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Abbreviations: PnP, perspective-n-point; P3P, perspective-
3-point; EPnP, efficient perspective-n-point; SLAM, simultaneous 
localization and mapping; VO, visual odometry; GPS, global 
positioning system; SURF, speeded up robust features; SIFT, scale-
invariant feature transform; EKF, extended kalman filter; RGB, red-
green-blue; HSV, hue- saturation-value; CNN, convolutional neural 
network

Introduction
Autonomous robots are becoming increasingly popular in various 

fields, such as manufacturing,1 agriculture,2 and healthcare,3 due to 
their ability to perform tasks without human intervention. One of the 
key challenges in developing autonomous robots is enabling them to 
navigate through complex and dynamic environments. Simultaneous 
Localization and Mapping (SLAM)4 is one such technique employed 
in autonomous robots which can be used in GPS denied environments.5 
describes the SLAM problem and the essential methods for solving 
the SLAM problem and summarizes key implementations and 
demonstrations of the method while6 discusses about the recent works 
in addressing some of the remaining issues in SLAM, including 
computation, feature representation, and data association.4 reviews 
the basic paradigms of SLAM which are EKF SLAM, Particle-filter 
based SLAM, and graph optimization along with V-SLAM and RGB 
SLAM.

Vision-based navigation is a very promising approach to the 
problem of a robot navigating through complex environments. It 
involves cameras and other vision sensors to perceive the environment 
and estimate the robot’s position and orientation relative to a map. 
SLAM using cameras is referred to as visual SLAM and it depends 
solely on visual information.7 includes a review on the different Visual 
SLAM algorithms developed between 2010 and 2016. There are 

different approaches in visual SLAM which includes feature-based, 
direct, and RGB- D camera-based approaches. These approaches can 
be based on monocular or stereo vision.

In8 and,9 the authors have presented a study on Visual odometry 
(VO), including the stages involved, as well as its benefits and uses. It 
explains the application of VO as a building block for Visual SLAM. 
The advantages of using visual sensors in SLAM algorithms and a 
review on different Visual SLAM systems are given in.10

The basic step in feature based visual SLAM or Visual odometry 
is feature detection. A number of algorithms are available for feature 
detection. The pros and cons of commonly used feature detection 
algorithms like SURF, SIFT are discussed in.11 S. A. K. Tareen12 shows 
the detailed comparison between the algorithms based on available 
data sets. The detected features can be used to estimate the position 
and orientation of the camera. This process can be accomplished 
by matching identical features in various images and using pose 
estimation algorithms to estimate the relative rotation and translation.

Pose estimation is a critical aspect of autonomous navigation 
for mobile robots. It enables robots to locate themselves in their 
surroundings and move efficiently without human intervention. These 
methods involve detecting features or unique points in real-time 
images taken by the visual sensors and using them to find the motion 
of the camera relative to the environment.

Epipolar Geometry13 and Perspective-n-Point (PnP)14 are the 
conventional methods used for camera pose estimation, while the 
advanced methods for camera pose estimation includes CNN and 
deep learning.15 Discusses about camera pose estimation using 
deep learning while16 discusses a convolutional neural network 
(CNN) based method. Due to their higher reliability in comparison 
to advanced methods, conventional approaches are more frequently 
employed.
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Abstract

Autonomous navigation is a research field that gives mobile robots the capacity to perform 
various tasks without human assistance. Autonomous navigation based on visual sensors 
can be used in GPS denied environments.

Vision-based navigation performs feature detection, matching, and pose estimation using 
camera images. This paper presents a new approach to autonomous navigation for mobile 
robots using a Color-based Image Segmentation and Centroid Detection algorithm instead 
of traditional feature detection algorithms. The algorithm intentionally matches features 
across images using known feature points and uses conventional techniques such as Epipolar 
Geometry and Perspective-N-Points algorithms for camera pose estimation.

The study includes camera calibration to estimate intrinsic parameters and their physical 
unit conversion ensuring accurate measurements. Experimental datasets are used to analyze 
the performance of the Epipolar geometry, Perspective-3-Point, and Efficient-Perspective-
n-Point based pose estimation algorithms. To enhance accuracy, the P3P algorithm is 
modified to consider combinations of image points for pose estimation. The paper concludes 
with a comparative analysis between the original P3P algorithm and the modified version, 
providing valuable insights into their respective performances. Overall, the paper aims to 
provide a comparison of different pose estimation algorithms used for visual navigation.

