
Submit Manuscript | http://medcraveonline.com

Introduction
Obstacle detection is one of the fundamental steps in the

process of autonomous robot movement and navigation through an
unknown environment. Various types of sensors are used to collect
information from the environment. Based on the data obtained from
the sensors, different processing, decision-making, and information
implementation systems are built, enabling the robot to detect obstacles
and safely navigate the environment. Artificial neural networks
(ANNs) are a common tool for this task, and different structures and
types of ANNs are used to implement various mobile robot navigation
systems.1‒3 In these systems, infra-red sensors (IR) and various robotic
vision sensors, either independently or in fusion, are frequently
used.4‒7 Paper8 presented a neural network-based obstacle avoidance
robot using low-cost IR sensor arrays, where MatLab was used to train
the neural networks. In paper,5 modeling and simulation of obstacle
detection and avoidance with a four-wheel mobile robot using a Deep
Neural Network were carried out using MatLab Simulink’s robotic
toolbox and robotic operating system toolbox. MatLab was also used
for the development and implementation of neural control systems
in mobile robots for obstacle avoidance in real-time using ultrasonic
sensors,9 and to train a mobile robot to avoid obstacles using range
sensor readings that detect obstacles in the map.10 Obstacle detection
systems can be tested in a real environment or through simulation
frameworks, which can reduce experimental costs, time, and the
risks of negative aftereffects of accidents.11‒13 Moreover, more and
more research focuses on the application of virtual environments
with obstacles that enable reliable robot simulation. 14,15 While the
application of artificial neural networks in such systems has both
advantages and disadvantages, they still provide satisfactory results
for obstacle detection.16

This paper demonstrates the application of artificial neural
networks for obstacle detection in a virtually simulated process of
robot movement and obstacle avoidance in a virtual environment.
The proposed system uses the readings from three IR sensors and a
camera. The MatLab software package was used to train the artificial
neural network and control the robot. The RobotinoSIM virtual
simulation environment was used to perform all movement and
obstacle avoidance tasks by the Robotino mobile robot.

The proposed system
Structure of the proposed system

As demonstrated in paper,17 the proposed system structure is
divided into three segments: Perception, Reasoning, and Reacting.
In the “Perception” section, data is collected and pre-processed from
three infrared sensors and a camera. The system processes the data
received from the sensors, compares it with the required reference
input values in the “Reasoning” section, and makes a judgment
for the robot’s output movements. Finally, the “Reacting” section
provides the final calculations to take the necessary actions, such as
robot movement or obstacle avoidance. Figure 1 depicts the system
structure.

Figure 1 The proposed system structure: Perception, Reasoning, and Reacting.

Int Rob Auto J. 2023;9(2):62‒67. 62
©2023 Crnokic et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and build upon your work non-commercially.

Artificial neural networks-based simulation of
obstacle detection with a mobile robot in a virtual
environment

Volume 9 Issue 2 - 2023

Boris Crnokić,1 Ivan Peko,2 Miroslav
Grubišić3
1,3University of Mostar, Faculty of Mechanical Engineering,
Computing and Electrical Engineering, Bosnia and Herzegovina
2University of Split, Faculty of Science, Croatia

Correspondence: Boris Crnokić, University of Mostar,
Faculty of Mechanical Engineering, Computing and Electrical
Engineering, Matice hrvatske b.b., 8800 Mostar, Bosnia and
Herzegovina, Email

Received: April 29, 2023 | Published: May 16, 2023

Abstract

Mobile robot navigation is primarily a task that occurs in a real environment. However,
simulating obstacles and robot movements in a virtual environment can provide significant
advantages and yield good results, as demonstrated in this paper. By employing artificial
neural networks (ANNs), it is possible to develop a trained system in a virtual environment
that can detect obstacles using data collected from various sensors. In this study, infrared
(IR) sensors and a camera were utilized to gather information from the virtual environment.
The MatLab Simulink software package was used as a tool to train the artificial neural
networks. Detection and avoidance of obstacles were simulated in the RobotinoSIM virtual
environment.

