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Introduction
Wild fire’s cause tremendous problems in many countries. In 

recent years, global warming has been considered as a possible reason 
why the burned areas are increasing. Williams et al.,1 write that the 
annual wildfires in California have increased about five times since 
the early years of the 1970s. They describe how global warming, 
caused by humans, increases the temperature. As a consequence, 
the fuel becomes drier than in the past. Heat, dry fuels and strong 
winds, in combination, make the wild fires much worse than earlier. 
Mohammadi et al.,2 investigate how climate factors influence the size 
of wildfires. They develop a multivariate nonlinear fire size model 
and estimate the parameters based on data from documented wildfires 
in Czech Republic. The size of a fire increases as a function of the 
air temperature and the wind speed, and decreases as a function of 
the relative humidity. Higher air temperatures, higher wind speeds 
and lower relative humidity, at least locally, can follow from 
global warming. This means that larger wild fires can be expected 
if the global warming continues. Global warming is a process that 
may be predicted and adjusted via CO2 emission control. Still, 
even with dramatic emission reductions, the temperature can be 
expected to increase during many years, as described by Lohmander.3 
Lohmander4 has investigated the burned areas in 29 countries with 
very different conditions. He found that the relative burned areas in 
different countries can be explained via a nonlinear function based 
on average temperatures and proxy variables representing firefighting 
capacities and expected distances between fire stations and wild fires. 
The statistical analysis showed that the relative burned areas are 
increasing functions of average temperatures and expected distances 
between fire stations and fire locations, and decreasing functions 

of fire fighting capacities. All parameters were strongly significant. 
Lohmander5 investigated the optimal forestry, infrastructure and fire 
management problem. With general functions, he derived optimal 
solutions that showed the optimal directions of different management 
changes under the influence of global warming. 

In many cases, the speed of fire fighting is very important. For 
this reason, Kolesar6 and Kolesar et al.,7 estimate different functions 
for fire company travel times in New York. In another study, Kolesar 
et al.,8 are interested in the spatial density of firefighting companies. 
The find that the average fire engine company response distance can 
be modeled as an inverse square root function. They write that such 
functions can be useful in order to find optimal resource allocations. 
A similar topic and interest can be found in Sozuki et al.9 They want 
to optimize the locations of fire departments. In order to do this, they 
minimize average response times. These ideas have some connections 
to the new model and results that will be derived in this paper. In 
this paper, however, the average distances and average travel times 
are not studied. The reason is that the sizes and costs of wildfires 
usually grow as nonlinear, strictly convex, functions of time, at least 
during the early history of a particular fire. If we are interested to 
optimize the expected total result, the nonlinearities of the fire size 
and fire cost functions have to be explicitly taken into consideration 
when fire engine locations are optimized, which follows from the 
Jensen inequality. In remote areas, water bombing airplanes are 
necessary resources. The optimal use of such resources and optimal 
international cooperation in this area has been analyzed via stochastic 
dynamic programming, by Lohmander.10 In many cases, conditions 
of relevance to fire management change rapidly. For instance, in 
Canada and Russia, the probabilities of severe wild fires are very 
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Abstract

A general spatial fire brigade unit network density optimization problem has been solved. 
The distance to a particular road, from a fire station, is approximated as a continuous 
variable. It is proved, via integral convolution, that the probability density function of the 
total travel time, PDFT, is triangular. The size of the fire, when it stopped, is a function 
of the time it takes until the fire brigade reaches the fire location. An explicit continuous 
function for the expected total cost per square kilometer, based on the cost per fire station, 
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the OFDs are replaced by integers, OFDIs, for different parameter assumptions. In this 
process, also the optimal expected total costs are determined. It is proved that the OFD 
is a strictly decreasing function of the expected number of fires per area unit, a strictly 
increasing function of the speed of the fire engines, a strictly decreasing function of the 
parameters of the exponential fire cost function, and a strictly increasing function of the 
cost per fire station. These effects of parameter changes are also illustrated via graphs in 
the numerical section. 
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low during the winter, when snow covers the forests. In the summer, 
the conditions may rapidly change. During hot and dry periods, fires 
easily start. If the winds are strong, the fires may also rapidly grow. It 
is obviously important to investigate if it is possible to adapt the fire 
management decisions to different conditions. 