Keywords: pose estimation, visual navigation, camera calibration, perspective-n-point, 
efficient pnp, epipolar geometry
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This paper uniquely contributes to the field by:

a.	 This paper uniquely contributes to the field by providing a 
comprehensive analysis of three pose estimation algorithms 
along with a modified version of the P3P algorithm. To the best of 
the authors knowledge, these algorithms have not been compared 
together with experimental data in previous studies.

b.	 Development of a Color-based Segmentation and Centroid 
detection method for known feature point detection.

c.	 Conversion of camera parameters into real world units.

Thus, this work aims to evaluate the performance of pose 
estimation algorithms, Epipolar Geometry, P3P, and EPnP. The 
camera calibration process and conversion of camera parameters into 
real-world units will be performed to improve the accuracy of pose 
estimation. The development of P3P and EPnP algorithms will be 
undertaken to enhance the accuracy and speed of pose estimation. 
Special consideration is given to minimizing the size of the functions, 
taking into account the real-time implementation requirements of 
these algorithms. Furthermore, the proposed method will use color-
based image segmentation and centroid detection to identify known 
feature points in the experimental data.

The evaluation of the proposed method will be performed based 
on experimental data, and the performance of the three algorithms 
will be compared. The results obtained from this work will help in 
selecting the appropriate algorithm for pose estimation based on the 
specific requirements of the navigation task.

Feature detection based on color based segmentation 
and centroid detection

Features or key points are localized regions such as edges and 
corners within an image which provides interesting information 
about its content thus differentiating that part from the others. They 
are repeatedly detected in images captured from various viewpoints 
of an object, to provide a relation between these images. The features 
in an image are detected and matched across different images to 
estimate the position and orientation of the robot in autonomous 
robots. To do this, commonly employed algorithms such as SURF 
and SIFT are utilized where the feature points are randomly 
selected and matched. These feature points are not known prior 
to the process.17 Presents a comparison of these algorithms based on 
different scenarios, outlining the results obtained in each case. This 
paper employs a distinctive approach that involves utilizing known 
feature points for feature detection. The need for using known feature 
points is to remove the difficulties related with physically determining 
the positions of unknown feature points. The use of known feature 
points facilitates a straightforward physical analysis of their relative 
positions, making them easily comparable. The features to be detected 
are given in different colors. The algorithm is expected to identify and 
segment the images based on their respective colors and determine 
the corresponding centroids. The steps involved in the algorithm are 
shown in Figure 1.

RGB (Red, Green, Blue) and HSV (Hue, Saturation and Value) 
are color spaces. As most digital color pickers are based on HSV 
scale which facilitates more accurate color separation than RGB, the 
conversion from RGB scale to HSV is employed. Hue refers to basic 
colors of the rainbow, Saturation refers to the intensity of the color 
and Value refers to the lightness or darkness of a particular color. RGB 
values will be within the range (0-255) while HSV will be between (0-
1). To convert RGB values to HSV, the steps given in18 are followed.

Figure 1 Color based image segmentation and centroid detection algorithm.

The color thresholds are set based on the converted values and 
subsequently the image is masked. Masking is a filtering process 
wherein the filter mask traverses an image and at each point the 
filter response is calculated using a predefined relationship. Based on 
the set thresholds, the regions in the image falling outside a specified 
range is assigned a value of zero. A binary image is thus obtained, 
and it undergoes further refinement using area opening morphology. 
Area opening morphology is employed as a filter to eliminate the 
components with an area smaller than a designated threshold. This 
step is crucial for preventing inaccuracies in centroid detection by 
excluding objects of negligible size. Subsequently, blob detection is 
carried out through connected components labelling, wherein pixels 
belonging to the same connected component or object are grouped 
together. This process allows for the identification of blobs and 
their associated properties. Based on the properties of the identified 
blobs, the centroid is determined. The centroid thus detected in both 
the reference image and the ith   image is matched. Centroids are 
detected individually for circles of each color and are then matched 
together. This methodology ensures precise determination of centroids 
thus increasing the accuracy of further procedures. 