Keywords: obstacle detection, mobile robot, artificial neural networks, virtual simulation

International Robotics & Automation Journal

Technical Paper Open Access

https://crossmark.crossref.org/dialog/?doi=10.15406/iratj.2023.09.00265&domain=pdf

Artificial neural networks-based simulation of obstacle detection with a mobile robot in a virtual
environment

63
Copyright:

©2023 Crnokić et al.

Citation: Crnokić B, Peko I, Grubišić M. Artificial neural networks-based simulation of obstacle detection with a mobile robot in a virtual environment. Int Rob
Auto J. 2023;9(2):62‒67. DOI: 10.15406/iratj.2023.09.00265

The programming was done in the MatLab software package,
while the robot simulation was performed in the RobotinoSIM
virtual environment.18 A virtual model of the Robotino mobile
robot was utilized to perform the tasks of detecting and avoiding
obstacles. The Robotino mobile robot is capable of omnidirectional
movement through the environment and has an external sensor system
comprising a stereo camera, 9 IR sensors, and bumpers in the basic
configuration. For the experiment presented in this paper, a Logitech
C250 camera was used to gather data (images and videos) from the
environment, and three SHARP GP2D120 IR sensors (IR1, IR2, and
IR9) were employed to measure the distance from obstacles in front
of the robot.19

Obstacle detection is carried out in two parts: for the camera
readings and for the IR sensor readings. The camera is employed
for landmark detection and localization, such as detecting edges,
overhangs, and robot movement space. IR sensors are employed to
measure the distance from obstacles and detect them in real-time. The
Canny method combined with LPQ description was utilized for image
preprocessing, such as edge detection and feature extraction.

An ANN performs the task of “teaching the system” to recognize
obstacles in the environment by using information obtained from the
camera. Only certain obstacles were taken for training the network,
which greatly reduced the computational complexity of the control
system. After the training, the system is able to decide whether the
robot should continue moving forward (if one of the learned obstacles
is not detected), or to avoid the obstacle (if one of the obstacles is
detected). Additional information about detected obstacles (from 3
IR sensors). Based on this information, the robot has a complete set
of necessary information in order to make a final decision on which
actions to take.

Acquisition of information from the environment

The Robotino View program20 was used to collect initial images
for network training and to set up video and image resolution values.
Robotino View has a simple interface for connecting to Robotino
and using tools to collect and save images and videos, as shown in
Figure 2a, Figure 2b shows the position of Robotino when it detected
the obstacle. The Control Panel block can be used to bring the robot
to any position in the environment. The Camera block activates the
camera module, and the Image Writer block is used to save images. In
this module, two image resolutions, 320 x 240 and 640 x 480, can be
selected, as shown in Figure 2c. The resolution of the collected images
for neural network training in this experiment is 320 x 240.

Figure 2 a) Image collecting in Robotino View program, b) Encountering an
obstacle in the RobotinoSIM environment, c) Adjusting the image resolution.

After connecting the robot to the MatLab interface using the IP
address ‘127.0.0.1:8080’, the real-time image collection process is
enabled by using the following commands:

CameraId = Camera_construct;

Camera_setComId (CameraId, ComId);

if ~(Camera_setStreaming(CameraId, 1) == 1)

 disp (‘Camera_set Streaming failed.’);

 end;

if (Camera_grab(CameraId) == 1)

 img = Camera_getImage(CameraId);

 end

Obtaining information from the three IR sensors is done by using
the following commands:

DistanceSensor0Id = DistanceSensor_construct (0);

DistanceSensor1Id = DistanceSensor_construct (1);

DistanceSensor8Id = DistanceSensor_construct (8);

value0 = DistanceSensor_voltage(DistanceSensor0Id)

 value1 = DistanceSensor_voltage(DistanceSensor1Id)

 value8 = DistanceSensor_voltage(DistanceSensor8Id)

 if((0.7 <= value0) | (0.7 <=value1) | (0.7 <= value8)) & (class==1)

The three infrared sensors are labeled as DistanceSensor0,
DistanceSensor1, and DistanceSensor8, respectively, and are used
to obtain information. A voltage of 0.7 V, which corresponds to a
distance of approximately 17 cm, was set as the reference distance
for obstacle detection. If the voltage values obtained from the sensors
are lower than this value, it means that an obstacle has been detected,
and the task of avoiding the obstacle will be activated. Conversely, if
the voltage values are higher, the system will assume that no obstacle
is present.

