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Introduction
The Rubik’s Snake is a toy that was invented by Prof. Rubik in 

1981.1 It consists of right isosceles triangular prisms (what we are 
calling blocks) that, except for the first and last block, are connected to 
two other blocks at the centers of the square faces.

The Rubik’s Snake has been used as a tool for the study of protein 
folding2 and for the construction of reconfigurable modular robots.3–5 
More applications of robots can be found in.6,7 In previous papers that 
the first author collaborated with others, strategies have been given 
for the design of a Rubik’s Snake,8 and some mathematical problems 
concerning a Rubik’s Snake have been studied.9 General rotation 
angles are mentioned in8 and more theoretical work was presented 
in.10 On the other hand,9 has quite some theoretical work but is only 
concerned with integer multiple of 90 degree rotations. In Hou S, et 
al.,11 several theorems about palindromic, periodic and Möbius Rubik’s 
snakes were proved. In, Hou S, et al.,12 the design for general box 
shapes using a Rubik’s snake was presented with a counting formula 
derived.

Knot theory13 is an interesting research area that attracted a lot 
of mathematicians. It also has interesting applications in architectural 
design, for example, some work by Zaha.14 Knot classification tool 
is available.15 The Rubik’s Snake prime knots up to 6 crossings and 
composite knots up to 9 crossings have been studied in the past. The 
31 (trefoil) knot was studied in our previous paper16 and 41, 51 and 52 
studied in our previous work.17 The prime knots with 6 crossings 61, 
62 and 63 were studied in our recent work.18 The result for 41 was 
improved from 46 blocks to 44 blocked by using symmetry in our 
paper on composite knots up to 8 crossing19 and the result for 52 was 
improved from 56 blocks to 54 blocks by a non-local change in the 
same paper. The result for 51 knot was improved from 52  to 50 blocks 
by a non-local change and the result for 61 was improved from 64 to 
60 blocks using symmetry in our most recent work on composite knots 
with 9 crossings.20

In this paper, we study non-trivial torus knot designs using a Rubik’s 
Snake. A (p,q)-torus knot is obtained by looping a string through the 
hole of a torus p times (the meridian direction) with q revolutions 
(the longitude direction) before joining its ends, where p and q are 
coprime. We denote it as T (p, q). T (p, q) and T (q, p) are the same 
knot (equivalent). Our main idea is to reply on the theory developed 

in9 that a Rubik’s snake closed loop with integer multiple of 90 degree 
rotations can only have period 1,2,3 and 4. Therefore T (2, n), T (3, n) 
and T (4, n) have the potential to have an easy general formula to realize 
using a Rubik’s snake. The purpose of this paper is not to look for 
the shortest path. Rather, it is to provide some general construction 
formulas so that all torus knots T (2, n), T (3, n) and T (4, n) can be 
designed using a Rubik’s snake and some other torus knots can have 
an interesting periodic design as well. The organization is as follows. 
In Section 2, we will present the Rubik’s snake sequence formula for 
T (2, n) knots. In Section 3, it will be for T (3, n) and Section 4 for T 
(4, n). In Section 5, we made some difficult constructions for T (5, 6), 
T (5, 8) and T (6, 7). We conclude in Section 6.

T (2, n)

For torus knots T (2, n), n must be an odd number that is at least 3. 
In, Hou S, et al.,16 we found T (2, 3) (trefoil) knot with 34 blocks. In, 
Hou S, et al.,17 we found T (2, 5) knot (51) with 52 blocks and then it 
was improved to 50 blocks in.20

For T (2, 7), by a similar method, we found the following sequence 
with only 66 blocks: 

[0,0,0,3,1,0,1,1,0,1,2,1,0,1,1,0,2,1,0,0,3,0,0,1,2,0,0,3,0,3,3,0,2,3,0,
0,0,0,3,0,0,1,3,0,3,0,0,0,1,2,1,0,3,0,0,0,3,1,0,0,3,0,3,0,1,3]

For T (2, 9), it could be made period 3. We search for palindromic 
sequence with period 3 and found the shortest having such pattern 
with 84 blocks. For example [1, 0, 0, 3, 1, 0, 1, 0, 1, 0, 0, 3, 2, 0, 1, 0, 
2, 3, 0, 0, 1, 0, 1, 0, 1, 3, 0, 0] repeated three times.