Camera calibration

Camera calibration should be performed prior to the camera 
pose estimation. Camera calibration is performed to determine the 
relationship between the image’s 3D real points and corresponding 
2D projections.19 Checker board pattern images are commonly used 
as the input for camera calibration. A minimum of two images will be 
needed. The dimensions of the checkerboard patterns and the image 
are known.

The estimation of the intrinsic parameters and the distortion 
parameters is called camera calibration and these are estimated 
using the closed form solution described in.20 Consider a 2D point 

[ ]Tm = u,v  and a 3D point TM = X,[ ,Z]Y . Let the augmented 

vectors be represented as Tm = u,[ v,1]  and ,[ ]M , ,1 TX Y Z= . For a 
pinhole camera, the relationship between a 3D point M and its image 
projection m can be given as,

= [R T] 0 [R T]M
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f u
m K M f v HMs
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                          (1)

The homography H can be denoted as [ ]1 2 3H = h  h  h .Therefore,

[ ]1 2 3 1 2      [ T]h h h K r r= λ 	                                              (2)
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•	 s - Arbitrary scale factor.

•	 R and T - Extrinsic parameters representing rotation and 
translation.

•	 K - Camera intrinsic matrix

•	 λ - Arbitrary scalar

Based on the knowledge that 1 2r r  are orthonormal, the two 
constraints on the intrinsic parameters are,

T 1
1 2 0Th K K h− − =
T 1 1
1 1 2

T T Th K K h h K K h− − − −=                                                                   (3)

As H has eight degrees of freedom and there are six extrinsic 
parameters (three for rotation and three for translation), there will be 
two constraints on the intrinsic parameters. Here K−TK−1 represents the 
image of the absolute conic. Let B be a symmetric matrix defined by a 
6D vector b = [B11, B12, B22, B13, B23, B33].
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The camera intrinsic parameters can be calculated as,
2
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2
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K matrix can be written from the above equation. It can be further 
refined using maximum likelihood estimation. The camera intrinsic 
parameters derived using the process of camera calibration are derived 
in pixel units, which means they represent measurements in terms 
of the camera’s imaging sensor. In order to use these intrinsic 
parameters for pose estimation or other applications, they need to 
be converted into world units. This conversion is necessary to relate 
the measurements to real-world values that can be used for further 
analysis or comparison. If the intrinsic parameters are expressed in 
pixel units, the physical size of an object in the image cannot be 
determined unless the pixel size is known. By converting the 
intrinsic parameters to world units, such as millimeters or inches, 
it becomes possible to relate measurements in the image to physical 
measurements in the real world. Therefore, to use camera calibration 
parameters for pose estimation, it is necessary to convert them from 
pixel units to world units. The focal length expressed in pixels are 
converted to world units and then are compared to the true value in 
this paper to ensure that the camera is correctly calibrated.

Pose estimation

Pose estimation is a process of tracking the location of features 
for the given objects in a series of images. Conventional methods for 
pose estimation include Epipolar Geometry and Perspective-NPoint 
method. Before carrying out an extensive comparison of various pose 
estimation algorithms, a camera pose estimation approach based on 
epipolar geometry, utilizing images captured by a mobile camera was 
conducted and are presented in17 The results of this method were then 
contrasted with the true values.

Epipolar Geometry

Epipolar geometry is employed for 2D image point-based camera 
motion estimation. Using epipolar geometry, it is possible to estimate 
the camera motion from monocular images with available 2D 
point sets. Basic ideas of this method were already outlined in17 with 
reference to.20 A 3x3 matrix (R) representing relative orientation and 
a 1x3 matrix (T) representing the camera location together gives the 
camera pose. Epipolar geometry enables the estimation of camera 
motion between two frames by utilizing matched points in two images.

PnP

Perspective-N-Point (PnP) method can also be used for Pose 
estimation. It requires the world points and its corresponding image 
points along with the camera parameters to be known to find out the 
relative rotation and translation.

Triangulation is the process of reconstructing a 3D point using its 
projections onto two or more images. This process is required when 
using monocular camera images as inputs for pose estimation. The 
3D points in case of monocular vision will not be available, thus 
triangulation can be performed to determine them. The methods used 
for triangulation are mid-point method, and using essential matrix.

