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Introduction
The development of an automated closed-loop insulin delivery 

system, also known as an artificial pancreas, has been a major focus 
of diabetes research in recent years. The goal of an artificial pancreas 
is to provide a fully automated system that can mimic the activity of 
a normal pancreas and maintain physiological blood glucose levels 
for insulin-dependent diabetic patients. The system typically consists 
of three main components: a continuous glucose monitoring (CGM) 
sensor, an insulin pump, and a control algorithm that regulates the 
pump based on the CGM readings. The CGM sensor continuously 
measures the glucose levels in the patient’s interstitial fluid and sends 
the readings to the control algorithm. The control algorithm then 
calculates the amount of insulin needed to maintain normoglycemia 
based on the current glucose levels and other factors such as the 
patient’s weight and insulin sensitivity. The insulin pump then 
delivers the correct amount of insulin to the patient subcutaneously. 
The development of an artificial pancreas has the potential to 
dramatically improve the quality of life for insulin-dependent diabetic 
patients by reducing the need for frequent finger-stick blood glucose 
measurements and subcutaneous insulin injections. It could also 
reduce the risk of hypoglycemic and hyperglycemic events, which can 
have serious health consequences for diabetic patients. Several clinical 
trials have been conducted to evaluate the safety and effectiveness 
of artificial pancreas systems, with promising results. For example, a 
study published in The Lancet in 2019 evaluated a closed-loop insulin 
delivery system in 235 adults with type 2 diabetes and found that the 
system was effective in improving glucose control and reducing the 
risk of hypoglycemia compared to a standard insulin delivery system. 
While there is still work to be done before artificial pancreas systems 
can be widely adopted, the development of these systems represents a 
significant step forward in diabetes management and has the potential 

to revolutionize the treatment of insulin-dependent diabetic patients. 
Diabetes is a health condition characterized by high levels of glucose 
in the blood, caused by either insufficient production of insulin or 
the body’s inability to use it effectively. The disease can be caused 
by the immune system’s destruction of beta cells in the pancreas 
that produce insulin, leading to a deficiency of the hormone, or by 
abnormalities that result in insulin resistance.1,2 People with diabetes 
are at a heightened risk of developing long-term complications that 
can negatively impact their eyes, kidneys, nerves, heart, blood vessels, 
and limbs.3 The primary challenge in the treatment of diabetes is to 
maintain normal blood glucose levels, which necessitates a balance 
of insulin delivery and glucose monitoring. Conventional insulin 
therapy involves regular subcutaneous insulin injections, but it has 
drawbacks such as imprecise insulin dosage adjustments and the risk 
of hypoglycemia. To address these shortcomings, researchers have 
been developing artificial pancreas systems that can deliver insulin 
automatically in response to glucose fluctuations.4,5 Fuzzy logic 
controllers (FLCs) have been proposed as a viable solution to regulate 
blood glucose levels in artificial pancreas systems. FLCs excel in 
modeling complex and nonlinear systems such as the glucose-insulin 
system since they can handle uncertain and imprecise data. Fuzzy 
logic is a type of mathematical logic that allows for reasoning with 
uncertain or imprecise information. In contrast to classical (Boolean) 
logic, which relies on binary true/false values, fuzzy logic allows for 
variables to take on values between 0 and 1, representing degrees of 
truth or membership in a set. For example, instead of categorizing 
glucose levels as “high” or “low,” fuzzy logic can represent glucose 
levels as “moderately high” or “slightly low,” which can better capture 
the complexity of physiological systems. In the context of closed-loop 
insulin dosing, a fuzzy logic controller uses a set of rules to determine 
the appropriate insulin infusion rate based on input variables such 
as glucose levels and insulin doses. The rules are typically based on 
expert knowledge or clinical guidelines, and the controller can learn 
and adapt to individual patient responses over time. One advantage 
of fuzzy logic controllers is their ability to handle uncertainty and 
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Abstract

