, these definitions characterize strings that belong
to the desired fault scenario, and only require supervisors to satisfy the
controllability definitions for these strings.

We note that we don’t need to introduce corresponding timed fault-
tolerant nonblocking definitions, as the ones from Mulahuwaish,1–4
still apply. This is because the nonblocking property is the same for
both the timed and untimed setting. It is also important that the tick
event can’t be a fault event as this ensures that the nonblocking fault-
tolerant properties do not have conflicting definitions.

Due to space limitations, we will only present results for the
default, one-repeatable and m-one-repeatable fault scenarios. Please
refer to Alsuwaidan23 for timed properties, algorithms, and correctness
proofs for the 0N ≥ and resettable fault scenarios.

Timed fault-tolerant controllability

The first fault-tolerant property that we present is designed to
handle the default fault scenario. First, we need to define the language
of excluded faults. This is the set of all strings that include at least one
fault from F∆Σ .

https://doi.org/10.15406/iratj.2024.10.00283

Timed fault-tolerant supervisory control 54
Copyright:

©2024 Mulahuwaish et al.

Citation: Mulahuwaish A, Alsuwaidan A, Leduc RJ. Timed fault-tolerant supervisory control. Int Rob Auto J. 2024;10(2):48‒61.
DOI: 10.15406/iratj.2024.10.00283

Definition 8. We define the language of excluded faults as:
* * . .F FL∆ ∆= Σ Σ Σ

Definition 9. A system, with a plant () , , , , ,o mY y Y= Σ δG
a supervisor () , , , , o mX x X= Σ ξS and fault sets

() 1, . . . , Fi i mΣ = and F∆Σ , is timed fault-tolerant (T-FT)
controllable if it is TFT consistent and:

() ()()() Fs L L s L∆∀ ∈ ∉ ⇒S G

() () () () () () () ()

() () () () ()

Elig f Elig 0

i
Elig

Elig f Elig 0

{

} iL u forL L
L

L u forL L

s s
s

s s

 Σ τ Σ =⊇ 
Σ Σ ≠

G S G
S

G S G





  

 

For brevity, when it clear to which fault sets we are referring, we
can state this property more concisely as S is timed fault-tolerant
controllable for G.

The above definition is essentially the standard timed controllability
definition but ignores strings that include excluded fault events.
We note that if 0F∆Σ = , then Definition 9 reduces to the standard
controllability definition.

Timed one-repeatable fault-tolerant controllability

The next fault-tolerant property that we introduce is designed to
handle the onerepeatable fault scenario. First, we need to define the
language of one-repeatable fault events. This is the set of strings that
contain at most one fault event from FΣ , but that event can occur
multiple times in the string.

Definition 10. We define the language of one-repeatable fault events
as:

() () ()()()1 . { } .RF F
F

L F F∗ ∗

σ∈Σ
= Σ − Σ ∪ Σ − Σ σ Σ − Σ − σ ∗

Definition 11. A system, with a plant () , , , , ,o mY y Y= Σ δG
a supervisor () , , , , o mX x X= Σ ξS and fault sets

() 1, . . . , Fi i mΣ = and F∆Σ is timed one repeatable fault-tolerant
(T-1-R-FT) controllable if it is TFT consistent and:

() ()()() ()1 F RFs L L s L s L∆∀ ∈ ∩ ∉ ∧ ∈ ⇒S G

() () () () () () () ()

() () () () ()

Elig f Elig 0

i
Elig

Elig f Elig 0

{

} iL u forL L
L

L u forL L

s s
s

s s

 Σ τ Σ =⊇ 
Σ Σ ≠

G S G
S

G S G





  

 

The above definition is essentially the standard timed controllability
definition, but ignores strings that include excluded fault events, and
strings that contain more than two unique fault events from FΣ . We
note that if 0m = we get 0FΣ = . This means Definition 11 simplifies
to the TFT controllable definition.

Timed m-one-repeatable fault-tolerant controllability

The next fault-tolerant property that we introduce is designed to
handle the m-one repeatable fault scenario. First, we need to define
the language of m-one-repeatable fault events. This is the set of all
strings that contain at most one fault event from a given fault set

() 1, . . . , Fi i mΣ = , but that event can occur multiple times in
the string. We note that a string in 1RFmL could potentially contain a
unique event from each different fault set, but no two unique events
from the same fault set.

Definition 12. We define the language of m-one-repeatable fault
events as:

() ()())1
1

 () * * . . { } *
m

RF i i im
i Fi

L F F F
= σ∈Σ

= Σ − Σ Σ − Σ σ Σ − Σ − σ

 

Definition 13. A system, with plant () , , , , ,o mY y Y= Σ δG supervisor
() , , , , o mX x X= Σ ξS and fault sets () 1, . . . , Fi i mΣ = and F∆Σ

is timed m-one-repeatable fault tolerant (T-m-1-R-FT) controllable, if
it is TFT consistent and:

() ()()() () 1F ms L L s L s L RF∆∀ ∈ ∩ ∉ ∧ ∈ ⇒S G

() () () () () () () ()

() () () () ()

Elig f Elig 0

i
Elig

Elig f Elig 0

{

} iL u forL L
L

L u forL L

s s
s

s s

 Σ τ Σ =⊇ 
Σ Σ ≠

G S G
S

G S G





  

 

The above definition is essentially the standard timed controllability
definition, but ignores strings that include excluded fault events, and
strings that contain more than one unique fault event from the same
fault set. We note that if 0m = we get 0FΣ = . This means Definition
13 simplifies to the TFT controllable definition.

Algorithms
In this section, we will present algorithms to construct and verify

the timed faulttolerant controllability properties that we defined in
Section 4. We will not present an algorithm for the TFT consistency
property as its individual points can easily be checked by adapting
various standard algorithms.

