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Introduction
Obstacle detection is one of the fundamental steps in the 

process of autonomous robot movement and navigation through an 
unknown environment. Various types of sensors are used to collect 
information from the environment. Based on the data obtained from 
the sensors, different processing, decision-making, and information 
implementation systems are built, enabling the robot to detect obstacles 
and safely navigate the environment. Artificial neural networks 
(ANNs) are a common tool for this task, and different structures and 
types of ANNs are used to implement various mobile robot navigation 
systems.1‒3 In these systems, infra-red sensors (IR) and various robotic 
vision sensors, either independently or in fusion, are frequently 
used.4‒7 Paper8 presented a neural network-based obstacle avoidance 
robot using low-cost IR sensor arrays, where MatLab was used to train 
the neural networks. In paper,5 modeling and simulation of obstacle 
detection and avoidance with a four-wheel mobile robot using a Deep 
Neural Network were carried out using MatLab Simulink’s robotic 
toolbox and robotic operating system toolbox. MatLab was also used 
for the development and implementation of neural control systems 
in mobile robots for obstacle avoidance in real-time using ultrasonic 
sensors,9 and to train a mobile robot to avoid obstacles using range 
sensor readings that detect obstacles in the map.10 Obstacle detection 
systems can be tested in a real environment or through simulation 
frameworks, which can reduce experimental costs, time, and the 
risks of negative aftereffects of accidents.11‒13 Moreover, more and 
more research focuses on the application of virtual environments 
with obstacles that enable reliable robot simulation. 14,15 While the 
application of artificial neural networks in such systems has both 
advantages and disadvantages, they still provide satisfactory results 
for obstacle detection.16

This paper demonstrates the application of artificial neural 
networks for obstacle detection in a virtually simulated process of 
robot movement and obstacle avoidance in a virtual environment. 
The proposed system uses the readings from three IR sensors and a 
camera. The MatLab software package was used to train the artificial 
neural network and control the robot. The RobotinoSIM virtual 
simulation environment was used to perform all movement and 
obstacle avoidance tasks by the Robotino mobile robot. 

The proposed system
Structure of the proposed system

As demonstrated in paper,17 the proposed system structure is 
divided into three segments: Perception, Reasoning, and Reacting. 
In the “Perception” section, data is collected and pre-processed from 
three infrared sensors and a camera. The system processes the data 
received from the sensors, compares it with the required reference 
input values in the “Reasoning” section, and makes a judgment 
for the robot’s output movements. Finally, the “Reacting” section 
provides the final calculations to take the necessary actions, such as 
robot movement or obstacle avoidance. Figure 1 depicts the system 
structure.

Figure 1 The proposed system structure: Perception, Reasoning, and Reacting.
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Abstract

Mobile robot navigation is primarily a task that occurs in a real environment. However, 
simulating obstacles and robot movements in a virtual environment can provide significant 
advantages and yield good results, as demonstrated in this paper. By employing artificial 
neural networks (ANNs), it is possible to develop a trained system in a virtual environment 
that can detect obstacles using data collected from various sensors. In this study, infrared 
(IR) sensors and a camera were utilized to gather information from the virtual environment. 
The MatLab Simulink software package was used as a tool to train the artificial neural 
networks. Detection and avoidance of obstacles were simulated in the RobotinoSIM virtual 
environment.
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The programming was done in the MatLab software package, 
while the robot simulation was performed in the RobotinoSIM 
virtual environment.18 A virtual model of the Robotino mobile 
robot was utilized to perform the tasks of detecting and avoiding 
obstacles. The Robotino mobile robot is capable of omnidirectional 
movement through the environment and has an external sensor system 
comprising a stereo camera, 9 IR sensors, and bumpers in the basic 
configuration. For the experiment presented in this paper, a Logitech 
C250 camera was used to gather data (images and videos) from the 
environment, and three SHARP GP2D120 IR sensors (IR1, IR2, and 
IR9) were employed to measure the distance from obstacles in front 
of the robot.19

Obstacle detection is carried out in two parts: for the camera 
readings and for the IR sensor readings. The camera is employed 
for landmark detection and localization, such as detecting edges, 
overhangs, and robot movement space. IR sensors are employed to 
measure the distance from obstacles and detect them in real-time. The 
Canny method combined with LPQ description was utilized for image 
preprocessing, such as edge detection and feature extraction.

