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Introduction
The Rubik’s Snake is a toy that was invented by Prof. Rubik in 

1981.1 It consists of right isosceles triangular prisms (what we are 
calling blocks) that, except for the first and last block, are connected to 
two other blocks at the centers of the square faces. At each connection, 
one can twist the Rubik’s Snake.

The Rubik’s Snake has been used as a tool for the study of protein 
folding2 and for the construction of reconfigurable modular robots.3–5 
More applications of robots can be found in6,7 Some ideas in the 
study of Rubik’s Snake such as the use of rotation matrix are also 
used in rigid Origami folding.8,9 In previous papers that the first author 
collaborated with others, strategies have been given for the design 
of a Rubik’s Snake,10 and some mathematical problems concerning 
a Rubik’s Snake have been studied.11 Rotations that are not 0◦ (or 
360◦), 90◦, 180◦, or 270◦ are mentioned in10 but there was not much 
theoretical work. On the other hand,11 has quite some theoretical work 
but is only concerned with integer multiple of 90-degree rotations. In12 
Rubik’s Snakes with general rotation angles were studied and some 
theoretical work was presented. In13 we proved some theorems about 
palindromic, periodic, and Mӧbius Rubik’s Snakes.

Knot theory14 is an interesting research area in mathematics that 
drew a lot of attention. However, how could a Rubik’s Snake form 
a knot is not reported in the literature until our recent publication15 
in which possible shortest Rubik’s Snake trefoil knot paths with 34 
blocks and possible shortest tube version (with general rotation angles 
not limited to integer multiple of 90 degrees) of Rubik’s Snake trefoil 
knot path were presented.

In protein folding,2 a non-trivial knot could be formed. The shortest 
path is a relevant question to ask. For a trivial knot, 4 blocks of a 
Rubik’s Snake can form a closed loop, which has the shortest path. In 
this paper, we study the shortest path for a Rubik’s Snake non-trivial 
prime knot with up to 5 crossings. Knots are classified according to 
their isotopy classes. For non-trivial prime knots up to 5 crossings, we 
have 31 (trefoil), 41, 51, and 52. Only the 31 (trefoil) knot was studied 
in our previous paper.15 The method of exhausting short palindromic 
sequences in that paper no longer works for more complicated knots 
due to the cost. Our method is to use certain key patterns combined 
with local searches. We used the DT (Dowker-Thistlethwaite) codes 

to verify that all the results are indeed the knots we claimed they are. 
This was not done in our previous work15 because we only studied the 
trefoil knot in it which is relatively simple. When the crossing number 
goes up, the isotopy of knots gets more complicated and the DT codes 
are used to keep track and make the right classification.

The organization is as follows: In Section 2, we summarize our 
previous work on the simplest nontrivial knot, i.e., the trefoil knot. In 
Section 3, we consider prime knots with 4 to 5 crossings. We conclude 
in Section 4.

The trefoil knot
The Rubik’s Snake trefoil knot has been studied by us in the past. 

We just briefly summarize the results. In15 36 solutions of possible 
shortest Rubik’s Snake trefoil knots were given. 6 of them are 
palindromic sequences. What have been verified are the following: 
there are no Rubik’s Snake trefoil knots with less than 34 blocks 
that have period more than 1 (period 2 and 3 are verified15 and trefoil 
knot cannot have period more than 3). There are no Rubik’s Snake 
trefoil knots with less than 34 blocks that are palindromic. From the 
construction of the 36 solutions, the key pattern appears to be optimal 
with no room to improve but there is no rigorous proof and it is too 
costly to verify all cases and make sure there is no solution with less 
than 34 blocks.

Prime knots with 4 to 5 crossings
For nontrivial knots other than 31, even exhausting period 2 or 

palindromic Rubik’s Snakes would be too expensive. We have to rely 
on an approach with affordable computational cost. The main idea is 
to look for a short loop with a hole so that the snake can go through 
the hole to form a nontrivial knot. For some knots, the hole needs to 
be larger so that the snake can go through it twice.