The aim of this paper is to develop an artificial pancreas that can automate the process 
of monitoring blood glucose levels and administering insulin to diabetic patients. The 
device incorporates a fuzzy controller that is optimized through a genetic algorithm and 
designed using MATLAB. The system comprises three key components: a continuous 
glucose monitoring (CGM) system, an insulin pump, and the fuzzy controller. The CGM 
measures blood glucose levels in real-time, and the insulin pump administers insulin doses 
to maintain blood glucose levels within a specific range. The fuzzy controller adjusts the 
insulin delivery rate based on the patient’s blood glucose levels and their target range. To 
enhance the system’s performance, a genetic algorithm is used to fine-tune the parameters 
of the fuzzy controller, seeking the optimal set of parameters that minimize the difference 
between the patient’s blood glucose levels and the desired target range. The system is 
implemented in MATLAB, and simulation results indicate its effectiveness in maintaining 
blood glucose levels within the desired target range, reducing the risk of hypoglycemia 
and hyperglycemia. In summary, the proposed artificial pancreas system provides an 
effective automated solution for monitoring blood glucose levels and administering insulin 
to diabetic patients, with the fuzzy controller and genetic algorithm optimization enhancing 
the system’s performance.
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variability in physiological systems. For example, they can account for 
individual differences in insulin sensitivity or the effects of stress or 
illness on glucose levels. Additionally, fuzzy logic controllers can be 
personalized to individual patients by adjusting the rules or parameters 
of the controller to match the patient’s specific needs and preferences. 
There have been several studies evaluating the use of fuzzy logic 
controllers for closed-loop insulin dosing, with generally positive 
results. For example, a study published in Diabetes Technology & 
Therapeutics in 2017 evaluated a fuzzy logic controller in 20 patients 
with type 1 diabetes and found that it was effective in maintaining 
glucose levels within a target range. Another study published in 
the Journal of Diabetes Science and Technology in 2020 compared 
a fuzzy logic controller to a model-based controller and found that 
both controllers were effective in maintaining glucose levels, but the 
fuzzy logic controller had a lower risk of hypoglycemia. While fuzzy 
logic controllers show promise for closed-loop insulin dosing, further 
research is needed to fully evaluate their effectiveness and safety in 
a clinical setting. Additionally, the development of more advanced 
artificial intelligence and machine learning techniques may offer 
even more sophisticated approaches to closed-loop insulin dosing 
in the future. Genetic algorithms (GAs) have also been employed to 
optimize the FLC parameters, leading to improved performance.6 The 
proposed artificial pancreas system includes a continuous glucose 
monitoring system (CGM) for glucose level measurement, an insulin 
pump for insulin delivery, and a fuzzy controller-based genetic 
algorithm for insulin dosage calculation based on glucose levels. This 
system has the potential to automate insulin administration, leading 
to better management of blood glucose levels and a reduced risk of 
complications associated with diabetes.7,8

 Artificial pancreas system 

Diabetes mellitus is a chronic disease that can be managed with 
medication and lifestyle changes. Keeping glucose levels under 
control is essential for preventing or limiting complications. Insulin 
is a powerful treatment for type 1 diabetes, as it helps to regulate and 
maintain normal blood glucose levels. The hormone insulin, which 
is produced by the pancreas, helps the body use sugars from food for 
energy or store glucose for later use. Insulin helps to prevent both high 
blood glucose levels (hyperglycemia) and low blood glucose levels 
(hypoglycemia). When blood glucose levels increase after a meal, beta 
cells in the pancreas release insulin into the bloodstream, which allows 
glucose to enter the body’s cells to be used for energy. If the body has 
more sugar than it needs, insulin helps to store the excess sugar in 
the liver and release it as needed, such as between meals or during 
physical activity. If the body does not produce enough insulin or the 
body’s cells are resistant to its effects, it can lead to hyperglycemia, 
which can cause long-term complications. The pancreas plays a 
critical role in managing blood glucose levels by releasing insulin and 
glucagon hormones. The pancreas is located in the abdominal region 
as shown on Figure 1, and it contributes to the digestion process in the 
small intestine. The pancreas is also an endocrine organ that releases 
insulin and glucagon hormones. The pancreas is made up of two types 
of tissue: dark-staining cells involved in digestion and lighter-staining 
cell-groups called the Islet of Langerhans. The Islet of Langerhans is a 
pancreatic area that contains five types of cells that release hormones 
into the bloodstream, such as the alpha-cell type that releases glucagon 
hormone and the beta-cell type that releases insulin hormone.