An ANN performs the task of “teaching the system” to recognize 
obstacles in the environment by using information obtained from the 
camera. Only certain obstacles were taken for training the network, 
which greatly reduced the computational complexity of the control 
system. After the training, the system is able to decide whether the 
robot should continue moving forward (if one of the learned obstacles 
is not detected), or to avoid the obstacle (if one of the obstacles is 
detected). Additional information about detected obstacles (from 3 
IR sensors). Based on this information, the robot has a complete set 
of necessary information in order to make a final decision on which 
actions to take.

Acquisition of information from the environment

The Robotino View program20 was used to collect initial images 
for network training and to set up video and image resolution values. 
Robotino View has a simple interface for connecting to Robotino 
and using tools to collect and save images and videos, as shown in 
Figure 2a, Figure 2b shows the position of Robotino when it detected 
the obstacle. The Control Panel block can be used to bring the robot 
to any position in the environment. The Camera block activates the 
camera module, and the Image Writer block is used to save images. In 
this module, two image resolutions, 320 x 240 and 640 x 480, can be 
selected, as shown in Figure 2c. The resolution of the collected images 
for neural network training in this experiment is 320 x 240.

Figure 2 a) Image collecting in Robotino View program, b) Encountering an 
obstacle in the RobotinoSIM environment, c) Adjusting the image resolution.

After connecting the robot to the MatLab interface using the IP 
address ‘127.0.0.1:8080’, the real-time image collection process is 
enabled by using the following commands:

CameraId = Camera_construct;

Camera_setComId (CameraId, ComId);

if ~(Camera_setStreaming(CameraId, 1) == 1)

   disp (‘Camera_set Streaming failed.’); 

    end;

if (Camera_grab(CameraId) == 1)

 img = Camera_getImage( CameraId );

    end

Obtaining information from the three IR sensors is done by using 
the following commands:

DistanceSensor0Id = DistanceSensor_construct (0);

DistanceSensor1Id = DistanceSensor_construct (1);

DistanceSensor8Id = DistanceSensor_construct (8);

value0 = DistanceSensor_voltage(DistanceSensor0Id)

 value1 = DistanceSensor_voltage(DistanceSensor1Id)

 value8 = DistanceSensor_voltage(DistanceSensor8Id)

  if((0.7 <= value0) | (0.7 <=value1) | (0.7 <= value8)) & (class==1) 

The three infrared sensors are labeled as DistanceSensor0, 
DistanceSensor1, and DistanceSensor8, respectively, and are used 
to obtain information. A voltage of 0.7 V, which corresponds to a 
distance of approximately 17 cm, was set as the reference distance 
for obstacle detection. If the voltage values obtained from the sensors 
are lower than this value, it means that an obstacle has been detected, 
and the task of avoiding the obstacle will be activated. Conversely, if 
the voltage values are higher, the system will assume that no obstacle 
is present.

Edge detection and feature extraction from images

In the process of detecting edges in images with obstacles, the 
Canny edge detection method was used. Images were obtained 
from the camera, and before applying the Canny method, they 
were converted from an RGB image to a grayscale image. All these 
operations were performed using the Image Processing Toolbox 
within MatLab. The part of the algorithm responsible for these image 
pre-processing operations is as follows:

function [yind]=img_class(img)

load lpqtrain

img=rgb2gray(img);

canny_filtrd_img=edge(img,’canny’);

feature_v=(lpq(canny_filtrd_img))’; 

y = net(feature_v);

yind = vec2ind(y);

end

In addition to the Canny filter, we used the LPQ (Local Phase 
Quantization)21 descriptor for image pre-processing and feature 
extraction. The downloaded images were in matrix form, and after 
processing, they needed to be transformed into a vector column for 
further use in the neural network training process.