Essential matrix can be used along with image projections on 
two or more images to find the 3D points. Let (x1, x2, x3) be the 3D 
point coordinates and (y1, y2), (y’1, y’2) be the corresponding image 
coordinates. The coordinate x3 can be written as,21

1 1 3
3

1 1 3

( ' ).
( ' ).
r y r Tx
r y r y
−

=
−

                                                                            (6)

and the other two coordinates can thus be determined using,
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3
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	                                                             (7)

where, ri corresponds to the ith row of the rotation matrix, while T 
represents the translation between the images.

P3P

Perspective-3-Point algorithm is the basic problem of PnP where 
three world points and three image points are only required to find the 
camera pose. It yields up to four real, geometrically feasible solutions. 
The parameters are calculated with respect to the three match pairs 
selected using the following equations. The idea behind the P3P 
algorithm is taken from.21

In,21 the first three points are randomly chosen as the image points 
required for finding the pose using the P3P algorithm. But this paper 
uses a different approach. Different combinations of image points 
are chosen, and each of their pose is estimated. The combination of 
image points resulting in less error is then used in P3P algorithm 
to estimate pose.22 discusses an approach for estimating the pose of 
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an object using the Perspective-Three- Point (P3P) algorithm. As 
mentioned, the P3P algorithm requires the selection of three image 
points from the object to determine its pose. In this paper, the authors 
propose a novel method that differs from the method used in,22 of 
using only the first three image points for the P3P algorithm. This 
traditional approach can lead to inaccuracies in pose estimation when 
the first set of image points does not adequately represent the object’s 
features required for feature matching.

In this approach, the authors consider all possible combinations of 
three image points from the object and estimate the pose of the object 
using each combination. This process results in several estimates of 
the object’s pose, each corresponding to a different combination of 
image points.

The authors then analyze the estimation error associated with each 
pose estimate and choose the combination of image points that results 
in the lowest error. This combination is then used in the P3P algorithm 
to obtain the final estimate of the object’s pose.

By considering multiple combinations of image points and 
choosing the one with the lowest error, the proposed approach is able 
to improve the accuracy of the pose estimation process. This can be 
particularly useful in situations where the object is not easily visible, 
or where the image points are noisy or uncertain. The approach also 
provides a degree of robustness, as it is less sensitive to errors or 
outliers in the image points.

The combination equation, or binomial coefficient formula, 
is a mathematical tool used to calculate the number of possible 
combinations of k elements that can be selected from a set of n 
elements as given in equation (8).23

!
!( )!

n
k

nC
k n k

=
−                                                                               

(8)

where n represents the total number of elements in the set and k 
represents the number of elements to be selected.

In the context of the paper’s proposed approach, the authors utilize 
the combination equation to generate all possible combinations of 
image points for estimating the pose of an object. This allows the 
algorithm to consider various sets of image points and select the 
one that results in the most accurate pose estimate. This approach 
can improve the accuracy of pose estimation, particularly when the 
first set of image points does not sufficiently represent the object’s 
features required for feature matching. Additionally, using multiple 
combinations of image points can make the algorithm more resilient to 
noise or errors in the image points.

EPnP

EPnP method is said to be more efficient than P3P, as P3P is the 
basic case and considers only three match pairs. EPnP solves the 
problem of PnP using n 	
 four match pairs. In EPnP, the world points are expressed as a 
weighted sum of the control points. The algorithm employed in this 
paper for EPnP problem is solely based on the.24

Results

Calibration of mobile camera

Camera calibration is the first step in determining camera pose. 
As previously mentioned, the checkerboard images captured with the 
mobile camera served as inputs for the camera calibration process as 
shown in Figure 2.

Figure 2 Checkerboard images.