We assume that the our TDES system consists of a plant
() , , , , ,o mY y Y= Σ δG supervisor () , , , , o mX x X= Σ ξS

and

fault and reset sets FiΣ , () 1, . . . , Ti i mΣ = , F∆Σ , and FΣΩ . We
also assume that the timed controllability and synchronous product
algorithms are given. We use vTCont (Plant, Sup) to indicate timed
controllability verification, and to indicate timed controllability
verification, and || to indicate the synchronous product operation.

Similar to the untimed fault-tolerant algorithms in Mulahuwaish,1–4
our approach will be to construct plant components to synchronize
with our plant G such that the new TDES will restrict the occurrence
of faults to match the given timed fault-tolerant controllability
definitions. We can then synchronize the plant components together
and then use a standard controllability algorithm to check the
property. This approach allows us to automatically take advantage of
existing scalability methods such as incremental24 and binary decision
diagram-based (BDD) algorithms.25–30

Since every TDES must contain the tick event, we add a tick event
selflooped at every state in the plants we construct. Moreover, all the
constructed plants have all of their states marked so that we do not
directly change the system’s marked behavior.

Algorithms to construct plants

We will now discuss the algorithms required to construct the
needed plant components for the various timed fault-tolerant
algorithms. This will require the construction of two different types
of plants. Figures 7 and 8 show examples of these plants. We will not
discuss the plant component needed to verify the timed one-repeatable
fault-tolerant properties as it is essentially a special case of the timed
m-one-repeatable fault-tolerant plant component. Please refer to
Mulahuwaish1 for details.

Figure 7 Timed excluded faults plant t FG ∆ .

tick

0

https://doi.org/10.15406/iratj.2024.10.00283

Timed fault-tolerant supervisory control 55
Copyright:

©2024 Mulahuwaish et al.

Citation: Mulahuwaish A, Alsuwaidan A, Leduc RJ. Timed fault-tolerant supervisory control. Int Rob Auto J. 2024;10(2):48‒61.
DOI: 10.15406/iratj.2024.10.00283

Figure 8 Timed m-One-Repeatable fault plant { }1 , 1 3, , ,t RF i FiG ∑ = σ … σ .

Figure 7 shows an example timed excluded faults plant, tG F∆ .
This is a TDES with event set { }F∆Σ ∪ τ one selflooped transition for
tick, and a marked, initial state. This will have the effect of removing
any F∆Σ transitions from any DES it is synchronized with. The
algorithm to construct tG F∆ is given by Algorithm 1.

Algorithm 1 construct-

1:

2:

3:

4: return

Figure 8 shows an example timed m-one-repeatable faults plant,
()} 1, . . . , {i m∈t1RF,iG . This is a TDES with event set { }FiΣ ∪ τ

, and 1k + marked states, where	 Fik = Σ . It has a transition for
each fault event in FiΣ from the initial state to a new state unique to
that fault event. There is also a selflooped transition at that state for
that event. Moreover, it creates one selflooped transition for tick at
each state. Synchronizing with this TDES will allow at most on unique
fault event from FiΣ to occur, but that event can occur multiple times.
The algorithm to construct t1RF,iG is given by Algorithm 2.

Algorithm 2 construct-

1:

2:

3:

4:

5:

6:

7: for Fi∑σ∈

8:

9:

10: end for

11: return

Verify timed fault-tolerant controllability

We will now discuss the algorithms to verify our timed fault-
tolerant controllability properties. We will not discuss the algorithms
to verify the timed one-repeatable fault-tolerant controllability
property as they are essentially a special case 1m = of the timed
m-one-repeatable fault-tolerant controllability property. Please refer
to Mulahuwaish1 for details. 1m =

Algorithm 3 shows how to verify timed fault-tolerant controllability
for G and S . TDES tG F∆ contains the excluded fault events but no
transitions except for a tick selfloop at the initial state, synchronizing
with tG F∆ will remove all the excluded fault transitions, but allow
tick transitions to occur without restriction. Checking that S is
controllable for the resulting behavior will have the effect of verifying
timed fault-tolerant controllability.

Algorithm 3 Verify timed fault-tolerant controllability

1:

2:

3: pass←vTCont

4: return pass

Algorithm 4 shows how to verify timed m-one-repeatable fault-
tolerant controllability for G and S . As tG F∆ removes any excluded
fault transitions, and each t1RF,iG allows at most one unique fault
event but that event can occur multiple times, checking that S is
controllable for the resulting behavior will have the effect of verifying
timed m-one-repeatable fault-tolerant controllability.

Algorithm 4 Verify timed m-one-repeatable fault-tolerant
controllability

1:

2: for

3:

4: end for

5:

6: pass ← vTCont
7: return pass

Algorithm complexity analysis

In this section, we provide a complexity analysis for the timed
fault-tolerant controllability algorithms. In the following subsections,
we assume that our system consists of a plant (),G , , , , o mY y Y= Σ δ
supervisor () , , , , o mX x X= Σ ξS , and fault and reset sets

() Ä, 1, . . . , , ,Fi Ti Fi mΣ Σ = Σ and FΩΣ .

In this paper, we will base our analysis on the complexity analysis
from Cassandras et al.,22 that states that the untimed controllability
algorithms have a complexity of ()| |O Y XΣ , where Σ is the size
of the system event set, Y is the size of the plant state set, and X is

the size of the supervisor state set. In the analysis that follows, t FY ∆

is the size of the state set for t FY ∆ (constructed by Algorithm 1).

