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Abstract

A Rubik’s Snake is a toy that was invented over 40 years ago together with the more famous
Rubik’s Cube. It can be twisted into many interesting shapes including knots. Four blocks
can form a trivial knot. In this paper, we study how many blocks are needed to form a
nontrivial knot with up to 5 crossings. The results are classified using the DT (Dowker-
Thistlethwaite) code to make sure each design is indeed the knot we claimed it is. A line
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representation is used to clearly reveal the knot structure of the Rubik’s Snake. Exhaustive

local searches are performed to verify that no local improvement is possible for the shortest

paths we found.
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Introduction

The Rubik’s Snake is a toy that was invented by Prof. Rubik in
1981." It consists of right isosceles triangular prisms (what we are
calling blocks) that, except for the first and last block, are connected to
two other blocks at the centers of the square faces. At each connection,
one can twist the Rubik’s Snake.

The Rubik’s Snake has been used as a tool for the study of protein
folding? and for the construction of reconfigurable modular robots.>
More applications of robots can be found in®’ Some ideas in the
study of Rubik’s Snake such as the use of rotation matrix are also
used in rigid Origami folding.®® In previous papers that the first author
collaborated with others, strategies have been given for the design
of a Rubik’s Snake,'” and some mathematical problems concerning
a Rubik’s Snake have been studied.'" Rotations that are not 0° (or
3607, 907, 1807, or 270" are mentioned in'® but there was not much
theoretical work. On the other hand,! has quite some theoretical work
but is only concerned with integer multiple of 90-degree rotations. In'?
Rubik’s Snakes with general rotation angles were studied and some
theoretical work was presented. In'3 we proved some theorems about
palindromic, periodic, and Mdbius Rubik’s Snakes.

Knot theory'* is an interesting research area in mathematics that
drew a lot of attention. However, how could a Rubik’s Snake form
a knot is not reported in the literature until our recent publication®
in which possible shortest Rubik’s Snake trefoil knot paths with 34
blocks and possible shortest tube version (with general rotation angles
not limited to integer multiple of 90 degrees) of Rubik’s Snake trefoil
knot path were presented.

In protein folding, a non-trivial knot could be formed. The shortest
path is a relevant question to ask. For a trivial knot, 4 blocks of a
Rubik’s Snake can form a closed loop, which has the shortest path. In
this paper, we study the shortest path for a Rubik’s Snake non-trivial
prime knot with up to 5 crossings. Knots are classified according to
their isotopy classes. For non-trivial prime knots up to 5 crossings, we
have 3, (trefoil), 4, 5, and 5,. Only the 3, (trefoil) knot was studied
in our previous paper.”* The method of exhausting short palindromic
sequences in that paper no longer works for more complicated knots
due to the cost. Our method is to use certain key patterns combined
with local searches. We used the DT (Dowker-Thistlethwaite) codes

to verify that all the results are indeed the knots we claimed they are.
This was not done in our previous work's because we only studied the
trefoil knot in it which is relatively simple. When the crossing number
goes up, the isotopy of knots gets more complicated and the DT codes
are used to keep track and make the right classification.

The organization is as follows: In Section 2, we summarize our
previous work on the simplest nontrivial knot, i.e., the trefoil knot. In
Section 3, we consider prime knots with 4 to 5 crossings. We conclude
in Section 4.

The trefoil knot

The Rubik’s Snake trefoil knot has been studied by us in the past.
We just briefly summarize the results. In'* 36 solutions of possible
shortest Rubik’s Snake trefoil knots were given. 6 of them are
palindromic sequences. What have been verified are the following:
there are no Rubik’s Snake trefoil knots with less than 34 blocks
that have period more than 1 (period 2 and 3 are verified" and trefoil
knot cannot have period more than 3). There are no Rubik’s Snake
trefoil knots with less than 34 blocks that are palindromic. From the
construction of the 36 solutions, the key pattern appears to be optimal
with no room to improve but there is no rigorous proof and it is too
costly to verify all cases and make sure there is no solution with less
than 34 blocks.

Prime knots with 4 to 5 crossings

For nontrivial knots other than 3,, even exhausting period 2 or
palindromic Rubik’s Snakes would be too expensive. We have to rely
on an approach with affordable computational cost. The main idea is
to look for a short loop with a hole so that the snake can go through
the hole to form a nontrivial knot. For some knots, the hole needs to
be larger so that the snake can go through it twice.

Consider the knot 4,. The structure of the knot can be seen in
Figure 1. The 4 crossings are clearly seen and it is an alternating knot
diagram because the under and overpasses alternate. The shortest 4,
knot we found using a Rubik’s Snake has 46 blocks shown in Figure
2 with the following sequence:

(3,0,0,0,3,0,0,1,2,0,1,1,0,0,0,1,0,1,1,3,3,1,1,0,0,1,0,3,1,1,0,1,3,0,0
,1,0,3,3,2,3,0,3,3,0,2].
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Figure | The line representation of A Rubik’s Snake 4, knot with 46 blocks.

Figure 2 A Rubik’s Snake 4, knot with 46 blocks.