Consider the knot 41. The structure of the knot can be seen in 
Figure 1. The 4 crossings are clearly seen and it is an alternating knot 
diagram because the under and overpasses alternate. The shortest 41 
knot we found using a Rubik’s Snake has 46 blocks shown in Figure 
2 with the following sequence:

[3,0,0,0,3,0,0,1,2,0,1,1,0,0,0,1,0,1,1,3,3,1,1,0,0,1,0,3,1,1,0,1,3,0,0
,1,0,3,3,2,3,0,3,3,0,2].
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Abstract

A Rubik’s Snake is a toy that was invented over 40 years ago together with the more famous 
Rubik’s Cube. It can be twisted into many interesting shapes including knots. Four blocks 
can form a trivial knot. In this paper, we study how many blocks are needed to form a 
nontrivial knot with up to 5 crossings. The results are classified using the DT (Dowker-
Thistlethwaite) code to make sure each design is indeed the knot we claimed it is. A line 
representation is used to clearly reveal the knot structure of the Rubik’s Snake. Exhaustive 
local searches are performed to verify that no local improvement is possible for the shortest 
paths we found.

International Robotics & Automation Journal

Mini Review Open Access

https://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.15406/iratj.2022.08.00243&domain=pdf


Shortest paths of Rubik’s Snake prime knots up to 5 crossings 48
Copyright:

©2022 Hou et al. 

Citation: Hou S, Su J. Shortest paths of Rubik’s Snake prime knots up to 5 crossings. Int Rob Auto J. 2022;8(2):47‒50. DOI: 10.15406/iratj.2022.08.00243

Figure 1 The line representation of A Rubik’s Snake 41 knot with 46 blocks.

Figure 2 A Rubik’s Snake 41 knot with 46 blocks.

Here the notation is the same as in11 and.15 Start with a straight 
ruler of a Rubik’s Snake pointing upward. For each joint, “0” means 
do not rotate, “1” means rotate 90 degrees to the right, “2” means 
rotate 180 degrees, “3” means rotate 90 degrees to the left. We do not 
allow collision between any two blocks but they can touch each other. 
If we connect a line from the center of the entrance square face of a 
block to the center of the exit square face of a block, in the end, we 
get the line representation in Figure 1. That is, this figure is not just a 
random representation of the 41 knot. It uses the line segments related 
to a Rubik’s Snake. A DT code can be derived from the figure as [4, 6, 
8, 2], which indeed corresponds to 41 knot.

Local searches are performed to make sure there is no local 
substitution to make the number of blocks less without changing the 
knot’s isotopy class. It can be seen from Figure 2 that the structure 
is indeed compact with no room to improve. Although this is not a 
rigorous proof that there is no shorter solution, we believe that the 
result cannot be improved.

In fact, we found at least 4 ∗ (5 + 7 + 19 + 24) = 220 different 
solutions of 41 knot with 46 blocks.

[30003001201100010A0B00332303302] or

[30003001201100010A0B00333101101] or

[30003001201100010A0B10332303302] or

[30003001201100010A0B10333101101].

Here A has 4 choices [031011], [110130], [113311] and [121121]. 
For each fixed A, B has 5 or 7 or 19 or 24 solutions based on the 
sequences above. The length of the subsequence B is 11.

For the first sequence, the 5 solutions for B are [0,1,1,2,1,0,1,0,0,2,3], 
[1,3,3,2,3,0,3,0,0,1,3]

[3,0,1,3,0,0,1,0,0,2,3], [3,0,2,1,0,0,3,3,0,2,3], [3,3,3,1,1,0,1,0,0,2,3].

For the second sequence, the 7 solutions for B are 
[0,1,1,2,1,0,1,0,0,2,3], [1,3,3,2,3,0,3,0,0,1,3]

[2,0,2,3,0,0,1,1,0,1,3], [2,0,3,1,0,0,3,0,0,1,3]

[3,0,1,3,0,0,1,0,0,2,3], [3,0,2,1,0,0,3,3,0,2,3]

[3,3,3,1,1,0,1,0,0,2,3].