Edge detection and feature extraction from images

In the process of detecting edges in images with obstacles, the
Canny edge detection method was used. Images were obtained
from the camera, and before applying the Canny method, they
were converted from an RGB image to a grayscale image. All these
operations were performed using the Image Processing Toolbox
within MatLab. The part of the algorithm responsible for these image
pre-processing operations is as follows:

function [yind]=img_class(img)

load lpqtrain

img=rgb2gray(img);

canny_filtrd_img=edge(img,’canny’);

feature_v=(lpq(canny_filtrd_img))’;

y = net(feature_v);

yind = vec2ind(y);

end

In addition to the Canny filter, we used the LPQ (Local Phase
Quantization)21 descriptor for image pre-processing and feature
extraction. The downloaded images were in matrix form, and after
processing, they needed to be transformed into a vector column for
further use in the neural network training process.

Avoidance of obstacles detected by IR sensor

The part of the algorithm responsible for detecting and avoiding of
obstacles is as follows:

https://doi.org/10.15406/iratj.2023.09.00265

Artificial neural networks-based simulation of obstacle detection with a mobile robot in a virtual
environment

64
Copyright:

©2023 Crnokić et al.

Citation: Crnokić B, Peko I, Grubišić M. Artificial neural networks-based simulation of obstacle detection with a mobile robot in a virtual environment. Int Rob
Auto J. 2023;9(2):62‒67. DOI: 10.15406/iratj.2023.09.00265

while((Bumper_value(BumperId) ~= 1)) && stoppressed==0

 OmniDrive_setVelocity(OmniDriveId, 100, 0 ,0)

 tElapsed = toc(tStart);

 if(tElapsed >= 60)

 break;

 end;

 value0 = DistanceSensor_voltage(DistanceSensor0Id)

 value1 = DistanceSensor_voltage(DistanceSensor1Id)

 value8 = DistanceSensor_voltage(DistanceSensor8Id)

 if((0.7 <= value0)|(0.7 <=value1)|(0.7 <= value8))&(class==1)

 % Obstacle approach

 break;

 else

 % There is no obstacle in front of the robot

 OmniDrive_setVelocity(OmniDriveId, 100, 0 ,0);

 end;

end

 OmniDrive_setVelocity(OmniDriveId, 0, 0 ,0);

 delay(1)

 OmniDrive_setVelocity(OmniDriveId, 0, 100 ,0);

 delay(3)

 OmniDrive_setVelocity(OmniDriveId, 100, 0 ,0);

 delay(4)

 OmniDrive_setVelocity(OmniDriveId, 0, -100 ,0);

 delay(3)

 OmniDrive_setVelocity(OmniDriveId, 100, 0 ,0);

The obstacle avoidance vector is determined based on whether
any of the three IR sensors has detected an obstacle. Accordingly, two
velocities are defined:

• vx in the direction of the robot’s movement along the x axis, and

• vy in the direction of the robot’s movement along the y axis.

In the previous code, these velocities, as well as the robot’s angular
velocity ω, are represented in the following format:

OmniDrive_setVelocity(OmniDriveId, vx, vy ,ω)

The velocities are expressed in mm/s. Depending on the direction
in which the obstacle is detected, their values can be 0, 100, or -100
mm/s. The robot can move in the following ways depending on which
sensor detects the obstacle:

	 forward, for vx = 100, vy = 0 (if no obstacle is detected in front
of the robot),

	 right, for vx = 0, vy = 100 (if an obstacle is detected to the left of
the robot), and

	 left, for vx = 0, vy = -100 (if an obstacle is detected to the right of
the robot).