Here the notation is the same as in'' and." Start with a straight
ruler of a Rubik’s Snake pointing upward. For each joint, “0” means
do not rotate, “1” means rotate 90 degrees to the right, “2” means
rotate 180 degrees, “3” means rotate 90 degrees to the left. We do not
allow collision between any two blocks but they can touch each other.
If we connect a line from the center of the entrance square face of a
block to the center of the exit square face of a block, in the end, we
get the line representation in Figure 1. That is, this figure is not just a
random representation of the 4, knot. It uses the line segments related
to a Rubik’s Snake. A DT code can be derived from the figure as [4, 6,
8, 2], which indeed corresponds to 4, knot.

Local searches are performed to make sure there is no local
substitution to make the number of blocks less without changing the
knot’s isotopy class. It can be seen from Figure 2 that the structure
is indeed compact with no room to improve. Although this is not a
rigorous proof that there is no shorter solution, we believe that the
result cannot be improved.

In fact, we found at least 4 = (5 + 7 + 19 + 24) = 220 different
solutions of 4, knot with 46 blocks.

30003001201100010A0B00332303302] or
30003001201100010A0B00333101101]
30003001201100010A0B10332303302] or
30003001201100010A0B10333101101].

Here A has 4 choices [031011], [110130], [113311] and [121121].
For each fixed A, B has 5 or 7 or 19 or 24 solutions based on the
sequences above. The length of the subsequence B is 11.

or

[
[
[
[

Forthefirstsequence, the 5 solutions forBare[0,1,1,2,1,0,1,0,0,2,3],
[1.3,3,2,3,0,3,0,0,1,3]

[3.0,1,3,0,0,1,0,0,2,31,[3,0,2,1,0,0,3,3,0,2,3],[3,3.,3,1,1,0,1,0,0,2,3].

For the second sequence, the 7 solutions for B are

[0,1,1,2,1,0,1,0,0,2,3], [1,3,3,2,3,0,3,0,0,1,3]
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[2,0,2,3,0,0,1,1,0,1,3], [2,0,3,1,0,0,3,0,0,1,3]
[330’ 1 ’350509190’032’3]9 [3905231’0’05353709253]
[3,3,3,1,1,0,1,0,0,2,3].

For the third sequence, the 19 solutions for B are

[0,1,0,3,0,3,1,0,1,1,0], [0,1,0,3,1,1,0,1,3,0,0]

0,1,0,3,1,1,3,3,1,1,0], [0,1,0,3,1,2,1,1,2,1,0]
0,1,1,1,3,0,0,1,3,0,0], [0,1,1,1,3,0,3,3,1,1,0]
0,1,1,1,3,1,1,1,2,1,0], [0,1,1,2,1,0,0,3,2,0,0]

[
[
[
[
[1,3,3,2,3,0,3,1,1,1,2], [3,0,1,3,0,0,0,3,2,0,0]
[

1. [

1. [

1. [

031’1’251539091’231’0]9 [1935332’3’05350739351]

LI

330’1’350539091’231’0]9 [3905231’0’05051729051]
1.

[3,3,3,0,3,0,0,1,3,0,0], [3,3,3,0,3,0,3,3,1,1,0
[3,3,3,0,3,1,1,1,2,1,01,[3,3,3,1,1,0,0,3,2,0,01,[3,3,3,1,1,3,0,1,2,1,0].

For the fourth sequence, the 24 solutions for B are

[0,1,0,3,0,3,1,0,1,1,0], [0,1,0,3,1,1,0,1,3,0,0]
[o,1,0,3,1,1,3,3,1,1,0], [0,1,0,3,1,2,1,1,2,1,0]
[o,1,1,1,3,0,0,1,3,0,0], [0,1,1,1,3,0,3,3,1,1,0]
[o,1,1,1,3,1,1,1,2,1,0], [0,1,1,2,1,0,0,3,2,0,0]
[o,1,1,2,1,3,0,1,2,1,0], [1,3,3,2,3,0,3,0,3,3,1]
[1,3,3,2,3,0,3,1,1,1,2], [2,0,2,3,0,0,0,3,1,0,1]

[2,0,2,3,0,0,1,1,3,3,1], [2,0,2,3,0,0,1,2,1,1,2]

[2,0,3,1,0,0,3,0,3,3,1], [2,0,3,1,0,0,3,1,1,1,2]

[3,0,1,3,0,0,0,3,2,0,0], [3,0,1,3,0,3,0,1,2,1,0]

[3,0,2,1,0,0,0,1,2,0,1], [3,3,3,0,3,0,0,1,3,0,0]

[3,3,3,0,3,0,3,3,1,1,0], [3,3,3,0,3,1,1,1,2,1,0]

[3,3,3,1,1,0,0,3,2,0,0], [3.,3,3,1,1,3,0,1,2,1,0].