If we predict that we will approach a hot and dry period with strong 
winds, it is almost surely rational to be more prepared to rapidly 
respond to possible fires, than if we expect rain storms. A central 
question is then: In what ways can we rapidly become more prepared 
to fight fires? If we expect the next days to be critical, with hot dry 
weather and strong winds, there is no time to improve roads, change 
forest management strategies and so on. On the other hand, we may 
move fire engines and other mobile resources, including man power, 
to optimal positions. Since we do not know exactly where the fires will 
start, we cannot go there before they have started. However, we can 
increase the number of units that are prepared and we can distribute 
them over the total area. In other words, we can increase the density 
of the defense against wild fire. We can decrease the distance between 
fire stations. (In this context, “fire station” denotes a firefighting unit, 
including a fire engine, manpower and other resources.) The ambition 
in this paper is to give a general solution to the optimal spatial fire 
brigade unit network density problem. It is important to know how 
the optimal solution depends on different conditions. The size of a 
wild fire changes over time. A typical wild fire starts in some spatially 
random position. At some point in time, it is discovered. Then perhaps 
with some delay, the closest fire brigade unit starts to move to the fire. 
During the travel time, the fire grows. In extreme cases, it is possible 
that the travel time is very long and most of the fuel is consumed 
before the fire is stopped. Normally, however, the travel time is rather 
short and the fire grows more and more rapidly during the time of 
interest, namely the time it takes before the fire has been stopped. For 
these reasons, the fire cost is assumed to be an exponential function 
of time.

We will investigate the problem in the most general way. We 
consider a uniform spatial structure that can easily be applied in most 
countries and types of regions. In fact, the general method can be 
applied in a city or in a less populated forest region. A fire can start 
anywhere. The probability is the same in every part of the region. This 
is usually a reasonable approximation of reality when we consider 
forest fires started by thunder storms and similar natural phenomena. 
Hence, a spatially uniform wild fire probability density function is 
applied. When a fire has been discovered, the fire brigade unit with 
the shortest travel distance to the fire is engaged. The road network 
contains roads from South to North and West to East. The cost of the 
fire, when it stopped, is a function of the time it takes until the fire 
brigade reaches the fire location. The probability density function of 
the travel time will be derived, since it is needed in the calculation of 
the expected cost. That cost is also needed in order to optimize the 
density of the fire defense. A function for the expected total cost per 
area unit, based on the cost per fire station, the PDFT, the exponential 
fire cost function parameters, the distance between fire stations, and the 
speed of fire engines, will be derived. Maybe, there are several local 
optima? The qualitative properties of the optimal solution(s) have to 
be studied, since it is necessary to know if the derived solution(s) also 
represent(s) the globally best solution(s).

Materials and methods
Here, a general spatial fire brigade unit network density 

optimization problem will be solved. The optimal distance between 
fire brigade units positions is denoted OFD. In the analysis, the 

distance is denoted by x and the optimal distance, OFD, is denoted by 
x* in order to make the exposition easier to follow.

The optimization problem

In equation (1), we maximize the expected total value per area 
unit.

            
( )( )( )( )2

0max ( ) xx
N x c x N pE C y x−= − + −            (1)

N(x) is the Net value of the region under consideration, per square 
kilometer, as a function of x, the distance between fire stations, in 
kilometers. The cost per fire station is cx (USD/Day). N0 denotes the 
value of the area in case wild fires never occur and the number of fire 
stations would be zero. The probability that a wild fire occurs within a 
particular square kilometer, a particular day, is p. The travel time for a 
fire engine, from the fire to the closest fire station, is y. C is the cost of 
a fire and E(C) is the expected value of C. In this analysis, we do not 
consider cases where a particular fire brigade unit simultaneously is 
engaged in several fires. In multiple fire events, we rely on assistance 
from neighbor fire stations and water bombing airplanes. In equation 
(2), L(x) is defined as the expected total cost of fire stations and fires.

                          
( )( )( )2( ) xL x c x pE C y x−= + 	             (2)

We may express the maximization problem as in equation (3).

                              
( ) ( )0max

x
N x N L x= − 	            (3)

We may understand L(x) as the difference between N0 and N(x). 
Compare (4).

                                 ( ) ( )0L x N N x= − 	                                  (4)

Now, we will focus on the minimization of L(x), as in (5). 

                     
( ) ( )( )( )( )2min xx

L x c x pE C y x−= + 	              (5)

We let stars indicate optimal values.

                                
( ) ( )* *min

x
L L x L x= =                             (6)

We simplify the notation this way:

                                  
( )( )( )( )M x E C y x=                                   (7)

The first order optimum condition is:

                                 

32 0x

dL dM
c x p

dx dx
−= − + = 	                (8)

In case we can show that the second order minimum condition (9) 
is satisfied, then we have a unique minimum (10). However, this will 
be investigated in detail before we can be sure.