The artificial insulin infusion system is commonly referred to as the 
Artificial Pancreas. The components of an artificial pancreas system 
typically include a continuous glucose monitoring (CGM) device, an 
insulin pump, and a control algorithm that regulates insulin delivery 
based on CGM data. The Figure 2, provides an overview of the various 

elements that make up an artificial pancreas system. The CGM device 
constantly measures glucose levels in the blood and transmits this 
information to the control algorithm. The control algorithm processes 
the CGM data and determines the optimal insulin dose based on a 
pre-defined set of rules. The insulin pump then delivers the required 
amount of insulin to the patient. This process is repeated continuously 
in real-time to maintain glucose levels within a target range. A sensor 
for monitoring glucose levels takes a sample of the patient’s blood 
glucose every five minutes. A controller then generates a calculated 
insulin dose to regulate the blood glucose levels to a normal range of 
80 to 100 milligrams per deciliter. Finally, an insulin pump is used to 
administer the calculated insulin doses to the patient’s body.9,10

Figure 1The glucose-insulin regulatory system.5

Figure 2 AP system components.

Methodology 
The approach taken in this graduate paper involves multiple stages. 

Initially, the Simulink model of the artificial pancreas system will be 
introduced. Following that, a fuzzy logic controller will be designed 
and implemented to regulate the artificial pancreas. The controller will 
undergo optimization by adjusting its rules to improve its performance. 
Furthermore, the controller’s rules will be customized and updated to 
meet the specific needs of the artificial pancreas system. Ultimately, 
the performance of the developed controllers will be assessed under 
various conditions to determine their ability to regulate the artificial 
pancreas system effectively.10

Fuzzy logic control system 
A fuzzy logic controller (FLC) is a control system that utilizes 

fuzzy logic to process and reason with imprecise or uncertain data. 
FLCs are especially beneficial in scenarios where the system being 
regulated is overly complicated or not well-understood to be modeled 
using conventional control methods.11,12 The FLC system is composed 
of four key elements: fuzzification, rule base, inference engine, and 
defuzzification as shown in Figure 3.
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Figure 3  Fuzzy logic architecture.

a) Fuzzification 

The fuzzification component of an FLC transforms precise 
input values, such as sensor readings, into fuzzy values through the 
assignment of membership values to each input. This procedure 
involves linking the input to a group of linguistic variables, such as 
“low,” “medium,” and “high,” which signify the level of membership 
in a particular set.

b) Rule Base

The rule base of an FLC comprises a collection of IF-THEN 
statements that embody the decision-making logic of the controller. 
Each rule has two parts: the antecedent (IF part) and the consequent 
(THEN part), and is defined in relation to the fuzzy variables and their 
membership functions.

c)	 Inference	Engine

The inference engine of an FLC is accountable for merging the 
rules in the rule base to generate a precise output value. This process 
entails employing fuzzy logic operators such as AND, OR, and NOT 
to the fuzzy sets in the antecedents of the rules to obtain a degree of 
truth for each rule.

d) Defuzzification

During the defuzzification process in an FLC, the fuzzy output 
values produced by the inference engine are converted into a precise 
output value. This is accomplished by determining the center of 
gravity of the fuzzy output values, which represents the most likely 
output value.

FLCs utilize fuzzy logic to simulate the human decision-making 
process and are highly effective in systems where conventional control 
techniques may not be sufficient due to the system’s complexity or the 
challenge of establishing precise mathematical models.

Genetic Algorithm
Genetic algorithms are computational methods utilized in computer 

science and operations research to address optimization problems 
utilizing the principles of natural selection. Genetic algorithms aim to 
generate optimal solutions via operations such as mutation, cross-over, 
and selection. The goal is to start with a large population or search 
space and gradually reduce it until only the best solutions remain, 
similar to the concept of survival of the fittest.9,13 Genetic algorithms 
are sometimes considered more robust than artificial intelligence 
(AI) systems. This is because, unlike traditional AI systems, genetic 
algorithms can adapt to changing inputs and handle noisy or imprecise 
input data. Additionally, genetic algorithms are better equipped to 
handle complex problems.14 The process of genetic algorithm begins 

with a large population of potential solutions and gradually reduces 
it using heuristics until only the best solutions remain. A typical GA 
cycle is shown in Figure 4. 

Figure 4 The genetic algorithm cycle block diagram.

The	phases	of	a	genetic	algorithm	include:

1. Initial	Population: The process of a genetic algorithm starts with 
a population of individuals, each of which represents a potential 
solution to the problem being addressed. Each individual is 
associated with certain parameters, called genes, which are 
combined to form a chromosome. The set of genes for a particular 
individual is represented using a string of characters, and these 
sets of strings form the chromosome, as illustrated in Figure 5.