For T (2, 2n + 1) with integer n at least 5, it is easy to 
construct a universal formula that always works. The sequence is 
[1,1,2,1,0,0,0,1,0,0,0,0,0, (−1)n+1, P, 0,0,0,0,0,0,0,1,3,0,0, Q] repeated 
twice where P is [0, 2, 0, 0] repeated n − 5 times (if zero times then we 
simply do not insert P) and Q is [1, 0, 1, 2] repeated 2n − 1 times. The 
length of the sequence (after repeated twice) is 24n + 2.

The above general results can be shown by induction. Once we 
have a working pattern, for example for T (2, 11), the next one (in this 
case T (2, 13)) is to make more twists inside and connect outside. 
The Q part (with two periods) serves as the twist part inside and the 
P part (with two periods) serves as the additional blocks to ensure 
connections outside. Each time n is increased by 1, both [(−1)n+1, P] 
and Q will add a two-unit shift, therefore preserving the closed loop.
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Abstract

A Rubik’s Snake is a toy that was invented over 40 years ago together with the more famous 
Rubik’s Cube. It can be twisted to many interesting shapes including knots. In this paper, 
we study Rubik’s Snake torus knot designs. The general solutions are given for all torus 
knots T(2,n), T(3,n) and  T(4,n). Some more challenging constructions are also provided.
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To demonstrate that the above general formula indeed works, figure 
1 shows the Rubik’s snake T (2, 13) knot using the general formula and 
figure 2 shows the line representation of it.

Figure 1 T(2,13).

Figure 2 line representation for T(2,13).

T (3, n)

For T (3, n) with n not a multiple of 3 (this is required for it to be 
a torus knot), the general formula is [1 repeated 3n-2 times, A, B 
repeated n-2 times, C]*3.   Where A = [3, 3, 1, 1, 3, 1, 1, 1], B = [1, 1, 
1, 3, 1, 1, 1], C = [1, 1, 1, 3, 1, 1, 3, 3].The overall length is (3n − 2 + 8 + 
7n −14 + 8) ∗ 3=30n.

Again it can be shown by induction. To demonstrate that the 
above general formula indeed works, Figure 3 shows the Rubik’s snake 
T (3, 8) knot using the general formula and figure 4 shows the line 
representation of it.

Figure 3 T(3,8).

Figure 4 line representation for T(3,8).

T (4, n)

For T (4, n) with n at least 3 and odd (this is required for it to be 
a torus knot), first consider T (4, 3).   That is 819 knot and we have 
the shortest with period 4 as [0, 0, 1, 1, 0, 1, 0, 0, 3, 0, 0, 1, 0, 1, 1, 0] 
repeated 4 times with only 64 blocks.

Then we have the general solution as follows with A = [0, 1, 1], B = 
[2, 0, 2, 0], reverse (B) = [0, 2, 0, 2]:

For n = 4k + 1 with positive integer k, [A repeated n-3 times, 
0,0,0,1,3,0,0, B repeated (n-5)/4 times, 0,0,1,0,0,reverse(B) repeated 
(n-5)/4 times,0,0,3,1,0,0]*4. The length is (3 ∗ (n − 3) + 7 + n − 5 + 5 + 
n − 5 + 6) ∗ 4 = 20n − 4.

For n = 4k + 3 with positive integer k, [A repeated n-3 
times, 0,0,0,2,1,0,0,0, B repeated (n-7)/4 times, 0,0,1,0,0, reverse(B) 
repeated (n-7)/4 times,0,0,0,1,2,0,0]*4. The length is (3 ∗ (n − 3) + 8 + 
n − 7 + 5 + n − 7 + 7) ∗  4 = 20n − 12.

Again they can be shown by induction. To demonstrate that the 
above general formula indeed works, Figure 5 Shows the Rubik’s 
snake T (4, 9) knot using the general formula and figure 6 shows the 
line representation of it.

Figure 5 T(4,9).

Figure 6 line representation for T(4,9).
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T (5, 6), T (5, 8) and T (6, 7)

In this section, we discuss some tougher constructions of 
complicated torus knots.

Our idea of the construction is as follows. These torus knots can be 
viewed as period 3 (the first and third) or period 4 (the second). We only 
use 0 or 1 in the snake sequence and we enforce a type II palindromic 
condition.11 These can significantly reduce the computational cost 
needed for an exhaustive search.