Avoidance of obstacles detected by IR sensor

The part of the algorithm responsible for detecting and avoiding of 
obstacles is as follows:
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while((Bumper_value(BumperId) ~= 1)) && stoppressed==0

    OmniDrive_setVelocity(OmniDriveId, 100, 0 ,0)

    tElapsed = toc(tStart);

     if(tElapsed >= 60 )

        break;

    end;

    value0 = DistanceSensor_voltage(DistanceSensor0Id)

    value1 = DistanceSensor_voltage(DistanceSensor1Id)

    value8 = DistanceSensor_voltage(DistanceSensor8Id)

     if((0.7 <= value0)|(0.7 <=value1)|(0.7 <= value8))&(class==1)

        % Obstacle approach

        break;

    else

        % There is no obstacle in front of the robot

        OmniDrive_setVelocity(OmniDriveId, 100, 0 ,0);

    end;

end

 OmniDrive_setVelocity(OmniDriveId, 0, 0 ,0);

 delay(1)

 OmniDrive_setVelocity(OmniDriveId, 0, 100 ,0);

 delay(3)

 OmniDrive_setVelocity(OmniDriveId, 100, 0 ,0);

 delay(4)

 OmniDrive_setVelocity(OmniDriveId, 0, -100 ,0);

 delay(3)

 OmniDrive_setVelocity(OmniDriveId, 100, 0 ,0);

The obstacle avoidance vector is determined based on whether 
any of the three IR sensors has detected an obstacle. Accordingly, two 
velocities are defined: 

• vx in the direction of the robot’s movement along the x axis, and 

• vy in the direction of the robot’s movement along the y axis. 

In the previous code, these velocities, as well as the robot’s angular 
velocity ω, are represented in the following format:

OmniDrive_setVelocity(OmniDriveId, vx, vy ,ω)

The velocities are expressed in mm/s. Depending on the direction 
in which the obstacle is detected, their values can be 0, 100, or -100 
mm/s. The robot can move in the following ways depending on which 
sensor detects the obstacle:

	 forward, for vx = 100, vy = 0 (if no obstacle is detected in front 
of the robot),

	 right, for vx = 0, vy = 100 (if an obstacle is detected to the left of 
the robot), and

	 left, for vx = 0, vy = -100 (if an obstacle is detected to the right of 
the robot).

Due to the simplification of the robot’s movements when avoiding 
obstacles, the angular velocity of the robot was not applied. To rotate 
the robot when avoiding obstacles, all 9 IR sensors must be active, 
allowing detection of all obstacles within a 360° radius around the 
robot. Since only 3 IR sensors are active in the proposed system, it is 
impossible to guarantee that the robot will not collide with an obstacle 
that was not detected by one of the 3 active sensors during a possible 
rotation.

Artificial neural network

The design of the ANN is realized through the following 7 steps: 

• Collecting data, 

• Creating the neural network, 

• Configuring the neural network, 

• Initializing the weights and biases, 

• Training the neural network, 

• Validating the neural network (analysis after learning), and 

• Using the neural network. 

Before starting the process of designing a neural network, it is 
necessary to prepare data samples correctly and with high quality for 
learning the network. It is difficult to incorporate prior knowledge into 
the network, so the network will only be as precise and accurate as the 
information used to train it. It is essential that the information used for 
training covers the complete range of inputs for which the network is 
used. After collecting the data, two steps must be taken before using 
it for training:

• Pre-processing of the data is required (Canny + LPQ), and

• The data must be divided into different subsets.

For training the neural network in this experiment, 36 pictures of 
obstacles were taken:

x = csvread(‘training_featuressslpq.csv’);

For testing, 9 more pictures of the same obstacles were taken:

tst_inputs=csvread(‘testing_featuressslpq.csv’);

The obstacles are classified into three different categories, with 
12 pictures in each category. The entire set of training images is then 
divided into three subsets as follows:

• 70/100 (70%) for training:

net.divideParam.trainRatio = 70/100;

• 15/100 (15%) for validation (used to validate that the network is 
generalized and to stop training before overtraining):

net.divideParam.valRatio = 15/100;

• 15/100 (15%) for testing (used as a completely independent test 
of network generalization):

net.divideParam.testRatio = 15/100;

The artificial neural network used in this experiment is a multilayer 
perceptron feedforward network for pattern recognition, with one 
input, one output, and one hidden layer:

net = patternnet(hiddenLayerSize);