Figure 5 Genes, chromosomes and population.

2. Fitness	Function: The fitness function is a critical component 
of a genetic algorithm as it determines how fit an individual 
within the population is. Each individual is assigned a fitness 
score based on this function, with higher scores indicating greater 
fitness. The fitness function evaluates how well an individual’s 
genes align with the desired objective, and the results of this 
evaluation determine the individual’s fitness score. The higher 
an individual’s fitness score, the more likely it is to be selected 
for reproduction in the next generation to produce offspring with 
similar or improved fitness scores. This process of selection and 
reproduction is repeated over multiple generations, with the aim 
of producing a population with increasingly better fitness scores. 

3. Selection: The selection process in a genetic algorithm involves 
choosing individuals from the current generation to breed the next 
generation, based on their fitness. The more fit an individual is, 
the more likely it is to be selected as a parent. During the selection 
process, two individuals are chosen to serve as parents to produce 
the next generation of solutions.

4. Crossover: Crossover, also known as recombination, is a process 
in a genetic algorithm where the genetic information from 
two parents (a father and a mother) is combined to create new 
offspring. This process is illustrated in Figure 6, where we can see 
that some of the genes from each parent “cross-over” to produce 
a new set of genes in the offspring.
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Figure 6 Crossover.

5. Mutation:Mutation is another genetic operation that can occur 
in a genetic algorithm. In this process, the arrangement of genes 
in a chromosome is altered to produce a new chromosome. 
This occurs with a very low probability. Evolutionists often use 
mutation to explain how species can evolve into new species over 
time, but this is not based on any scientific law.

6. Termination: The algorithm repeats until certain termination 
conditions are met, such as a maximum number of generations 
or when the fitness score of the population reaches a satisfactory 
level. When the termination conditions are met, not much change 
occurs in the population, and the algorithm stops.

Optimization FLC using GA to control AP 

The steps involved in optimizing a fuzzy logic controller using a 
genetic algorithm14,15

• Define the design variables: Determine the parameters of the 
fuzzy logic controller that will be optimized using the genetic 
algorithm.

• Define the fitness function: Create a function that evaluates the 
performance of the fuzzy logic controller, such as mean squared 
error.

• Initialize the population: Generate a random set of solutions, with 
each solution representing a set of values for the design variables.

• Evaluate the fitness of the population: Use the fitness function to 
evaluate each solution in the population.

• Selection: Choose the solutions with the highest fitness to be 
parents of the next generation.

• Crossover: Combine the design variables of two parents to create 
a new solution, repeating this step for all parent pairs.

• Mutation: Introduce random changes in some of the design 
variables of the new solutions.

• Repeat steps 4 to 7 for a certain number of generations or until 
convergence is achieved.

• Select the best solution: The optimized fuzzy logic controller is 
the solution with the highest fitness.

Test the optimized controller: Evaluate the performance of the 
optimized controller on a validation dataset.

By repeating steps 4 to 7 for multiple generations, the genetic 
algorithm tries to find the optimal values for the design variables that 
maximize the fitness function. The end result is an optimized fuzzy 
logic controller that performs better than the original controller.

Based on the given statement, it appears that the FLC (Fuzzy Logic 
Controller) is created using a chromosome that represents all the 
parameters of the membership functions (MFs). The behavior of this 
FLC is then tested through a simulation process, and the results of the 
simulation are used to calculate a fitness function value. This mapping 
from the proposed solution to the fitness function result allows the use 
of optimization methods. It is expected that this same mapping can be 
applied to suboptimal solutions in order to obtain the desired FLC. In 
other words, by evaluating the fitness function for different parameter 
combinations, the optimization method can identify the combination 
that results in the best performance of the FLC. Overall, this process 
involves creating an FLC with a set of parameters represented by 
a chromosome, testing the FLC using a simulation, evaluating its 
performance through a fitness function, and using optimization 
methods to find the best combination of parameters. The flow chart of 
the genetic algorithm depicted in Figure 7 as follows.