Due to the simplification of the robot’s movements when avoiding
obstacles, the angular velocity of the robot was not applied. To rotate
the robot when avoiding obstacles, all 9 IR sensors must be active,
allowing detection of all obstacles within a 360° radius around the
robot. Since only 3 IR sensors are active in the proposed system, it is
impossible to guarantee that the robot will not collide with an obstacle
that was not detected by one of the 3 active sensors during a possible
rotation.

Artificial neural network

The design of the ANN is realized through the following 7 steps:

• Collecting data,

• Creating the neural network,

• Configuring the neural network,

• Initializing the weights and biases,

• Training the neural network,

• Validating the neural network (analysis after learning), and

• Using the neural network.

Before starting the process of designing a neural network, it is
necessary to prepare data samples correctly and with high quality for
learning the network. It is difficult to incorporate prior knowledge into
the network, so the network will only be as precise and accurate as the
information used to train it. It is essential that the information used for
training covers the complete range of inputs for which the network is
used. After collecting the data, two steps must be taken before using
it for training:

• Pre-processing of the data is required (Canny + LPQ), and

• The data must be divided into different subsets.

For training the neural network in this experiment, 36 pictures of
obstacles were taken:

x = csvread(‘training_featuressslpq.csv’);

For testing, 9 more pictures of the same obstacles were taken:

tst_inputs=csvread(‘testing_featuressslpq.csv’);

The obstacles are classified into three different categories, with
12 pictures in each category. The entire set of training images is then
divided into three subsets as follows:

• 70/100 (70%) for training:

net.divideParam.trainRatio = 70/100;

• 15/100 (15%) for validation (used to validate that the network is
generalized and to stop training before overtraining):

net.divideParam.valRatio = 15/100;

• 15/100 (15%) for testing (used as a completely independent test
of network generalization):

net.divideParam.testRatio = 15/100;

The artificial neural network used in this experiment is a multilayer
perceptron feedforward network for pattern recognition, with one
input, one output, and one hidden layer:

net = patternnet(hiddenLayerSize);

This type of ANN can be trained to classify patterns according
to a given target data set, and it is initiated in MATLAB with the

https://doi.org/10.15406/iratj.2023.09.00265

Artificial neural networks-based simulation of obstacle detection with a mobile robot in a virtual
environment

65
Copyright:

©2023 Crnokić et al.

Citation: Crnokić B, Peko I, Grubišić M. Artificial neural networks-based simulation of obstacle detection with a mobile robot in a virtual environment. Int Rob
Auto J. 2023;9(2):62‒67. DOI: 10.15406/iratj.2023.09.00265

‘patternnet’ function. The target value data of the pattern recognition
network consists of vectors where all values are 0 except for one
element which has a value of 1, where “i” is the class it represents.
The number of input and output nodes was selected in relation to the
requirements and functionality of the proposed system. The selection
of hidden layer nodes is more complex and comes down to the “trial-
and-error” method (i.e. testing the number of hidden nodes and
comparing them with the performance of the neural network). The
following structure was defined for the artificial neural network in
this experiment:

• The input layer consists of 256 input units (nodes) representing
the image obtained after preprocessing with the LPQ algorithm.
These are inputs from the LPQ descriptor formed from a
histogram of integer values of all image positions, and is used
as a 256-dimensional vector of image features. This represents
256 hypercubes in eight-dimensional space, resulting in an 8-bit
code. Since 36 images were taken for training, the network input
is essentially a 256 x 36 matrix.

• The hidden layer has 10 nodes.

• The output layer has 3 output nodes, where the nodes represent
outputs that specify one of three classes of input images.

When training the network, the target values are defined (the
correct output vector t for each of the input vectors, where the target
vector values are defined for each of the classes):

t = [1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
3 3 3 3];

The target vector is a binary value with the index of correct classes
defined as 1, or with the index of all other classes (i.e. incorrect
classes) defined as 0. The target values are represented by a 3 x 36
matrix. Target values in the case of network testing are represented
by a 3 x 9 matrix, with the same characteristics as the previous one:

t=[1 1 1 2 2 2 3 3 3];

Before training the ANN, initialization is necessary. For this neural
network, the initialization operation is performed automatically by
MATLAB each time the training process starts. When training the
network for pattern recognition, the following three functions are
most commonly used: ‘trainlm’, ‘trainbr’, and ‘trainscg’. In most
cases, the ‘trainlm’ function proves to be the fastest, while ‘trainbr’
is a slower function but a better choice for very demanding problems.
The ‘trainscg’ function takes up the least memory resources and is
suitable for cases where memory is limited. In this experiment, the
‘trainscg’ learning function representing the SCG algorithm was used
to train the ANN:

TrainFcn = ‘trainscg’;

[net, tr] = train(net, x, targets);

During the training process of the network, the progress is
constantly updated in the “nntraintool” window, as shown in Figure 3.