For the third sequence, the 19 solutions for B are 
[0,1,0,3,0,3,1,0,1,1,0], [0,1,0,3,1,1,0,1,3,0,0]

[0,1,0,3,1,1,3,3,1,1,0], [0,1,0,3,1,2,1,1,2,1,0]

[0,1,1,1,3,0,0,1,3,0,0], [0,1,1,1,3,0,3,3,1,1,0]

[0,1,1,1,3,1,1,1,2,1,0], [0,1,1,2,1,0,0,3,2,0,0]

[0,1,1,2,1,3,0,1,2,1,0], [1,3,3,2,3,0,3,0,3,3,1]

[1,3,3,2,3,0,3,1,1,1,2], [3,0,1,3,0,0,0,3,2,0,0]

[3,0,1,3,0,3,0,1,2,1,0], [3,0,2,1,0,0,0,1,2,0,1]

[3,3,3,0,3,0,0,1,3,0,0], [3,3,3,0,3,0,3,3,1,1,0]

[3,3,3,0,3,1,1,1,2,1,0], [3,3,3,1,1,0,0,3,2,0,0],  [3,3,3,1,1,3,0,1,2,1,0].

For the fourth sequence, the 24 solutions for B are 
[0,1,0,3,0,3,1,0,1,1,0], [0,1,0,3,1,1,0,1,3,0,0]

[0,1,0,3,1,1,3,3,1,1,0], [0,1,0,3,1,2,1,1,2,1,0]

[0,1,1,1,3,0,0,1,3,0,0], [0,1,1,1,3,0,3,3,1,1,0]

[0,1,1,1,3,1,1,1,2,1,0], [0,1,1,2,1,0,0,3,2,0,0]

[0,1,1,2,1,3,0,1,2,1,0], [1,3,3,2,3,0,3,0,3,3,1]

[1,3,3,2,3,0,3,1,1,1,2], [2,0,2,3,0,0,0,3,1,0,1]

[2,0,2,3,0,0,1,1,3,3,1], [2,0,2,3,0,0,1,2,1,1,2]

[2,0,3,1,0,0,3,0,3,3,1], [2,0,3,1,0,0,3,1,1,1,2]

[3,0,1,3,0,0,0,3,2,0,0], [3,0,1,3,0,3,0,1,2,1,0]

[3,0,2,1,0,0,0,1,2,0,1], [3,3,3,0,3,0,0,1,3,0,0]

[3,3,3,0,3,0,3,3,1,1,0], [3,3,3,0,3,1,1,1,2,1,0]

[3,3,3,1,1,0,0,3,2,0,0], [3,3,3,1,1,3,0,1,2,1,0].

To better explain our construction, we plot the key pattern 
[1033230330230003001201100010] of our 41 constrution in Figure 
3. It is one of the 4 sequences involving A and B above (with “A0B” 
removed and with a rotation). The other 3 sequences are similar. Note 
that the knot 41 has a name “Figure 8 knot” and we indeed let the 
Rubik’s Snake trace a shape like the number “8” if we change our 
view angle by 90 degrees and focus on the first 22 blocks. Although 
we do not have a rigorous proof, we believe this pattern will help us 
to get the shortest path because it does not appear to have room for 
improvement. After this pattern is determined, the rest is to start with 
the 29th block and go through the hole on the left surrounded by the 
5th, 8th and 14th block then from the back connect to the first block 
in the end. We could easily find a list of shortest paths from the 29th 
block to the hole using the computer. The solutions are our list of 4 
choices for sequence A. Then a “0” is followed because there is no 
other choice to avoid collision. After that, it is simply a local search 
by the computer to determine the sequence B.