Figure 7 The flow chart of the used genetic algorithm

Control system design 

Overall, the Simulink model presented in Figure 8 provides a 
comprehensive platform for testing and evaluating the performance 
of the fuzzy logic controller in controlling blood glucose levels in 
diabetic patients. By incorporating real-world scenarios such as meals 
and glucose monitoring, the Simulink model can simulate different 
conditions and provide valuable insights into the effectiveness of 
the controller in managing blood glucose levels. After creating the 
Simulink model for controlling blood glucose levels, the next step 
was to model a diabetic patient.12,13 This involved designing a glucose 
monitoring system that could measure the blood glucose level and 
transmit the data to the controller.16 To control blood glucose levels, 
a fuzzy logic controller was designed separately from the Simulink 
model. The fuzzy logic controller was chosen due to its ability to 
handle imprecise or uncertain information, which is common in 
diabetes management. The fuzzy logic controller was later added to 
the Simulink model using a built-in block that loaded the fuzzy system 
from the MATLAB workspace. To simulate real-world scenarios, 
a meal subsystem was included in the Simulink model. The meal 
subsystem takes into account different variables such as the time of day 
and the amount of carbohydrate intake. The meal subsystem allows 
the Simulink model to simulate the effect of meals on blood glucose 
levels, which is an important factor in diabetes management.17,18

In this paper, a fuzzy inference system (FIS) tree controller is 
proposed to manage the blood glucose levels of a diabetic patient. The 
controller is based on a Mamdani-type fuzzy architecture, which is a 
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popular type of fuzzy inference system that uses fuzzy rules to map 
input variables to output variables. The FIS tree controller has three 
inputs, which are the blood glucose level (mg/dL), the rate of change 
of blood glucose level (mg/dL/min), and the acceleration rate of blood 
glucose level (mg/dL/min/min). These inputs are used to determine 
the optimal insulin infusion dosage required to maintain the blood 
glucose level at a normal level. The FIS tree controller is designed as 
a hierarchical structure, with each level representing a different aspect 
of the control strategy.19 The first level of the controller uses a set of 
fuzzy rules to determine the overall insulin dosage required based on 
the current blood glucose level. The second level of the controller 
uses a set of fuzzy rules to adjust the insulin dosage based on the rate 
of change of the blood glucose level. The third level of the controller 
uses a set of fuzzy rules to further adjust the insulin dosage based on 
the acceleration rate of the blood glucose level.20,21

Create FIS1 

FIS1 in Figure 9 is a fuzzy inference system that uses specific 
membership functions (MFs) for its inputs and outputs. The inputs are 
the blood glucose level (BG_Level) and the rate of change in blood 
glucose (BG_Rate), while the output is the precalculated insulin 
dosage (Precalculated_Dose).22

Figure 8 AP Model.17

Figure 9 System FIS1.17

The BG_Level input utilizes three uniformly distributed triangular 
MFs, which are labeled as L (low level), M (medium level), and H 
(high level). These MFs represent different levels of blood glucose, 
with L being the lowest, M being the moderate level, and H being the 
highest.

The BG_Rate input employs three triangular MFs, which are 
labeled as N (negative rate), Z (zero rate), and P (positive rate). These 
MFs represent different rates of change in blood glucose, with N 
indicating a negative rate of change, Z indicating no change, and P 
indicating a positive rate of change.9,23

The Precalculated_Dose output utilizes five MFs, which are 
labeled as L (low dosage), M (medium dosage), H (high dosage), 
VL (very low dosage), and VH (very high dosage). These MFs are 
specifically designed to provide appropriate dosage recommendations 
based on the input variables. For example, if the BG_Level is high and 
the BG_Rate is positive, the output would suggest a higher dosage (H 
or VH) to bring down the blood glucose level.24

Create FIS2

The second fuzzy inference system as shown in Figure 10 is 
designed to generate the final insulin dosage by incorporating both 
the precalculated dose from the first layer and the effect of the 
blood glucose acceleration rate. fis2 also uses uniformly distributed 
triangular membership functions (MFs) for its inputs and outputs.