“Random” distribution was selected for data distribution using the
‘dividerand’ command. As mentioned earlier, the SCG algorithm was
used for training. To analyze the performance of the neural network, the
“Cross-Entropy” function was used via the “crossentropy” command.
This function calculates the network performance for a given input
and output values with the ability to select performance weights and
other parameters. In the ANN training monitoring window, it is also
possible to monitor the number of iterations (“Iterations”), i.e., the
steps in the algorithm in which the weights are adjusted, as well as the

entire epoch (“Epoch”), which shows one representation of the entire
learning set. There is also the possibility of monitoring the learning
time of the network with the “Time” function.

Figure 3 Monitoring the training process of the artificial neural network.

After repeating the network training process, it is possible to
obtain different results for each case due to different initial values of
the weights and different data distributions in the subsets for learning,
validation, and testing. As a result, different neural networks trained
for the same problem can produce completely different output values
for the same input values. To avoid this, i.e., to ensure a network that
will be as accurate as possible, it is necessary to train the network
several times. For this reason, this network was also trained through
several repetitions.

GUI for MatLab

To control the movement of the robot and the functions of the
proposed system from the MatLab environment, a separate GUI was
created. The GUI allows the control algorithm to start, as well as
individual control of the robot’s movements in different directions.
It also includes all the previously mentioned functions of gathering
information from sensors, detecting obstacles, and undertaking tasks
of moving and avoiding obstacles. Figure 4 shows the GUI.

Figure 4 GUI for MatLab.

Controlling the basic movements of the robot (forward, backward,
left, right, etc.) is possible after executing the “Start” command. This
function was created to enable the robot to be positioned in front
of an obstacle before testing the control algorithm. The algorithm
is activated by executing the “Launch program” command. This

https://doi.org/10.15406/iratj.2023.09.00265

Artificial neural networks-based simulation of obstacle detection with a mobile robot in a virtual
environment

66
Copyright:

©2023 Crnokić et al.

Citation: Crnokić B, Peko I, Grubišić M. Artificial neural networks-based simulation of obstacle detection with a mobile robot in a virtual environment. Int Rob
Auto J. 2023;9(2):62‒67. DOI: 10.15406/iratj.2023.09.00265

command triggers the robot’s autonomous movement and obstacle
avoidance capabilities. Another function is “Image display,” which
allows for real-time display of images captured by the robot’s sensors.

Results analysis
Various types of obstacles, including rollers of different colors,

walls, boxes, and lines on the floor, (Figure 5) were used in the
RobotinoSIM virtual environment. For each obstacle, 20 detection
attempts were made, and successful and unsuccessful attempts were
recorded. The robot approached the obstacles from different sides,
angles, and distances.

Figure 5 Obstacles in RobotinoSIM virtual environment.

In the MatLab command line it is possible to see which of the
sensors detected an obstacle. If one of the IR sensors detects an
obstacle, voltage values will appear in the command line (value0,
value1, value8), as shown in Figure 6a. If the camera detects an
obstacle, the class from which the neural network classified a particular
obstacle will be displayed (class = 1, class = 2, class = 3). (Figure 6b)

Figure 6 The MatLab command line displays information from various
sensors.