To better explain our construction, we plot the key pattern
[1033230330230003001201100010] of our 4, constrution in Figure
3. It is one of the 4 sequences involving A and B above (with “A0B”
removed and with a rotation). The other 3 sequences are similar. Note
that the knot 4 has a name “Figure 8 knot” and we indeed let the
Rubik’s Snake trace a shape like the number “8” if we change our
view angle by 90 degrees and focus on the first 22 blocks. Although
we do not have a rigorous proof, we believe this pattern will help us
to get the shortest path because it does not appear to have room for
improvement. After this pattern is determined, the rest is to start with
the 29th block and go through the hole on the left surrounded by the
5th, 8th and 14th block then from the back connect to the first block
in the end. We could easily find a list of shortest paths from the 29th
block to the hole using the computer. The solutions are our list of 4
choices for sequence A. Then a “0” is followed because there is no
other choice to avoid collision. After that, it is simply a local search
by the computer to determine the sequence B.

Now consider the knot 5,. The shortest we found has 52 blocks
shown in Figure 5:

[o,1,1,1,3,3,0,2,1,1,2,1,0,1,2,1,1,3,0,0,1,0,0,2,3,0,0,0,3,0,1,2,1,0,1
,0,1,2,1,0,0,3,0,0,1,3,0,0,0,3,2,0]. The path is based on the key pattern
in the following 3, with an extra room in a hole to allow crossing
another time: [1,1,0,1,2,1,1,3,0,0,1,0,0,2,3,0,0,0,3,0,1,2,1,0,1,0,1,2,1
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,0,3,0,0,1,2,0]. Note that the shortest 3 we found has 34 blocks but
does not have this extra room. This sequence with 36 blocks should
be the shortest with such extra room needed for 5. This can also
be understood from Figure 4. If we ignore part of the red and green
lines from the lower left and let red connect with green directly, that
removes two crossings and the obvious self-crossing and 5, is reduced
to3,.

Figure 3 Key pattern of our construction for 4, knot.

Figure 4 The line representation of A Rubik’s Snake 5, knot with 52 blocks.

Figure 5 A Rubik’s Snake 5, knot with 52 blocks.

In Figure 4, we can ignore the obvious removable crossing on
the left and the reduced diagram has 5 crossings corresponding to an
alternating knot. A DT code can be derived as [6, 8, 10, 2, 4] which
indeed corresponds to 5, knot.

Now consider the knot 5,. The shortest we found has 56 blocks
shown in Figure 7:

[0,0,1,3,0,3,0,0,0,1,2,1,0,3,0,0,0,3,2,0,3,3,0,0,1,2,1,2,1,0,1,1,0,2,1
,0,0,3,0,0,3,2,0,0,1,0,1,1,0,2,1,0,0,0,0,3].
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The path is based on the key pattern in the following 3, with an
extra room in a hole to allow crossing another time:

[1,2,1,0,1,0,1,2,1,0,3,0,0,0,3,2,0,3,3,0,0,1,2,1,2,1,0,1,1,0,2,1,0,0,3
,0]. Note that the shortest 3, we found has 34 blocks but does not have
this extra room. This sequence with 36 blocks should be the shortest
with such extra room needed for 5,. This can also be understood from
Figure 6. If we ignore the red line part and connect directly, it takes
one crossing instead of three crossings for the red line part, saving two
crossings. 5, is reduced to 3,.

Figure 6 The line representation of A Rubik’s Snake 5, knot with 56 blocks.

Figure 7 A Rubik’s Snake 5, knot with 56 blocks.

In Figure 6, we can ignore the obvious removable crossing in the
middle and the reduced diagram has 5 crossings corresponding to an
alternating knot. A DT code can be derived as [4, 8, 10, 2, 6] which
indeed corresponds to 5, knot.

The fact that our 5, path with 56 blocks is longer than our 5, path
with 52 blocks can be explained as follows. In Figure 4, to modify a
36-block 3, with an extra hole, one only needs to go one more round
and go through the extra hole. In Figure 6, to modify a 36-block 3,
with an extra hole, the additional red path has to push the green path
away. That is to say, in addition to the cost of going one more round
and going through the extra hole, there is some extra cost for the
shortest path due to the structure of the 5, knot.

Just like the knots 3, and 4,, we found many other solutions for 5,
and 5, that tied for the shortest as well. The idea is that we could keep
some key patterns and let the computer do a local exhaustive search
for less than 12 blocks quickly.

To ensure there is no easy local sequence substitution to improve
the results, for the 4, 5, and 5, shown in figures, we exhausted all
local substitutions by replacing a subsequence of length 10 and did
not come up with any solution shorter than our results.

Conclusion

Finding the shortest path for a Rubik’s Snake nontrivial knot
is challenging. This problem can be viewed as a model for protein
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folding. With each joint having 4 choices, the total number of attempts
is too many to have an exhaustive search. By using certain key patterns
combined with local searches, we found possible shortest 4, knot with
46 blocks, 5 knot with 52 blocks and 5, knot with 56 blocks. All the
results are verified by DT codes to make sure they are indeed the knots
we claimed they are. We verified that these results cannot be easily
improved by substituting a subsequence of length 10 with a shorter
subsequence. It would be interesting future work to see if there is a
way to verify our results are indeed the shortest.
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