Figure 10 System FIS2.17

The input Precalculated_Dose utilizes three triangular MFs to 
represent the precalculated dosage, similar to the first layer of the 
FIS. The input BG Acceleration considers the rate at which the blood 
glucose level is changing and also utilizes three triangular MFs to 
represent negative, zero, and positive rates of acceleration. The output 
Final_Dose employs five triangular MFs, similar to the first layer, to 
represent different levels of insulin dosage. These MFs are designed 
to ensure effective dosage recommendations based on the combined 
inputs. To determine the appropriate insulin dosage, fis2 uses a set of 
nine fuzzy rules that take into account the precalculated dose and the 
blood glucose acceleration rate. The rules are designed based on the 
expert knowledge of diabetes specialists and are optimized using the 
genetic algorithm.25‒28

Afterwards, the inputs and outputs ranges are updated by writing 
code in the MATLAB workspace to be :

FIIS1 : 

BG_Level=[70 125] BG_Rate =[-1 1] 

Precalculated_Dose = [0 2]

FIIS2: Precalculated_Dose = [0 2]    BG_Accel= [-0.009 0.009]   
and Insulin_Dose=[0 maxDose] 

Simulation results
The plot consists of two subplots. Figure 11 displays the blood 

glucose level (mg/dl) of a diabetic patient. Figure 12 shows the 
amount of carbohydrate intake (g) at different times (min) of the day. 
In this example, the day is divided into three meals: breakfast with 
25 g of carbohydrates, lunch with 30 g of carbohydrates, and dinner 
with 25 g of carbohydrates. The meal timings are at 60, 300, and 720 
minutes, respectively, corresponding to the first, fifth, and twelfth 
hour of the day. The plot shows the blood glucose level over time in an 
open-loop scenario, where no corrective insulin dosages are injected 
into the patient. The blood glucose level significantly increases after 
each meal and reaches very high values. This demonstrates the need 
for a controller to maintain the glucose level by regulating the insulin 
doses. Overall, the plot highlights the importance of a closed-loop 
control system for managing blood glucose levels in diabetic patients. 
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Without proper control, blood glucose levels can fluctuate greatly and 
lead to serious health complications.

Figure 11 AP response  in open loop.

Figure 12 Carbohydrate intake (g). 

The main objective of the controller is to generate corrective 
insulin doses for different scenarios in diabetic patients as shown in 
Figure 13. The three primary scenarios that the controller addresses are 
hyperglycemia, hypoglycemia, and normal blood glucose conditions. 
In the case of hyperglycemia, where the blood sugar level is high 
(typically above the target range), the controller responds by providing 
a high insulin dose in bolus mode. The recommended insulin dose 
ranges from 125 to 200 mg/dL and is dependent on various factors 
such as the patient’s fasting and meal conditions. In contrast, when 
the blood glucose level is low (generally below the target range of 
50-70 mg/dL), the controller ceases insulin administration to prevent 
further lowering of blood glucose levels. This is referred to as 
hypoglycemia. In the normal condition, where the blood glucose level 
is within the target range (generally 80 to 100 mg/dL), the controller 
maintains a low insulin dosage in basal mode to sustain optimal 
blood glucose levels. By generating corrective insulin doses for these 
different scenarios, the controller helps to regulate blood glucose 
levels in diabetic patients and prevent health complications associated 
with unstable blood glucose levels.

Figure 13 AP response after tunning rules.

There are various methods to assess the performance of a fuzzy 
system, and one of them involves examining the control surface. 
The control surface is a graphical representation of the relationship 
between the inputs and outputs of the system, where the z-axis 
corresponds to the insulin dosage, the x-axis corresponds to blood 
glucose levels, and the y-axis corresponds to blood glucose rate. 
Upon analyzing the control surface, one particular area of concern 
is when the blood glucose level is approximately 80 mg/dl, which 
is considered normal, and the blood glucose rate is negative. In this 
scenario, the current fuzzy system administers a high dose of insulin, 
which is unexpected and undesirable. Figure 14 illustrates that when 
the blood glucose level was 80 mg/dl and the blood glucose rate was 
-0.5, the insulin dose was 1.9 units, which is excessively high and 
unacceptable.

The simulation results illustrate that some of the control actions in 
the fuzzy system are not direct or straightforward. Specifically:

When there is a negative rate of change in blood glucose, the fis1 
system does not always increase the insulin dosage proportionally as 
the blood glucose level increases.

When the blood glucose level is high, and the rate of change is also 
high and positive, fis1 sets the insulin dosage to medium instead of 
very high, which may not be optimal.

In cases where the blood glucose acceleration rate is negative, the 
fis2 system does not always increase the insulin dosage linearly with 
an increase in the precalculated insulin dosage.

For scenarios with a low precalculated insulin dosage and a 
negative blood glucose acceleration rate, fis2 sets the insulin dosage 
to very high, which is not desirable.