For the analysis of Epipolar geometry-based pose estimation 
algorithm, Nokia 6.1 plus mobile was used. Camera calibration is 
performed to compute the camera intrinsic parameters which includes 
focal length, principal points of the camera. The specifications of the 
camera used are,

•	 Camera sensor model- Samsung S5K3P9SX

•	 Physical sensor size- 4.7 x 3.5 mm

•	 Focal length- 4mm The image details are,

•	 Image dimension- 864 x 1152 pixels

•	 Square size- 2.4cm (Squares in the checkerboard pattern image)

•	 Mean Re projection error- 0.13 pixels

•	 Intrinsic parameters
If the pixel pattern of camera is perfectly square, then x yf = f = f

. But when the pixels are a bit rectangular (mostly in practical cases), 
xf differs from yf . Here, x yf = (f ,f ), 	

1006.0855 0 570.9394
0 1077.4764 433.5705
0 0 1

K
 
 =  
  

K is the intrinsic matrix formed using the intrinsic parameters 
computed using camera calibration. It will be constant for a camera. It 
can be used to determine the camera pose using previously discussed 
algorithms.

·	 Distortion parameters are determined by camera calibration using
2 2

1 22 4 6
1 2 3 2 2

2 1

2 ( 2
(1 )

2 ( 2
c d d d d

c d d d d

x x p x y p r x
k r k r k r

y y p x y p r y

 + +   
= + + + +     

+ +      
             (9)

where, k1, k2, k3 represents the radial distortion parameters. p1, 
p2 represents the tangential distortion parameters.

Ø	 k1=0.2478, k2=-0.3610, k3=0

Ø	 p1= p2=0

·	 As the axes x and y are exactly perpendicular to each other, the 
skew value of the intrinsic matrix is zero. Equation (10) converts 
the focal length from pixels to mm and compare it with the value 
in the manual provided for the camera sensor (ie, f = 4mm),

width

width

( pixel)(sensor (mm))
image (pixels)mm

ff =                                               (10)  

x yf = 4.0755mm,f = 4.3959mm
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Calibration of the turtlebot:

The images of the checker board pattern taken with the Raspberry 
pi camera module mounted on a turtlebot were used as inputs for 
camera calibration. The images are shown in Figure 3. The pose 
estimation algorithms Epipolar Geometry, P3P and EPnP are analysed 
using the images collected by the turtlebot. The details of the camera 
used are,

•	 Camera sensor - Raspberry pi cam module V2.1

•	 Physical sensor size - 3.68 x 2.76 mm

•	 Focal length - 3.04 mm

Figure 3 Checkerboard images for camera calibration of the turtlebot.

The image details are:

•	 Image dimension - 410 x 308 pixels

•	 Square size - 1.5cm (Squares in the checkerboard pattern image)

•	 Mean re-projection error - 0.08 pixels

369.8489 0 241.5459
0 365.8828 117.7330
0 0 1

K
 
 =  
  

Radial distortion parameters:

k1 = 6.8343, k2 = -241.9467, k3 = 0 

•	 Skew, γ = 0

•	 Tangential distortion=0, p1 = p2=0

The equation (10) converts the focal length from pixels to mm 
and compare it with the value in the manual provided for the camera 
sensor (ie, f = 4mm), Substituting values gives,

•	  x yf  3.3142 mm,  f 3.2840 mm = =

Thus, the calculated focal length of the mobile camera and the 
turtlebot camera aligns closely with the provided manual value, 
underscoring the significance of conducting camera calibration 
in real-world units. This observation enhances the robustness and 
accuracy of the calibration process.

Camera pose estimation using experimental data

To generate experimental data, the Turtlebot3 Waffle Pi robot, 
depicted in Figure 4, was programmed to execute forward, backward, 
and lateral movements for a duration of 1 second each. During these 
maneuvers, the robot captured images of a predefined pattern. The 
Turtlebot3 Waffle Pi robot operates on Robot Operating System 
(ROS). ROS is an open-source middleware framework designed to 
facilitate the development of software for robots to help in building 
and controlling robots. It is widely used in research and industry for 
developing robotic applications.

Figure 4 Turtlebot used for the experiment.

The sensors mounted on the robot are Raspberry Pi camera, LIDAR 
360°LDS-01, 3 axis gyroscope, accelerometer, and magnetometer. 
The Raspberry pi camera module mounted on top of the robot is used 
to collect the images. The robot underwent controlled movements, 
including forward and backward motions at a velocity of 0.1m/s 
for 1-second intervals, as well as left and right spins at a velocity of 
0.2m/s for 1-second durations. The experimental dataset, comprising 
370 images, is illustrated in Figure 5, with the algorithm focusing on 
the analysis of the initial 305 images where the pattern remains fully 
visible.