For T (5, 6), it can be regarded as period 3 since 6 is a multiple of 3 
(we could break the symmetry to make it period 3 but no longer period 
6 without changing the knot type). 

Note that a Rubik’s snake closed loop with integer multiple of 
90 degree rotations can only have period 1,2,3,4 but not 5 or 6. We 
could realize T (5, 6) using a Rubik’s snake with integer multiple of 
90 degree rotations with period 3 but not 6. The computational cost is 
affordable to exhaust period 3 palindromic sequences with 168 blocks 
having 0 and 1 only. We came up with the sequence below with 168 
blocks: 

[1,0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,1,0,1,1,1,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,
1,1,1,0,1,0,1,0,0,0,0,1,0,1,0,0,1,0,0,0]*3

By a local search, we could reduce to the following 
palindromic period 3 sequence with 138 blocks without changing 
the knot structure: 

[1,0,1,0,0,1,0,0,0,1,1,0,0,0,3,0,3,0,0,1,0,1,1,1,1,1,0,1,0,0,3,0, 
3,0,0,0,1,1,0,0,0,1,0,0,1,0]*3

Now a local improvement can reduce it to 132 blocks, still 
keeping   period   3   and   the   knot   structure but dropping the 
palindromic requirement: 

[0,0,1,0,0,0,1,1,0,0,0,3,0,3,0,0,1,0,1,1,1,1,1,0,1,0,0,3,0,3,0,0,0,1,1,0,
1,1,0,0,0,3,0,3]*3

Figure 7 shows the Rubik’s snake T (5, 6) knot and Fig ure 8 shows 
the line representation of it.

Figure 7 T(5,6).

Figure 8 line representation for T(5,6).

For T (5, 8), it can be regarded as period 4 since 8 is a multiple of 4. 
The computational cost is affordable to exhaust period 4 palindromic 
sequences with 0 and 1 only with 184 blocks. We came up with the 
sequence below with 184 blocks: [0,0,0,0,0,1,0,1,1,0,0,0,1,0,0,1,0,1,0
,1,0,0,1,1,1,0,0,1,0,1, 0,1,0,0,1,0,0,0,1,1,0,1,0,0,0,0]*4

Figure 9 shows the Rubik’s snake T (5, 8) knot and Figure 10 shows 
the line representation of it.

Figure 9 T(5,8).

Figure 10 line representation for T(5,8).

For T (6, 7), it can be regarded as period 3 since 6 is a multiple of 3. 
Because of the heavy burden of computational cost, we actually speed 
it up by enforcing the first few elements.

The motivation comes from some earlier experience   with   
torus   knots.      For   example,   this   is   one of the sequences for T 
(3, 5) (not the shortest for this knot) [1,0,0,0,0,0,1,0,0,1,0,0,0,1,0,
0,0,1,1,0,0,0,1,1,0,0,0,1, 0,0,0,1,1,0,0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,0,0,0
,0,0]*3

We use the first few elements [1,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0]
. This makes the computational power within reach to search for 
palindromic sequences with period 3 and rotations 0,1 only. We came 
up with the sequence below with 258 blocks that is T (6, 7): 

[1,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,1,0,1,0,0,1,
0,1,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,1,0,1,0,0,0,
0,1,0,0,0,1,0,0,1,0,0,0,0,0]*3

Figure 11 shows the Rubik’s snake T (6, 7) knot and Figure 12 shows 
the line representation of it that demonstrates the torus knot structure.

Figure 11 T(6,7). 
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Figure 12 line representation for T(6,7).

Conclusion
We constructed all the torus knots T (2, n), T (3, n) and T (4, n) 

using the Rubik’s snake. We also constructed three more difficult torus 
knots T (5, 6), T (5, 8) and T (6, 7). Since the crossing number of T (5, 
7) is (5 − 1) ∗ 7 = 28 and it is the one with lowest crossing number 
we did not construct, (the difficulty is a Rubik’s snake closed loop 
with integer multiple of 90 degree rotations cannot have period 5 
or 7, if we completely break the symmetry the computational cost 
is not affordable) this means we constructed all torus knots with 
crossing number less than 28 using a Rubik’s snake. The main idea 
of the construction is to try to use periodicity, palindromic feature and 
sometimes to limit the choice of rotations to simplify the search. Our 
intention is not to find the shortest path. Some sequences in this paper 
can be shortened without changing the knot.
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