Examining untimed and timed controllability algorithms, (see
Rudie15 and Alsuwaidan23) it’s easy to see they differ in the constant
number of operations they each perform per transition that leaves

σ1

σ1

tick
tick

tick

tick

σ2

σ2

σ3

σ3

0 1

2

3

tG F∆

,1 1mY Y←

(){ }1 1 0 0, , y yδ ← δ ∪ τ

{ }()1 1 ,1, , , , F o mY y Y∆Σ ∪ τ δ

{ }1 0Y y←

t1RF,iG

,1 1mY Y←

1 0δ ←

1j ←

() (){ }1 1 0 0, , , , ,j jy y y yδ ← δ ∪ τ τ

() (){ }1 1 0, , , , ,j j jy y y yδ ← δ ∪ σ σ

Fik ∑←

{ }1 0, , kY y y← …

1j j← +

{ }()1 1 ,1, , , ,F o miY y Y∑ ∪ τ δ

t F t FG G ()Fconstruct∆ ∆ ∆← − ∑

t F' || G ∆←G G

()',SG

t F t FG G ()Fconstruct∆ ∆ ∆← − ∑

1, ,i m= …

() ,Ficonstruct i∑← −t1RF,i t1RF,iG G

t F' G ∆← …t1RF,1 t1RF,mG G G G

()',SG

https://doi.org/10.15406/iratj.2024.10.00283

Timed fault-tolerant supervisory control 56
Copyright:

©2024 Mulahuwaish et al.

Citation: Mulahuwaish A, Alsuwaidan A, Leduc RJ. Timed fault-tolerant supervisory control. Int Rob Auto J. 2024;10(2):48‒61.
DOI: 10.15406/iratj.2024.10.00283

each reachable state of the closed-loop system. As such, timed
controllability also has complexity ()| |O Y XΣ .

Timed FT controllability algorithm
In Algorithm 3, we replace our plant DES by t FG' G || G ∆← . This

gives us a worst case state space of t FY Y ∆ for G' . Substituting
this into our base algorithm’s complexity for the size of our plant’s
state set gives ()t | | FO Y Y X∆Σ . As t 1FY ∆ = by Algorithm 1, it
follows that our complexity is ()| |O Y XΣ which is the same as our
base algorithm.

Timed one-repeatable FT controllability algorithm

The complexity of the timed one-repeatable FT controllability
algorithm can be obtained from the analysis of the timed m-one-
repeatable FT controllability algorithm by taking F FN = Σ and

1m = . It thus follows that verifying timed one-repeatable FT
controllability increases the complexity of verifying controllability by
a factor of 1FΣ + .
Timed m-one-repeatable FT controllability algorithm

For Algorithm 4, we replace our plant DES by

1 ,1 1 ,G G G G . . . Gt F t RF t RF m∆′ = . This gives us a worst case state

space of 1 ,1 1 , . . . t F t RF t RF mY Y Y Y∆ for 'G , where 1 ,Yt RF i is the

size of the state set for 1 ,t RF iG ()1, ,i m= … , which is constructed by
Algorithm 2. Substituting this into our base algorithm’s complexity
gives

()tÄF t1RF,1 t1RF,m . | . | .O Y Y Y Y XΣ .

We note that 1FY∆ = by Algorithm 1, and 1 ,Y 1 1, . . . ,)(t RF i Fi i m= Σ + =
by Algorithm 2. If we take FN as an upper bound of all FiΣ , we get

()()| | 1O NF m Y XΣ . It thus follows that verifying timed m-one-
repeatable FT controllability increases the complexity of verifying
controllability by a factor of (1)m

FN + .

Algorithm correctness

In this section, we introduce several propositions and theorems
that show that the algorithms introduced in Section 5 correctly verify
that a TFT consistent system satisfies the corresponding timed fault-
tolerant controllability properties from Section 4.

Timed fault-tolerant propositions

The propositions in this section will be used to support the timed
fault-tolerant controllability theorems in Section 6.2. Timed fault-
tolerant controllability definitions are essentially controllability
definitions with the added restriction that a string s is only tested if it is
satisfies the appropriate timed fault-tolerant property from Section 4.

The timed fault-tolerant controllability verification algorithms are
intended to replace the original plant with a new plant 'G , such that

'G is restricted to strings with the desired property. Propositions 1-2
essentially assert that strings belongs to the closed behaviour of 'G , if
and only ifs satisfies the appropriate timed fault-tolerant controllable
property from Section 4 (i.e. the string belongs to the desired scenario).

The first proposition asserts that strings belongs to the closed
behaviour of 'G , if and only ifs satisfies the needed pre-requisite for
the timed fault-tolerant controllable property.

Proposition 1 Let system with supervisor ()S , , , , o mX x X= Σ ξ
and plant ()G , , , , o mY y Y= Σ δ be TFT consistent, and let G' be
the plant constructed in Algorithm 3. Then:

()() () Fs L G s L s L G∆∀ ∈ ∉ ⇔ ∈ ′

Proof. See Appendix.

The next proposition asserts that string S belongs to the closed
behaviour of 'G , if and only if S satisfies the needed pre-requisite for
the timed m-one-repeatable fault-tolerant controllable property.

Proposition 2 Let system with supervisor ()S , , , , o mX x X= Σ η
and plant (), , , , o mG Y y Y= Σ δ be TFT consistent, and let 'G be the
plant constructed in Algorithm 4. Then:

 ()()() () ()1F RFms L G s L s L s L G∆∀ ∈ ∉ ∧ ∈ ⇔ ∈ ′

Proof. See Appendix.

Timed fault-tolerant controllable theorems

In this section we present theorems that show the timed fault-
tolerant controllable algorithms in Section 5 will return true if and only
if the timed fault-tolerant consistent system satisfies the corresponding
timed fault-tolerant controllability property. Due to space limitations,
we will not present results for the timed one-repeatable fault-tolerant
controllability and nonblocking properties as they can be handled as
a special case (1m =) of the timed m-one-repeatable fault-tolerant
properties. Please refer to Mulahuwaish3 for details.

Theorem 1 states that verifying that our system is timed fault-
tolerant controllable is equivalent to verifying that our supervisor is
controllable for the plant 'G constructed by Algorithm 3. We will
only give the proof for Theorem 2 as it is very similar, but more
complicated.

Theorem 1

Let system with supervisor ()S , , , , o mX x X= Σ ξ and plant
()G , , , , o mY y Y= Σ δ be TFT consistent, and let G' be the plant

constructed in Algorithm 3. Then S is timed fault-tolerant controllable
for G iff S is controllable for G' .

Proof. See Alsuwaidan.23

Theorem 2 states that verifying that our system is timed m-one-
repeatable fault-tolerant controllable is equivalent to verifying that our
supervisor is controllable for the plant G' constructed by Algorithm 4.