A total of 180 obstacle detection attempts were made. In 154
attempts, some of the obstacles were successfully detected, while 26
attempts ended unsuccessfully, i.e., the obstacles were not detected.
Such a ratio of detected and undetected obstacles resulted in an
85.56% accuracy of obstacle detection. Since the system is based on
the fusion of a camera and infrared sensors, the ratio of the share of
individual sensors in detecting obstacles is also interesting. The three
IR sensors detected the obstacle 98 times (63.64%), while the camera
detected obstacles 56 times (36.36%). It is not possible to manipulate
obstacles in the RobotinoSIM environment using a specific command.
However, it was possible to overturn some of the obstacles with the
robot’s movements. Overturned obstacles had a different appearance,
depending on the position they remained after overturning. These
overturned obstacles became a good test for the system since the
neural network was not trained to detect such “new” obstacles.

Conclusion
In line with previous experiences, this experiment has also

demonstrated that obstacle detection and avoidance is a highly

complex task. However, the results of obstacle detection can ultimately
be satisfactory. When detecting all obstacles, the system has proven to
be just as accurate as when detecting obstacles presented to the ANN
during the training process. The obtained results are a good indication
that the neural network was not over trained, i.e., the network did
not become overly specialized in detecting only samples from the
training, validation, and testing sets. Artificial neural networks have
proven to be a powerful tool for use in such environments where input
information is not always unambiguous and of the same character. The
structure and type of the neural network, as well as all the conditions
and parameters of the training in this experiment, have proven to
be adequate for the tasks of detecting obstacles. The classification
capabilities of ANN have proven to be excellent, even on examples of
obstacles not presented during the training process.

However, the accuracy of obstacle avoidance is significantly
limited by the use of only three infrared sensors, as these sensors
cover an angle of only 80º in front of the robot. Additionally, there
is the problem of camera immobility, as the camera can only receive
information about obstacles that are directly in front of the robot,
making it impossible to detect obstacles on the sides and behind the
robot. Due to all the aforementioned limitations, Robotino can avoid
obstacles only by moving forward, left, or right.

The disadvantage of using artificial neural networks is the
demanding process of collecting and preparing input datasets that
will provide the most accurate information required for optimal
implementation of the network training process. Moreover, for greater
classification accuracy, it is necessary to present larger datasets, which
can ultimately result in longer learning and data processing times, as
well as higher computer requirements.

Sensor fusion has proven to be a much better solution than the
independent use of IR sensors or cameras. Further research may
include upgrading the system with other types of sensors, such as
ultrasound, laser scanners, 3D or thermal cameras, etc. By including
one of the mentioned sensors, it will be possible to replace the
shortcomings of the camera and IR sensor and, with their fusion, raise
the level of navigation accuracy and improve system performance.

Acknowledgements
None.

Conflicts of interests
Author declares that there is no conflict of interest.

References
1. Andreev V, Tarasova V. The mobile robot control for obstacle avoidance

with an artificial neural network application. Ann DAAAM Proc Int
DAAAM Symp. 2019;30(1):724–732.

2. Farag KKA, Shehata HH, El-Batsh HM. Mobile robot obstacle
avoidance based on neural network with a standardization technique. J
Robot. 2021;2021.

3. Lee HY, Ho HW, Zhou Y. Deep Learning-based monocular obstacle
avoidance for unmanned aerial vehicle navigation in tree plantations:
Faster region-based convolutional neural network approach. J Intell
Robot Syst Theory Appl. 2021;101(1).

4. Rezaei N, Darabi S. Mobile robot monocular vision-based obstacle
avoidance algorithm using a deep neural network. Evol Intell; 2023.

5. Eneh Princewill C, Eneh Innocent I, Egoigwe Sochima V, et al. Deep
artificial neural network based obstacle detection and avoidance for a
non-holonomic mobile robot. 2019;16(3).