This type of ANN can be trained to classify patterns according 
to a given target data set, and it is initiated in MATLAB with the 
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‘patternnet’ function. The target value data of the pattern recognition 
network consists of vectors where all values are 0 except for one 
element which has a value of 1, where “i” is the class it represents. 
The number of input and output nodes was selected in relation to the 
requirements and functionality of the proposed system. The selection 
of hidden layer nodes is more complex and comes down to the “trial-
and-error” method (i.e. testing the number of hidden nodes and 
comparing them with the performance of the neural network). The 
following structure was defined for the artificial neural network in 
this experiment:

• The input layer consists of 256 input units (nodes) representing 
the image obtained after preprocessing with the LPQ algorithm. 
These are inputs from the LPQ descriptor formed from a 
histogram of integer values of all image positions, and is used 
as a 256-dimensional vector of image features. This represents 
256 hypercubes in eight-dimensional space, resulting in an 8-bit 
code. Since 36 images were taken for training, the network input 
is essentially a 256 x 36 matrix.

• The hidden layer has 10 nodes.

• The output layer has 3 output nodes, where the nodes represent 
outputs that specify one of three classes of input images.

When training the network, the target values are defined (the 
correct output vector t for each of the input vectors, where the target 
vector values are defined for each of the classes):

t = [1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 
3 3 3 3];

The target vector is a binary value with the index of correct classes 
defined as 1, or with the index of all other classes (i.e. incorrect 
classes) defined as 0. The target values are represented by a 3 x 36 
matrix. Target values in the case of network testing are represented 
by a 3 x 9 matrix, with the same characteristics as the previous one:

t=[1 1 1 2 2 2 3 3 3 ];

Before training the ANN, initialization is necessary. For this neural 
network, the initialization operation is performed automatically by 
MATLAB each time the training process starts. When training the 
network for pattern recognition, the following three functions are 
most commonly used: ‘trainlm’, ‘trainbr’, and ‘trainscg’. In most 
cases, the ‘trainlm’ function proves to be the fastest, while ‘trainbr’ 
is a slower function but a better choice for very demanding problems. 
The ‘trainscg’ function takes up the least memory resources and is 
suitable for cases where memory is limited. In this experiment, the 
‘trainscg’ learning function representing the SCG algorithm was used 
to train the ANN:

TrainFcn = ‘trainscg’;

[net, tr] = train(net, x, targets);

During the training process of the network, the progress is 
constantly updated in the “nntraintool” window, as shown in Figure 3. 

“Random” distribution was selected for data distribution using the 
‘dividerand’ command. As mentioned earlier, the SCG algorithm was 
used for training. To analyze the performance of the neural network, the 
“Cross-Entropy” function was used via the “crossentropy” command. 
This function calculates the network performance for a given input 
and output values with the ability to select performance weights and 
other parameters. In the ANN training monitoring window, it is also 
possible to monitor the number of iterations (“Iterations”), i.e., the 
steps in the algorithm in which the weights are adjusted, as well as the 

entire epoch (“Epoch”), which shows one representation of the entire 
learning set. There is also the possibility of monitoring the learning 
time of the network with the “Time” function.

Figure 3 Monitoring the training process of the artificial neural network.

After repeating the network training process, it is possible to 
obtain different results for each case due to different initial values of 
the weights and different data distributions in the subsets for learning, 
validation, and testing. As a result, different neural networks trained 
for the same problem can produce completely different output values 
for the same input values. To avoid this, i.e., to ensure a network that 
will be as accurate as possible, it is necessary to train the network 
several times. For this reason, this network was also trained through 
several repetitions. 

GUI for MatLab

To control the movement of the robot and the functions of the 
proposed system from the MatLab environment, a separate GUI was 
created. The GUI allows the control algorithm to start, as well as 
individual control of the robot’s movements in different directions. 
It also includes all the previously mentioned functions of gathering 
information from sensors, detecting obstacles, and undertaking tasks 
of moving and avoiding obstacles. Figure 4 shows the GUI. 

Figure 4 GUI for MatLab.