Theorem 2 Let system with supervisor ()S , , , , o mX x X= Σ ξ and
plant ()G , , , , o mY y Y= Σ δ be TFT consistent, and let G' be the
plant constructed in Algorithm 4. Then S is timed m-one repeatable
fault-tolerant controllable for G iff S is controllable for G' .

Proof. See Appendix.

Manufacturing example

This example is based on the small example from Mulahuwaish,2,3
which in turn was based on the system described in Leduc.32 The
testbed was designed to simulate a manufacturing workcell using
model train equipment, in particular problems of routing and collision.
We will discuss a single-loop version of the example, as shown in
Figure 2. This example consists of eight sensors and two trains (train
1, train 2). Train 1 starts between sensors 9 and 10, while train 2 starts
between sensors 15 and 16. Both trains can only traverse the tracks in
a counter-clockwise direction.

This example builds upon the illustrative example that we
introduced in Section 1.1, providing the remaining plant models for
the example, as well as the details of how we applied our timed fault-

https://doi.org/10.15406/iratj.2024.10.00283
https://medcraveonline.com/IRATJ/IRATJ-10-00283A.pdf
https://medcraveonline.com/IRATJ/IRATJ-10-00283A.pdf
https://medcraveonline.com/IRATJ/IRATJ-10-00283A.pdf

Timed fault-tolerant supervisory control 57
Copyright:

©2024 Mulahuwaish et al.

Citation: Mulahuwaish A, Alsuwaidan A, Leduc RJ. Timed fault-tolerant supervisory control. Int Rob Auto J. 2024;10(2):48‒61.
DOI: 10.15406/iratj.2024.10.00283

tolerant approach to the example. We recommend that you reread
Section 1.1 to refresh your memory of the details presented there, as
they will not be repeated below.

Plant models

The plant models, for the portion of the testbed we are currently
considering, consists of the following basic elements: sensors, trains
and the relationship between sensors and trains.

 Sensor Models

 In Section 1.1, we introduced the eight TDES plant models for our
eight sensors. We first presented the original sensor models (without
fault events added) in Figure 3. We then presented new models, for
sensors { }9,10,16J ∈ , with the added fault events. For this example,
we will use the original models for sensors { }11, ,15J ∈ … , and the
new models for sensors { }9,10,16J ∈ as we are assuming that only
these sensors have faults. This restriction is done to simplify the
example and make it easier to illustrate our approach.

We now need to define our fault and reset event sets for the example.
We set F 0F∆Σ = Σ =Ω as our example does not require any fault
events of this type. We also set 4m = , { }1 _ 9, _F t1F at t1F at10Σ = ,

{ }2 _F t1F at16Σ = , { }3 _ , _F t2F at9 t2F at10Σ = , { }4 . _F t2F at16Σ =
We group our fault events in this manner as sensors 9 and 10 are
both relevant to preventing a train from entering the track segment
delineated by sensors 11 and 13, while sensor 16 is not. Also, the
faults in detecting one train, are not relevant to the faults in detecting
the other train, for our example.

Finally, we define our corresponding reset event sets as follows:
{ }1 _T t1 at11Σ = , { }2 _T t1 at14Σ = , { }3 T t2_at11Σ = , and

{ }4 _T t2 at14Σ = . These are chosen as they represent the given
train reaching a section of track past the sensors associated with the
given fault set.

Train models

The train models are shown in Figure 9 for train K ()1,2K = . Train
K can only move when its enablement event en_trainK occurs, and
then it can move at most a single unit of distance (event umv_trainK),
before another en_trainK must occur. This allows a supervisor to
precisely control the movement of the train by enabling and disabling
event en_trainK as needed.

Figure 9 Train K ()1,2K = with tick events.

Relationship between sensors and trains models

Figure 10 shows the relationship between train K’s ()1,2K =
movement, and a sensor detecting the train. It captures the idea that
a train can reach at most one sensor during a unit movement, and no

sensors if it is disabled, also Figure 10 shows the replacement model,
one for each train, with fault events added. We now seen that our plant
model contains 14 DES in total.

Figure 10 Sensors and Train K ()1,2K = with fault and tick events.

Adding forcing

To extend Alsuwaidan’s example, we have added forcing for
events en_trainK ()1,2K = . However, this is not straightforward
to do in a modular way as these events are not always possible in
the plant. Also, multiple supervisors will need to enable and force
these events. If a supervisor tries to force the event when either it isn’t
possible in the plant or disabled by another supervisor, the result could
be uncontrollable.

To handle this problem, we have introduced two new controllable
events forceT1 and forceT2, shown in Figures 11 and 12. Now, the
collision protection supervisors in Section 7.2 will disable these
events instead of en_trainK events, to signal when the train is allowed
to move or not. We note that as these events are added as part of the
supervisor’s implementation, they are assumed to occur very quickly
after they are enabled.

Figure 11 Add forceT1 event.

Figure 12 Add forceT2 event.

We now need to add supervisors to force the en_trainK events to
occur right away, as long as they are eligible and not disabled. This
is accomplished by the doForceTK supervisors, shown in Figures 13
and 14. These supervisors handle the forcing by first waiting until
the en_trainK event is possible in the plant, and then waiting for
the forceTK event to occur. Once forceTK occurs, the tick event is
disabled until the en_trainK event has occurred, forcing the event. The

tick

!umv_trainK

tick

en_trainK

tick

tick

0
1

23

_�c����

_�c���c�

_�c���cn

_�c���cc

_�c���ce

_�c���c�

_�c���ck

_�c���c�

_�c�����

_�c����cn

_�c����c�

_���������c

����

����

��������c

����

����

����

_���������c

n �

c k

e

�������

����

��

�������

����

��

https://doi.org/10.15406/iratj.2024.10.00283

Timed fault-tolerant supervisory control 58
Copyright:

©2024 Mulahuwaish et al.