Figure 5 Images from the dataset.

The pattern in the images consists of eight circles of varying colors. 
Employing the algorithm described in Section 2, centroids for each 
circle were detected. Figure 6 visualizes the 3D spatial relationship 
between the camera’s position and the identified feature points in the 
images. These 3D point cloud was obtained by applying triangulation 
on the available 2D points from the images as described above.

Figure 6 Point clouds and camera position in 3D space.
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In each image, eight feature points were identified and 
subsequently compared with the reference image (Image 1) to get the 
relative rotation and translation between the reference image and the 
ith image. Each of the aforementioned algorithms was employed to get 
the camera position and orientation. The detailed results are presented 
in the subsequent tables.

The experimental dataset utilized in this study was intentionally 
crafted with a focus on addressing docking applications where LED 
markers are used for pose estimation,m25 although it is important to 
note that the algorithms employed are not restricted solely to this 
specific application.

Due to the movement of the turtlebot, there is no observed rotation 
about the x and y axes. Therefore, the roll and pitch angles across the 
sequence of images are ideally zero. However, the turtlebot exhibits 
rotation about the z-axis during leftward and rightward turns from 
the center, as well as when returning to the center. The corresponding 
variations in the yaw angle are detailed in Table 1. These values are 
compared with the actual orientation of the robot, measured using the 
sensors mounted on the robot.
Table 1 Estimated values for each algorithm

Algorithm Rightmost Yaw 
angle (deg)

Leftmost 
Yaw angle 
(deg)

Deviation in 
Roll and Pitch 
angle (deg)

True Value -19.65 21.77 0
Epipolar 
Geometry -16.4282 27.7138 5

Original P3P -23.9705 41.6381 80
Modified P3P -23.5031 31.4639 40
EPnP -25.1431 39.6134 20

It can be seen that the modified P3P algorithm is definitely more 
accurate than the original P3P algorithm, while EPnP yields reduced 
errors in terms of roll and pitch angle values. Table 2 provides the 
computational time for each algorithm. As shown in the table, the 
algorithm for colour segmentation and centroid detection requires 
relatively more time since it has to individually segment each 
colour and detect its centroid. EPnP emerges as the fastest among the 
considered algorithms.
Table 2 Computational time for each algorithm in seconds

Total Execution 41.4563
Color segmentation and centroid detection 29.4395
Epipolar Geometry 0.003602
Original P3P 0.05168
Modified P3P 0.087321
EPnP 0.000491

Thus, in terms of error and time complexity, EPnP algorithm is 
showing better performance than P3P. In comparison to P3P, EPnP 
exhibits a lesser deviation in error as shown in Figure 7.

Figure 7 P3P versus EPnP.

Error calculations for both EPnP and P3P, in relation to Epipolar 
Geometry, were conducted. Deviations in the roll, pitch, and yaw 
angle values from the true values can be attributed to incorrect 
feature matching or errors in centroid detection. This can be improved 
by using a different pattern or a colour that is less likely to cause 
disturbances.

Conclusion
This paper undertakes a thorough exploration of three prominent 

pose estimation algorithms- P3P, EPnP, and Epipolar geometry with 
a specific focus on their performance assessment. The developed 
color-based segmentation and centroid detection algorithm for feature 
detection, along with the camera calibration process, contributes 
to accurate pose estimation. The comparison of the modified P3P 
algorithm and the EPnP algorithm reveals that the latter demonstrates 
superior accuracy and robustness in real-world experiments, 
particularly when utilizing color-based feature detection.

The significance of this work extends to its potential for Vision-
based Simultaneous Localization and Mapping (SLAM) and machine 
learning application. The in-depth investigation presented in this paper 
not only provides a valuable reference for researchers and practitioners 
in the field of computer vision but also highlights crucial opportunities 
for refining pose estimation techniques. Future research directions 
could involve exploring additional feature detection enhancements 
to reduce drifts, replicating the methodology in OpenCV, expanding 
the algorithm to optimize performance under specific environmental 
conditions, and exploring real-time implementations to broaden its 
practical applicability in dynamic scenarios.
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