https://doi.org/10.15406/iratj.2023.09.00265
https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2019/099.pdf
https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2019/099.pdf
https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2019/099.pdf
https://www.hindawi.com/journals/jr/2021/1129872/
https://www.hindawi.com/journals/jr/2021/1129872/
https://www.hindawi.com/journals/jr/2021/1129872/
https://www.springerprofessional.de/en/deep-learning-based-monocular-obstacle-avoidance-for-unmanned-ae/18668526
https://www.springerprofessional.de/en/deep-learning-based-monocular-obstacle-avoidance-for-unmanned-ae/18668526
https://www.springerprofessional.de/en/deep-learning-based-monocular-obstacle-avoidance-for-unmanned-ae/18668526
https://www.springerprofessional.de/en/deep-learning-based-monocular-obstacle-avoidance-for-unmanned-ae/18668526
https://www.springerprofessional.de/en/mobile-robot-monocular-vision-based-obstacle-avoidance-algorithm/23999394
https://www.springerprofessional.de/en/mobile-robot-monocular-vision-based-obstacle-avoidance-algorithm/23999394
https://oer.unn.edu.ng/read/deep-artificial-neural-network-based-obstacle-detection-and-avoidance-for-a-non-holonomic-mobile-robot
https://oer.unn.edu.ng/read/deep-artificial-neural-network-based-obstacle-detection-and-avoidance-for-a-non-holonomic-mobile-robot
https://oer.unn.edu.ng/read/deep-artificial-neural-network-based-obstacle-detection-and-avoidance-for-a-non-holonomic-mobile-robot

Artificial neural networks-based simulation of obstacle detection with a mobile robot in a virtual
environment

67
Copyright:

©2023 Crnokić et al.

Citation: Crnokić B, Peko I, Grubišić M. Artificial neural networks-based simulation of obstacle detection with a mobile robot in a virtual environment. Int Rob
Auto J. 2023;9(2):62‒67. DOI: 10.15406/iratj.2023.09.00265

6. Khan MO, Parker GB. Vision based indoor obstacle avoidance
using a deep convolutional neural network. Science and Technology
Publications. 2019;403‒411.

7. Farias G, Fabregas E, Peralta E, et al. A neural network approach for
building an obstacle detection model by fusion of proximity sensors
data. Sensors (Basel). 2018;18(3):683.

8. Nagarani R, Nithyavathy N, Parameshwaran R. Lowcost mobile robot
using neural networks in obstacle detection; 2013.

9. Medina-Santiago A, Camas-Anzueto JL, Vazquez-Feijoo JA, et al.
Neural control system in obstacle avoidance in mobile robots using
ultrasonic sensors. Journal of Applied Research and Technology.
2014;12(1):104‒110 .

10. The MathWorks Inc. Avoid obstacles using reinforcement learning for
mobile robots-MATLAB &Simulink.

11. Faizullin RV. Simulator of the navigation equipped with LIDAR of
the mobile robot based on the neural network. Materials Science and
Engineering; 2020.

12. Antúnez E, Palomino AJ, Marfil R, et al. Perceptual organization
and artificial attention for visual landmarks detection. Cogn Process.
2013;14(1):13–18.

13. Crnokić B, Grubišić M. Fusion of infrared sensors and camera for
mobile robot navigation system-simulation scenario. In Proceedings
of 13th International Scientific Conference Novi Sad; Serbia. 2018;28-
29:71‒75.

14. Li Y, Dai S, Shi Y, et al. Navigation simulation of a mecanum wheel
mobile robot based on an improved A* Algorithm in unity3D. Sensors
(Switzerland). 2019;19(13):2976.

15. Ngwenya T, Ayomoh M, Yadavalli S. Virtual obstacles for sensors
incapacitation in robot navigation: A systematic review of 2D path
planning. Sensors (Basel). 2022;22(18):6943–6943.

16. Verbitsky NS, Chepin EV, Gridnev AA. Experimental studies of a
convolutional neural network for application in the navigation system of
a mobile robot. Procedia Comput Sci. 2018;145:611–616.

17. Crnokić B. Infrared and vision sensors a mobile robot navigation
system; 2020.

18. Festo.com. Robotino SIM -Robotino SIM - Other training software -
Digital Learning - Learning Systems - Festo Didactic; 2023.