Citation: Mulahuwaish A, Alsuwaidan A, Leduc RJ. Timed fault-tolerant supervisory control. Int Rob Auto J. 2024;10(2):48‒61.
DOI: 10.15406/iratj.2024.10.00283

forceTK event is required to coordinate with the collision protection
supervisors so that doForceTk doesn’t try to force the en_trainK event
when it has been disabled, which would have caused the supervisor
to be uncontrollable.

Figure 13 Force_en train1 for train 1.

Figure 14 Force_en train2 for train 2.

Modular supervisors

After the plant models were developed, four supervisors were
designed to prevent collisions in the track sections with sensors 11-
13, 15-16, 12-14, and 9-10. The idea is to ensure that only one train
uses this track section at a time.

Below we present two versions of the collision protection
supervisors. The first version is based upon the original collision
protection supervisors from Leduc11 which were designed with the
assumption that the system did not contain faults. The second version
is a new fault-tolerant version with added redundancy.

Collision protection supervisors	 	

Figure 15 shows the fault-tolerant collision protection supervisor
(CPS-11-13FT) for the track section containing sensors 11 and 13.
The original version (CPS-11-13) is identical except that the t1_at9
and the t2_at9 transitions are not present. Once a train has reached
sensor 11, the other train is stopped at sensor 10 until the first train
reaches sensor 15, which indicates it has left the protected area. The
stopped train is then allowed to continue. Figures 17, and show similar
fault-tolerant supervisors for two of the remaining track sections.
Again, the original version is identical except that the t1_at9 and the
t2_at9 transitions are not present.

Figure 16, shows the final collision protection supervisor. It is
unchanged as it does not depend on the sensors with faults. We also

note that supervisors CPS-15-16 and CPS-9-10 have nonstandard
initial states in order to reflect the starting locations of the two trains.

It’s easy to see that the original supervisor CPS-11-13 will not be
fault-tolerant as it relies solely on sensor 10 to detect when a second
train arrives. If sensor 10 fails, the train continues and could collide
with the first train. Supervisors CPS-9-10 and CPS-12-14 will also
not be fault-tolerant because of sensor 10. A failure at sensor 10 could
cause supervisor CPS-9-10 to miss a train entering the protected zone,
and could cause supervisor CPS-12-14 to miss a train leaving the
protected zone.

Fault-tolerant collision protection supervisors

We next modified supervisor CPS-11-13 to make it more fault-
tolerant. The result is shown in Figure 15. We have added at states 1
and 4 a check for both sensor 9 or sensor 10. That way if sensor 10
fails but sensor 9 doesn’t, we can still stop the train at sensor 9 and
avoid the collision. We made similar changes to supervisors CPS-12-
14, and CPS-9-10, as shown in Figures 17, and 18.

Figure 15 CPS-11-13FT supervisor.

Figure 16 CPS15-16 supervisor.

������2

����

��������2

����

����

����

c���������2

��

�3�2 �5

��

��������4

����

����

������4

t���������4

����

����

�5�4�1

��

��

_������

_������

�������

�������

_������4

_������4

_�������

_�������

����

_�������

_�������

�������

����

_�������
_������

_������4

�������

�������

����_�������

�������

����

_�������

_������

_������4

�������

�������

����

_�������

4

�

�

�

�

�������

�������

����

c�������

c�������

�������

�������

c�������

c�������

c�������

c�������

����

c�������

c�������

�������

����

c�������

�������

�������

����

c�������

c�������

�������

����

c�������

�

�

�

�

�

https://doi.org/10.15406/iratj.2024.10.00283

Timed fault-tolerant supervisory control 59
Copyright:

©2024 Mulahuwaish et al.

Citation: Mulahuwaish A, Alsuwaidan A, Leduc RJ. Timed fault-tolerant supervisory control. Int Rob Auto J. 2024;10(2):48‒61.
DOI: 10.15406/iratj.2024.10.00283

Figure 17 CPS-12-14FT supervisor.

Figure 18 CPS-9-10FT supervisor.

Discussion of results
Using our software research tool, DESpot,32 we were able to

determine that the system is timed one-repeatable FT controllable, and
timed m-one-repeatable FT controllable. We also not that the system
failed the FT controllable and nonblocking properties as expected,
since they would allow the fault events to occur unrestricted. Table
1 shows the test results, system state sizes, and runtime for these
tests. Runtime data is from DESpot’s binary decision diagram-based
(BDD)25–30 algorithms as the timed m-one-repeatable fault-tolerant
statesize was too large for the automata-based algorithms.

Table 1 Example results

 Verification Time (seconds)

Property State Size Timed Cont. Nonblocking

Timed fault-tolerant 10,502,000 0 F 0 F

Timed one-repeatable
fault-tolerant 49,933,600 0 P 1 P

Timed m-one-
repeatable fault-
tolerant

271,118,000 0 P 1 P

We next examine the state sizes of each evaluated system, which
includes the plant components added as part of the verification process.
We first note that for our example, we have 4m = , 35FΣ = ,

2FN = , and a base-system state size of 10,502,000. From Section
5.3, we expect that (worst case) the one-repeatable FT and m-one-
repeatable FT algorithms would multiply our base-system state size
by factors of 1 36FΣ + = and 4(1) 3 81m

FN + = = , respectively.

Examining Table 1, we see that these two algorithms actually
contribute multiplying factors of 4.75, and 25.82, respectively. We see
immediately that the actual increase in complexity for this example
is much less than expected, in particular for the one-repeatable FT
algorithms.

Conclusions and future work
In this paper we investigated the problem of fault-tolerance (FT)

for timed discreteevent systems. We extended the existing fault-
tolerant supervisory control approach of Mulahuwaish1–4 to include
timing information. We introduced our setting and providing different
fault scenarios. We then provide three timed fault-tolerant definitions
to verify that the system will remain controllable in each scenario.

This approach is different from the typical fault-tolerant
methodology as the approach does not rely on detecting faults and
switching to a new supervisor; it requires a supervisor to work
correctly under normal and fault conditions. This is a passive approach
that relies upon inherent redundancy in the system being controlled.