Controlling the basic movements of the robot (forward, backward, 
left, right, etc.) is possible after executing the “Start” command. This 
function was created to enable the robot to be positioned in front 
of an obstacle before testing the control algorithm. The algorithm 
is activated by executing the “Launch program” command. This 
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command triggers the robot’s autonomous movement and obstacle 
avoidance capabilities. Another function is “Image display,” which 
allows for real-time display of images captured by the robot’s sensors.

Results analysis
Various types of obstacles, including rollers of different colors, 

walls, boxes, and lines on the floor, (Figure 5) were used in the 
RobotinoSIM virtual environment. For each obstacle, 20 detection 
attempts were made, and successful and unsuccessful attempts were 
recorded. The robot approached the obstacles from different sides, 
angles, and distances. 

Figure 5 Obstacles in RobotinoSIM virtual environment.

In the MatLab command line it is possible to see which of the 
sensors detected an obstacle. If one of the IR sensors detects an 
obstacle, voltage values will appear in the command line (value0, 
value1, value8), as shown in Figure 6a. If the camera detects an 
obstacle, the class from which the neural network classified a particular 
obstacle will be displayed (class = 1, class = 2, class = 3). (Figure 6b)

Figure 6 The MatLab command line displays information from various 
sensors.

A total of 180 obstacle detection attempts were made. In 154 
attempts, some of the obstacles were successfully detected, while 26 
attempts ended unsuccessfully, i.e., the obstacles were not detected. 
Such a ratio of detected and undetected obstacles resulted in an 
85.56% accuracy of obstacle detection. Since the system is based on 
the fusion of a camera and infrared sensors, the ratio of the share of 
individual sensors in detecting obstacles is also interesting. The three 
IR sensors detected the obstacle 98 times (63.64%), while the camera 
detected obstacles 56 times (36.36%). It is not possible to manipulate 
obstacles in the RobotinoSIM environment using a specific command. 
However, it was possible to overturn some of the obstacles with the 
robot’s movements. Overturned obstacles had a different appearance, 
depending on the position they remained after overturning. These 
overturned obstacles became a good test for the system since the 
neural network was not trained to detect such “new” obstacles.

Conclusion
In line with previous experiences, this experiment has also 

demonstrated that obstacle detection and avoidance is a highly 

complex task. However, the results of obstacle detection can ultimately 
be satisfactory. When detecting all obstacles, the system has proven to 
be just as accurate as when detecting obstacles presented to the ANN 
during the training process. The obtained results are a good indication 
that the neural network was not over trained, i.e., the network did 
not become overly specialized in detecting only samples from the 
training, validation, and testing sets. Artificial neural networks have 
proven to be a powerful tool for use in such environments where input 
information is not always unambiguous and of the same character. The 
structure and type of the neural network, as well as all the conditions 
and parameters of the training in this experiment, have proven to 
be adequate for the tasks of detecting obstacles. The classification 
capabilities of ANN have proven to be excellent, even on examples of 
obstacles not presented during the training process.

However, the accuracy of obstacle avoidance is significantly 
limited by the use of only three infrared sensors, as these sensors 
cover an angle of only 80º in front of the robot. Additionally, there 
is the problem of camera immobility, as the camera can only receive 
information about obstacles that are directly in front of the robot, 
making it impossible to detect obstacles on the sides and behind the 
robot. Due to all the aforementioned limitations, Robotino can avoid 
obstacles only by moving forward, left, or right.

The disadvantage of using artificial neural networks is the 
demanding process of collecting and preparing input datasets that 
will provide the most accurate information required for optimal 
implementation of the network training process. Moreover, for greater 
classification accuracy, it is necessary to present larger datasets, which 
can ultimately result in longer learning and data processing times, as 
well as higher computer requirements.

Sensor fusion has proven to be a much better solution than the 
independent use of IR sensors or cameras. Further research may 
include upgrading the system with other types of sensors, such as 
ultrasound, laser scanners, 3D or thermal cameras, etc. By including 
one of the mentioned sensors, it will be possible to replace the 
shortcomings of the camera and IR sensor and, with their fusion, raise 
the level of navigation accuracy and improve system performance.
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