19. Festo Didactic. Robotino® Mobile robot platform for research and
training. Denkendorf: 56940; 2013.

20. Festo.com. Robotino® View-Programming-Robotino®-Services- Festo
Didactic; 2023.

21. Pedone M, Heikkilä J. Local phase quantization descriptors for
blur robust and illumination invariant recognition of color textures.
Proceedings of the 21st International Conference on Pattern Recognition
(ICPR2012); 2012.

https://doi.org/10.15406/iratj.2023.09.00265
https://www.scitepress.org/Papers/2019/81651/81651.pdf
https://www.scitepress.org/Papers/2019/81651/81651.pdf
https://www.scitepress.org/Papers/2019/81651/81651.pdf
https://pubmed.ncbi.nlm.nih.gov/29495338/
https://pubmed.ncbi.nlm.nih.gov/29495338/
https://pubmed.ncbi.nlm.nih.gov/29495338/
https://www.ijser.org/researchpaper/Lowcost-Mobile-Robot-using-Neural-Networks-in-Obstacle-Detection.pdf
https://www.ijser.org/researchpaper/Lowcost-Mobile-Robot-using-Neural-Networks-in-Obstacle-Detection.pdf
https://www.sciencedirect.com/science/article/pii/S1665642314716104
https://www.sciencedirect.com/science/article/pii/S1665642314716104
https://www.sciencedirect.com/science/article/pii/S1665642314716104
https://www.sciencedirect.com/science/article/pii/S1665642314716104
https://www.mathworks.com/help/robotics/ug/avoid-obstacles-using-reinforcement-learning-for-mobile-robots.html
https://www.mathworks.com/help/robotics/ug/avoid-obstacles-using-reinforcement-learning-for-mobile-robots.html
https://iopscience.iop.org/article/10.1088/1757-899X/873/1/012023/pdf
https://iopscience.iop.org/article/10.1088/1757-899X/873/1/012023/pdf
https://iopscience.iop.org/article/10.1088/1757-899X/873/1/012023/pdf
https://pubmed.ncbi.nlm.nih.gov/23328946/
https://pubmed.ncbi.nlm.nih.gov/23328946/
https://pubmed.ncbi.nlm.nih.gov/23328946/
https://pubmed.ncbi.nlm.nih.gov/31284498/
https://pubmed.ncbi.nlm.nih.gov/31284498/
https://pubmed.ncbi.nlm.nih.gov/31284498/
https://pubmed.ncbi.nlm.nih.gov/36146292/
https://pubmed.ncbi.nlm.nih.gov/36146292/
https://pubmed.ncbi.nlm.nih.gov/36146292/
https://www.sciencedirect.com/science/article/pii/S1877050918323627
https://www.sciencedirect.com/science/article/pii/S1877050918323627
https://www.sciencedirect.com/science/article/pii/S1877050918323627
https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2020/working_papers/dpn23427_a_1_Crnokic.pdf
https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2020/working_papers/dpn23427_a_1_Crnokic.pdf
https://www.festo-didactic.com/int-en/learning-systems/digital-learning/other-training-software/robotino-sim/robotino-sim.htm?fbid=aW50LmVuLjU1Ny4xNy4xOC4xMjE5LjczMjg
https://www.festo-didactic.com/int-en/learning-systems/digital-learning/other-training-software/robotino-sim/robotino-sim.htm?fbid=aW50LmVuLjU1Ny4xNy4xOC4xMjE5LjczMjg
http://www.festo-didactic.com/
http://www.festo-didactic.com/
https://www.festo-didactic.com/int-en/services/robotino/programming/robotino-view/?fbid=aW50LmVuLjU1Ny4xNy4zNC4xNDI2
https://www.festo-didactic.com/int-en/services/robotino/programming/robotino-view/?fbid=aW50LmVuLjU1Ny4xNy4zNC4xNDI2
https://ieeexplore.ieee.org/document/6460669
https://ieeexplore.ieee.org/document/6460669
https://ieeexplore.ieee.org/document/6460669
https://ieeexplore.ieee.org/document/6460669

	Title
	Abstract
	Keywords
	Introduction
	The proposed system
	Structure of the proposed system
	Acquisition of information from the environment
	Edge detection and feature extraction from images
	Avoidance of obstacles detected by IR sensor
	Artificial neural network
	GUI for MatLab

	Results analysis
	Conclusion
	Acknowledgements
	Conflicts of interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