Our approach provides an easy method for users to add fault
events to a system model and is based on user designed supervisors
and verification. As synthesis algorithms have higher complexity than
verification algorithms, our approach should be applicable to larger
systems than existing active fault-recovery methods that are synthesis
based. Also, modular supervisors are typically easier to understand
and implement than the results of synthesis.

Finally, our approach does not require expensive (in terms of
algorithm complexity) fault diagnosers to work. Diagnosers are,
however, required by existing methods to know when to switch to a
recovery supervisor. As a result, the response time of diagnosers is not
an issue for us. Our supervisors are designed to handle the original
and the faulted system. However, the tradeoff is that our approach
may result in an overly cautious supervisor.

We then present a set of algorithms to verify timed controllability for
each scenario. We then proved that the algorithms correctly evaluated

�������

�������

c�������

c�������

c������3

c������3

c������

c������

����

c�������

c�������

�������

����

c������3

c������

�������

�������

c������

����

c�������

c������3

c������

�������

����

c������3

c������

�������

�������

c������

����

c�������

c������3

c������

3

�

�

�

�

�������

�������

c������

����

c�������

c�������

�������

�������

c�������

c�������

c�������

c�������

����

c�������

c������

c�������

c������

�������

c������

����

c�������

�������

c������

����

c�������

�������

�������

c������

����

c�������

c�������

��

�

�

�

https://doi.org/10.15406/iratj.2024.10.00283

Timed fault-tolerant supervisory control 60
Copyright:

©2024 Mulahuwaish et al.

Citation: Mulahuwaish A, Alsuwaidan A, Leduc RJ. Timed fault-tolerant supervisory control. Int Rob Auto J. 2024;10(2):48‒61.
DOI: 10.15406/iratj.2024.10.00283

the timed fault-tolerant controllability properties that we introduced.
They can instantly take advantage of existing controllability and
nonblocking software, as well as scalability approaches such as
incremental verification and binary decision diagrams (BDD).

We then present a set of algorithms to verify the timed fault-
tolerant properties. As these algorithms involve adding new plant
components and then checking standard timed controllability, they
can instantly take advantage of existing controllability software, as
well as scalability approaches such as incremental verification and
binary decision diagrams (BDD).

For each algorithm, we provide a complexity analysis showing
that the TFT algorithms multiply the complexity of the standard
algorithms by a factor of (1), ()1FΣ + , and (1)m

FN + where m is

the number of fault sets, FΣ is the number of fault events, and FN

is an upper bound of all () 1, . . . , Fi i mΣ = . We then prove the
correctness of the algorithms.

We finish with a small manufacturing example that illustrates how
the theory can be applied.

For future work, it would be useful to extend a timed fault-tolerant
method to the sampled-data setting32 in order to address concurrency
and implementation issues. We would also like to extend the approach
to the hierarchical interface-based supervisory control (HISC).33–36
The information hiding and encapsulation properties of HISC should
allow us to scale our approach up to handle much larger systems.

Acknowledgments
None.

Conflicts of interest
Authors declare that there is no conflict of interest.

References
1.	 Mulahuwaish A. Fault-tolerant supervisory control. PhD. thesis,

Department of Computing and Software, McMaster University, 2019.

2.	 Mulahuwaish A, Leduc RJ. Fault-tolerant supervisory control with
permanent faults. Int J Control. 2020;96(4):823–839.

3.	 Mulahuwaish A, Radel S, Dierikx O, et al. Fault tolerant supervisory
control. IFAC-PapersOnLine. 2021;48(7):124–131.

4.	 Radel S, Mulahuwaish A, Leduc R. Fault tolerant controllability.
American control conference, Chicago: USA. 2015

5.	 Ramadge P, Wonham WM. Supervisory control of a class of discrete-
event processes. SIAM J Control Optim. 1987;25(1):206–230.

6.	 Wonham WM, Cai K. Supervisory Control of Discrete-Event Systems.
Springer; 2019.

7.	 Wonham, WM, Ramadge P. On the supremal controllable sublanguage
of given language. SIAM J Control Optim. 1987;25(3):637–659

8.	 Brandin B, Wonham W. The supervisory control of timed discrete-
event systems. in decision and control. In: Proceedings of the 31st IEEE
Conference on. 1992;4:3357–3362.

9.	 Brandin B, Wonham WM. Supervisory control of timed discrete-event
systems. IFAC-PapersOnLine. 1994;39(2):329–342.

10.	 Brandin BA. Real-time supervisory control of automated manufacturing
systems. Ph.D. thesis, Department of Electrical Engineering, University
of Toronto. 1993. Also appears as Systems Control Group technical
report # 9302, Department of Electrical Engineering, University of
Toronto.

11.	 Leduc R. PLC implementation of a DES supervisor for a manufacturing

testbed: an implementation perspective. Master’s thesis, Dept. of Elec
and Comp Eng, University of Toronto, Toronto, Ont; 1996.

12.	 Bourdon S, Lawford M, Wonham W. Robust nonblocking supervisory
control of discrete-event systems. IEEE Transactions on Automatic
Control. 2005;50(12):2015–2021.

13.	 Lin F. Robust and adaptive supervisory control of discrete event systems.
IEEE Trans. Automatic Control. 1993;38(12):1848–1852.

14.	 Saboori A, Zad SH. Robust nonblocking supervisory control of discrete-
event systems under partial observation. Systems & Control Letters.
2006;55(10):839–848.

15.	 Rudie K. Software for the control of discrete-event systems: A
complexity study. Master’s thesis, Dept. of Electrical and Computer
Engineering, University of Toronto, Toronto, Ont; 1988.

16.	 Sampath M. Sengupta R, Lafortune S, et al. Failure diagnosis using
discrete-event models. IEEE Trans Control System Technology.
1996;4(2):105–124.

17.	 Wen Q, Kumar R, Huang J, et al. A framework for fault-tolerant
control of discrete event systems. IEEE Trans on Automatic Control.
2008;53(8);1839–1849.