Now consider the knot 51. The shortest we found has 52 blocks 
shown in Figure 5:

[0,1,1,1,3,3,0,2,1,1,2,1,0,1,2,1,1,3,0,0,1,0,0,2,3,0,0,0,3,0,1,2,1,0,1
,0,1,2,1,0,0,3,0,0,1,3,0,0,0,3,2,0]. The path is based on the key pattern 
in the following 31 with an extra room in a hole to allow crossing 
another time: [1,1,0,1,2,1,1,3,0,0,1,0,0,2,3,0,0,0,3,0,1,2,1,0,1,0,1,2,1
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,0,3,0,0,1,2,0]. Note that the shortest 31 we found has 34 blocks but 
does not have this extra room. This sequence with 36 blocks should 
be the shortest with such extra room needed for 51. This can also 
be understood from Figure 4. If we ignore part of the red and green 
lines from the lower left and let red connect with green directly, that 
removes two crossings and the obvious self-crossing and 51 is reduced 
to 31.

Figure 3 Key pattern of our construction for 41 knot. 

Figure 4 The line representation of A Rubik’s Snake 51 knot with 52 blocks.

Figure 5 A Rubik’s Snake 51 knot with 52 blocks. 

In Figure 4, we can ignore the obvious removable crossing on 
the left and the reduced diagram has 5 crossings corresponding to an 
alternating knot. A DT code can be derived as [6, 8, 10, 2, 4] which 
indeed corresponds to 51 knot.

Now consider the knot 52. The shortest we found has 56 blocks 
shown in Figure 7:

[0,0,1,3,0,3,0,0,0,1,2,1,0,3,0,0,0,3,2,0,3,3,0,0,1,2,1,2,1,0,1,1,0,2,1
,0,0,3,0,0,3,2,0,0,1,0,1,1,0,2,1,0,0,0,0,3].

The path is based on the key pattern in the following 31 with an 
extra room in a hole to allow crossing another time:

[1,2,1,0,1,0,1,2,1,0,3,0,0,0,3,2,0,3,3,0,0,1,2,1,2,1,0,1,1,0,2,1,0,0,3
,0]. Note that the shortest 31 we found has 34 blocks but does not have 
this extra room. This sequence with 36 blocks should be the shortest 
with such extra room needed for 52. This can also be understood from 
Figure 6. If we ignore the red line part and connect directly, it takes 
one crossing instead of three crossings for the red line part, saving two 
crossings. 52 is reduced to 31.

Figure 6 The line representation of A Rubik’s Snake 52 knot with 56 blocks.

Figure 7 A Rubik’s Snake 52 knot with 56 blocks. 

In Figure 6, we can ignore the obvious removable crossing in the 
middle and the reduced diagram has 5 crossings corresponding to an 
alternating knot. A DT code can be derived as [4, 8, 10, 2, 6] which 
indeed corresponds to 52 knot.

The fact that our 52 path with 56 blocks is longer than our 51 path 
with 52 blocks can be explained as follows. In Figure 4, to modify a 
36-block 31 with an extra hole, one only needs to go one more round 
and go through the extra hole. In Figure 6, to modify a 36-block 31 
with an extra hole, the additional red path has to push the green path 
away. That is to say, in addition to the cost of going one more round 
and going through the extra hole, there is some extra cost for the 
shortest path due to the structure of the 52 knot.

Just like the knots 31 and 41, we found many other solutions for 51 
and 52 that tied for the shortest as well. The idea is that we could keep 
some key patterns and let the computer do a local exhaustive search 
for less than 12 blocks quickly.

To ensure there is no easy local sequence substitution to improve 
the results, for the 41, 51, and 52 shown in figures, we exhausted all 
local substitutions by replacing a subsequence of length 10 and did 
not come up with any solution shorter than our results.

Conclusion
Finding the shortest path for a Rubik’s Snake nontrivial knot 

is challenging. This problem can be viewed as a model for protein 
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folding. With each joint having 4 choices, the total number of attempts 
is too many to have an exhaustive search. By using certain key patterns 
combined with local searches, we found possible shortest 41 knot with 
46 blocks, 51 knot with 52 blocks and 52 knot with 56 blocks. All the 
results are verified by DT codes to make sure they are indeed the knots 
we claimed they are. We verified that these results cannot be easily 
improved by substituting a subsequence of length 10 with a shorter 
subsequence. It would be interesting future work to see if there is a 
way to verify our results are indeed the shortest.
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