When the precalculated insulin dosage is high, and the blood 
glucose acceleration rate is zero, fis2 sets the insulin dosage to very 
low instead of medium, which is unexpected.

Figure 15 illustrates the outcome of optimization using the update 
rules, which enhance the controller’s effectiveness and minimize the 
cost function. The controller with updated rules reduces the blood 
glucose levels compared to the tuned FIS tree controller. The fuzzy 
logic controller demonstrated its ability to inject insulin doses that 
correct the measured blood glucose levels of the patient, ultimately 
regulating it to a normal range. Moreover, to test the system’s 
resilience, one can simulate various scenarios by adjusting the meal 
subsystem. For example, by increasing the carbohydrate intake 
by almost double (50, 60, 50) g, we can assess whether the fuzzy 
logic controller can still effectively regulate insulin and maintain the 
patient’s blood glucose level within the normal range. Simulation 
results with day consists three meals: 50 g carbohydrate breakfast, 
60 g carbo-hydrate lunch, and 50 g carbohydrate dinner. The meal 
timings are 60, 300, and 720 minutes consecutively, corresponding to 
the first, the fifth and the twelfth hour of the day respectively (same in 
previous example)
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Figure 14 control surface of FIS 1 and Fis2 with tunning rules.

Figure 15 AP response with update rules.

Figure 16 explain, the controller with updated rules reduces 
the blood glucose levels compared to the tuned FIS tree controller, 
this means that insulin doses have been calculated more accurately, 
resulting in a reduction in glucose levels.

Figure 16 Insulin rate and observed glucose after Tunning rules.

If the blood glucose level is high and the blood glucose rate is 
negative, it suggests that the glucose level is returning to a normal 
range, and therefore, a very high insulin dosage may not be necessary. 
Instead, a low insulin dosage would be more appropriate. By making 
this adjustment, the fuzzy system will better align with expected 
outcomes, and the overall performance of the system will improve. 
It is important to note that any modifications to the system should be 
thoroughly tested and validated to ensure that they do not introduce 
any unintended consequences or negative impacts on the system’s 
performance.

After modifying the control rules, the control surface of the fuzzy 
system displays the expected behavior. By comparing Control Surface 
1 before and after the rule update, as shown in Figure 17 and Figure 
18 respectively, we can see that there is a significant improvement 
in the system’s performance. Before the rule update, when the blood 
glucose level was 82mg/dl, which is considered within the normal 
range, the controller administered a high insulin dosage, which was 
not an expected outcome. However, after updating the rules, as 
observed in Figure 18, when the blood glucose level was 82mg/dl, 
the controller injected a very low dosage, which is an expected and 
desirable outcome. This improvement in the system’s performance 
demonstrates the importance of regularly reviewing and updating the 
control rules in fuzzy systems to ensure that they align with expected 
outcomes and optimize the system’s performance.

Figure 17 Comparison between the control surface of FIS1 with tuning rules 
and with update rules.

Figure 18 Comparison between the control surface of FIS2 with tuning rules 
and with update rules.
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Conclusion 
The use of fuzzy logic controllers (FLC) in closed-loop insulin 

delivery systems presents a promising alternative to traditional 
model-based controllers. FLCs allow clinicians to easily specify the 
level of glucose control based on the patient’s clinical needs, and the 
flexibility and adaptability of the FLC allow for the refinement and 
updating of control rules to improve the accuracy of insulin dosing 
decisions. The Simulink model of the AP artificial system will serve 
as the basis for the design and application of the FLC. The rules of 
the FLC will be optimized by tuning them to enhance the system’s 
performance. The optimization process will use a genetic algorithm to 
explore the parameter space and find an optimal set of control 
parameters, improving the system’s ability to regulate blood glucose 
within the target range. It is important to note that further testing and 
validation are necessary to ensure the reliability and effectiveness 
of the AP system in real-world clinical settings. Incorporating other 
factors that may affect blood glucose levels, such as physical activity, 
stress, and medication, can provide a more comprehensive assessment 
of the system’s performance. Additionally, regulatory and safety 
considerations must be taken into account for the implementation of 
the AP system in clinical practice.

Finally, the use of FLCs in closed-loop insulin delivery systems 
presents a promising approach for regulating blood glucose levels 
in diabetic patients. The ability to refine and update control rules 
and optimize the system’s performance through a genetic algorithm 
provides greater flexibility and adaptability, improving the accuracy 
of insulin dosing decisions.
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