18.	 Paoli A, Sartini M, Lafortune S. Active fault tolerant control of discrete
event systems using online diagnostics. Automatica 2011;47(4):639–
649.

19.	 Park SJ, Lim JT. Fault-tolerant robust supervisor for discrete event
systems with model uncertainty and its application to a workcell. IEEE
Transactions on Robotics and Automation. 1999;15(2):386–391.

20.	 Allahham A, Alla H. Monitoring of timed discrete events systems with
interrupts. automation science and engineering. IEEE Transactions.
2010;7(1):146–150.

21.	 Moosaei M, Zad S. Modular fault recovery in timed discrete-event
systems: application to a manufacturing cell. In: Proceedings of 2005
IEEE Conference on Control Applications. 2005:928–933.

22.	 Cassandras C, Lafortune S. Introduction to discrete event systems. 2nd
edn. Springer. 2009.

23.	 Alsuwaidan A. Timed fault tolerant supervisory control. Master’s thesis;
Dept. of computing and software, McMaster University. 2016.

24.	 Brandin BA, Malik R, Malik P. Incremental verification and synthesis
of discrete-event systems guided by counter-examples. IEEE Trans. on
Control Systems Technology. 2004;12(3):387–401.

25.	 Bryant AE. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys. 1992;24:293–318.

26.	 Ma C. Nonblocking supervisory control of state tree structures. PhD.
thesis, Department of Electrical and Computer Engineering, University
of Toronto. 2004.

27.	 Song R, Ryan J Ledu C. Symbolic synthesis and verification of
hierarchical interface-based supervisory control. Master’s thesis, Dept.
of Comput. and Softw., McMaster University, Hamilton, Ont; 2006.

28.	 Vahidi A, Lennartson B, Fabian M. Efficient analysis of large discrete-
event systems with binary decision diagrams. In: Proc. of the 44th IEEE
Conf. Decision Contr. and and 2005 European Contr. Conf. 2005;2751–
2756.

29.	 Wang YB. Eng. Sampled-data supervisory control. Master’s thesis,
Dept. of Computing and Software, McMaster University, Hamilton,
Ont; 2009.

30.	 Zhang Z. Smart TCT: an efficient algorithm for supervisory control
design. Master’s thesis, Dept. of Electrical and Computer Engineering,
University of Toronto, Toronto, Ont; 2001.

31.	 Leduc RJ, Wang Y, Ahmed F. Sampled-data supervisory control.
Discrete Event Dynamic Systems. 2014;24(4):541–579.

32.	 DESpot: DESpot project. 2013.

https://doi.org/10.15406/iratj.2024.10.00283
https://www.cas.mcmaster.ca/~leduc/studTheses/AMulahuwaishPhdThesis2019.html
https://www.cas.mcmaster.ca/~leduc/studTheses/AMulahuwaishPhdThesis2019.html
https://www.tandfonline.com/doi/abs/10.1080/00207179.2021.2015626
https://www.tandfonline.com/doi/abs/10.1080/00207179.2021.2015626
https://www.sciencedirect.com/science/article/pii/S2405896315007223
https://www.sciencedirect.com/science/article/pii/S2405896315007223
https://ieeexplore.ieee.org/document/7170962
https://ieeexplore.ieee.org/document/7170962
https://epubs.siam.org/doi/10.1137/0325013
https://epubs.siam.org/doi/10.1137/0325013
https://books.google.co.in/books/about/Supervisory_Control_of_Discrete_Event_Sy.html?id=niBqDwAAQBAJ&redir_esc=y
https://books.google.co.in/books/about/Supervisory_Control_of_Discrete_Event_Sy.html?id=niBqDwAAQBAJ&redir_esc=y
https://epubs.siam.org/doi/10.1137/0325036
https://epubs.siam.org/doi/10.1137/0325036
https://ieeexplore.ieee.org/document/272327
https://ieeexplore.ieee.org/document/272327
https://ieeexplore.ieee.org/document/272327
https://www.sciencedirect.com/science/article/pii/S2405896321000549
https://www.sciencedirect.com/science/article/pii/S2405896321000549
https://www.cas.mcmaster.ca/~leduc/rleduc-masc.pdf
https://www.cas.mcmaster.ca/~leduc/rleduc-masc.pdf
https://www.cas.mcmaster.ca/~leduc/rleduc-masc.pdf
https://www.cas.mcmaster.ca/~lawford/papers/TAC05-III.pdf
https://www.cas.mcmaster.ca/~lawford/papers/TAC05-III.pdf
https://www.cas.mcmaster.ca/~lawford/papers/TAC05-III.pdf
https://ieeexplore.ieee.org/document/250564
https://ieeexplore.ieee.org/document/250564
https://www.sciencedirect.com/science/article/abs/pii/S0167691106000752
https://www.sciencedirect.com/science/article/abs/pii/S0167691106000752
https://www.sciencedirect.com/science/article/abs/pii/S0167691106000752
https://ieeexplore.ieee.org/document/486338
https://ieeexplore.ieee.org/document/486338
https://ieeexplore.ieee.org/document/486338
https://ieeexplore.ieee.org/document/4625224
https://ieeexplore.ieee.org/document/4625224
https://ieeexplore.ieee.org/document/4625224
https://www.sciencedirect.com/science/article/abs/pii/S0005109811000227
https://www.sciencedirect.com/science/article/abs/pii/S0005109811000227
https://www.sciencedirect.com/science/article/abs/pii/S0005109811000227
https://ieeexplore.ieee.org/document/760362
https://ieeexplore.ieee.org/document/760362
https://ieeexplore.ieee.org/document/760362
https://ieeexplore.ieee.org/document/4840414/
https://ieeexplore.ieee.org/document/4840414/
https://ieeexplore.ieee.org/document/4840414/
https://ieeexplore.ieee.org/document/1507248/
https://ieeexplore.ieee.org/document/1507248/
https://ieeexplore.ieee.org/document/1507248/
https://link.springer.com/book/10.1007/978-0-387-68612-7
https://link.springer.com/book/10.1007/978-0-387-68612-7
https://www.cas.mcmaster.ca/~leduc/studTheses/AmalAlsuwaidanMASc16.pdf
https://www.cas.mcmaster.ca/~leduc/studTheses/AmalAlsuwaidanMASc16.pdf
https://ieeexplore.ieee.org/document/1291409
https://ieeexplore.ieee.org/document/1291409
https://ieeexplore.ieee.org/document/1291409
https://www.cs.ubc.ca/~ajh/courses/cpsc513/bryant-bdd-acmcs92.pdf
https://www.cs.ubc.ca/~ajh/courses/cpsc513/bryant-bdd-acmcs92.pdf
https://tspace.library.utoronto.ca/handle/1807/119232
https://tspace.library.utoronto.ca/handle/1807/119232
https://tspace.library.utoronto.ca/handle/1807/119232
https://www.cas.mcmaster.ca/~leduc/SLwodes06.pdf
https://www.cas.mcmaster.ca/~leduc/SLwodes06.pdf
https://www.cas.mcmaster.ca/~leduc/SLwodes06.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=51581ce8d2163693371a2fe955659af0de1900da
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=51581ce8d2163693371a2fe955659af0de1900da
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=51581ce8d2163693371a2fe955659af0de1900da
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=51581ce8d2163693371a2fe955659af0de1900da
https://www.cas.mcmaster.ca/~leduc/studTheses/YuWangMAScThesis09.pdf
https://www.cas.mcmaster.ca/~leduc/studTheses/YuWangMAScThesis09.pdf
https://www.cas.mcmaster.ca/~leduc/studTheses/YuWangMAScThesis09.pdf
https://dl.acm.org/doi/abs/10.1007/s10626-013-0172-4
https://dl.acm.org/doi/abs/10.1007/s10626-013-0172-4
https://www.cas.mcmaster.ca/~%20leduc/DESpot.html

Timed fault-tolerant supervisory control 61
Copyright:

©2024 Mulahuwaish et al.

Citation: Mulahuwaish A, Alsuwaidan A, Leduc RJ. Timed fault-tolerant supervisory control. Int Rob Auto J. 2024;10(2):48‒61.
DOI: 10.15406/iratj.2024.10.00283

33.	 Leduc RJ. Hierarchical interface-based supervisory control with data
events. International Journal of Control. 2009;82(5):783–800.

34.	 Leduc RJ, Brandin BA, Lawford M, et al. Hierarchical interface-based
supervisory control, part I: Serial case. IEEE Trans. Automatic Control.
2005;50(9):1322–1335.

35.	 Leduc RJ, Lawford M, Dai P. Hierarchical interface-based supervisory
control of a flexible manufacturing system. IEEE Trans. on Control
Systems Technology. 2006;14(4):654–668.

36.	 Leduc RJ, Lawford M, Wonham WM. Hierarchical interface-based
supervisory control, part II: Parallel case. IEEE Trans. Automatic
Control. 2005;50(9):1336–1348.

37.	 Lin F, Wonham W. On observability of discete-event systems. Inform
Sci. 1988;44(3):173–198.

https://doi.org/10.15406/iratj.2024.10.00283
https://ieeexplore.ieee.org/document/4434206
https://ieeexplore.ieee.org/document/4434206
https://ieeexplore.ieee.org/document/1506939
https://ieeexplore.ieee.org/document/1506939
https://ieeexplore.ieee.org/document/1506939
https://ieeexplore.ieee.org/document/1506939
https://ieeexplore.ieee.org/document/1506939
https://ieeexplore.ieee.org/document/1506939
https://www.researchgate.net/profile/Mark-Lawford/publication/3032195_Hierarchical_interface-based_supervisory_control_-_Part_II_Parallel_case/links/00b7d538dcf6be0a5a000000/Hierarchical-interface-based-supervisory-control-Part-II-Parallel-case.pdf
https://www.researchgate.net/profile/Mark-Lawford/publication/3032195_Hierarchical_interface-based_supervisory_control_-_Part_II_Parallel_case/links/00b7d538dcf6be0a5a000000/Hierarchical-interface-based-supervisory-control-Part-II-Parallel-case.pdf
https://www.researchgate.net/profile/Mark-Lawford/publication/3032195_Hierarchical_interface-based_supervisory_control_-_Part_II_Parallel_case/links/00b7d538dcf6be0a5a000000/Hierarchical-interface-based-supervisory-control-Part-II-Parallel-case.pdf
https://www.sciencedirect.com/science/article/abs/pii/0020025588900011
https://www.sciencedirect.com/science/article/abs/pii/0020025588900011

	Title
	Abstract
	Keywords
	Introduction
	Illustrative example
	Example setting
	Adding intermittent faults

	Literature review
	Overview
	Preliminaries
	Strings and languages
	Timed DES
	TDES properties
	Fault-tolerant setting
	Fault events
	Timed fault-tolerant consistency
	Fault scenarios
	Timed fault-tolerant controllability definitions
	Timed fault-tolerant controllability
	Timed one-repeatable fault-tolerant controllability
	Timed m-one-repeatable fault-tolerant controllability

	Algorithms
	Algorithms to construct plants
	Verify timed fault-tolerant controllability
	Algorithm complexity analysis
	Algorithm complexity analysis
	Timed FT controllability algorithm
	Timed one-repeatable FT controllability algorithm
	Timed m-one-repeatable FT controllability algorithm
	Algorithm correctness
	Timed fault-tolerant propositions
	Timed fault-tolerant controllable theorems
	Manufacturing example
	Plant models
	 Sensor Models
	Train models
	Relationship between sensors and trains models
	Adding forcing
	Modular supervisors
	Collision protection supervisors
	Fault-tolerant collision protection supervisors

	Discussion of results
	Conclusions and future work
	Acknowledgments
	Conflicts of interest
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Table 1
	Appendix