                         

2 2
4

2 26 0x

d L d M
c x p

dx dx
−= + > 	             (9)

( )
2

* * *
20, 0,0 , 0

d M
c p x x x uniquex

dx
> ≥ < < ∞ ≥ ⇒ ∃ ∧

 
 
 

		
				                                                  (10)
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If we have a unique optimal solution, then the optimal solution 
may hopefully be obtained from the first order optimum condition:

                       

30 2 x

dL dM
p c x

dx dx
−= ⇒ =

   
   
   

	              (11)

The expected cost as a function of x

We consider a road network with parallel two-way roads, from 
West to East (WE) (and the opposite direction, EW) and from South 
to North (SN) (and the opposite direction, NS). (Of course, the model 
is still relevant even if the directions are quite different, as long as the 
different directions are perpendicular to each other.) The total area of 
the road network is very large. In order to simplify the exposition and 
the derivations, we consider it to be infinite. Hence, we do not have to 
consider special cases along the boundaries of the total network. Fire 
stations are located with constant distances between them, along the 
West to East roads (WE) and along the South to North roads (SN). If 
we consider four neighbor fire stations, they are found in the different 
corners of a square, defined by roads that together form a perfect 
square. The distances between the closest stations are x. The distances 
between parallel roads are constant and much shorter than x. To 
simplify the analysis, we use the approximation that these distances 
are zero. The distance from an arbitrary point to the closest station, 
in direction WE or EW is less than or equal to x/2. The distance 
from an arbitrary point to the closest station in direction SN or NS 
is also less than or equal to x/2. If a fire starts in a point Q, then the 
fire brigade that has the shortest total distance to Q travels to Q. The 
fire brigade has to follow the roads in the network. The probability 
that a wildfire starts is the same everywhere, which means that the 
probability density is constant. Hence, a spatially uniform wild fire 
probability density function is applied. The expected travel distance 
from the closest station to Q, in the EW or WE direction, is x/4, and 
the expected travel distance in the SN or NS direction, is x/4. Hence, 
the expected total travel distance from the closest station to Q is x/2. 
We assume that the travel time is proportional to the travel distance. 
This is approximately correct if vehicle acceleration and retardation 
time intervals only represent very small parts of the total travel time.

T is the time it takes to go between two neighbor fire brigade unit 
locations. x (km) is the distance and s (km/min) is the speed. Note 
that the speed, s, depends on the properties of the fire engines and the 
roads. It would be possible to extend the analysis by also optimizing 
the fire engine speed and the road quality. The unit of T is minutes.

                                          

x
T

s
= 	                                             (12)

We assume that the travel time in direction WE or EW is y1 and 
the travel time in direction SN or NS is y2. The uniform probability 
density function of the travel time from the closest fire brigade unit to 
the fire, in the WE or WE direction can be expressed as: 

              

( ) ( )
( )

1

1 1 1

1

0 0
2 / 0 ( / 2)

0 / 2

for y
f y T for y T

for T y

<

= ≤ ≤

≤






	 		
					                                   (13)

Furthermore, the uniform probability density function of the travel 
time from the closest fire brigade unit to the fire, in the SN or NS 
direction, y2, can be expressed as: 

         

            

( ) ( ) ( )
( )

2

2 2 2

2

0 0
2 / 0 / 2

0 / 2

for y
f y T for y T

for T y

<

= ≤ ≤

≤






			 
					                              (14)

The total travel time, y, is y1 + y2. The probability density function 
of y is f(y). This can be determined via convolution based on the 
probability density functions of and y1 and y2, namely f1(y1) and 
f2(y2). Now, via convolution, we can determine the probability density 
function of the total travel time y, via the following function:

              
( ) ( ) ( )1 1 2 1 1

0
0

T
f y f y f y y dy y T= − ≤ ≤∫

           
(15)

Inspection reveals that the probability density function of the total 
travel time can be explicitly described as:

     

( ) ( ) ( )
( ) ( )

2

2

0 0

4 / 0 / 2

(4 / ) 4 / / 2

0

y

T y y T
f y

T T y T y T

T y

<

≤ <
=

− ≤ ≤

<







		
					                                (16)

Hence, the probability density is a “triangular” function of total 
travel time. It is important to determine the optimal distance between 
fire stations under different conditions. In other words, we want to 
optimize x as a function of relevant parameters. We are interested to 
minimize the expected value of the expected total cost of the complete 
system. In this process, it is necessary to calculate the expected cost 
of the fire(s) as a function of x. The expected cost of a fire can be 
determined via two functions, namely the cost as a function of total 
travel time and the probability density function of total travel time. 
This is found here:

 
( ) ( )( )( )( ) ( )( )

( )

1
0

( ) ;
T x

E x E C y T x C y f y T x dy= = ∫ 		
					                                       (17)

Using the derived probability density function of total travel time, 
we get the following expression for the expected cost:

  
( )

( )
( )( )

( )

/2
2 2

2
0 /2

( ) 4 / ( ) 4 / 4 /
T T

T
E C y T y dy C y T T y dy= + −∫ ∫ 	 	

					                                  (18)

The fire cost function is approximated as an exponential function 
of total travel time. Of course, the analysis in this paper can also be 
adjusted to other functional forms of fire cost functions, if locally 
relevant empirical data motivate that. 

                                          ( ) byC y ae= 	                            (19)

With the selected fire cost function, we get the following expression 
for the expected fire cost:

( )
( )

( )( )
( )

/2
2 2

2
0 /2

4 / 4 / 4 /
T Tby by

T
E ae T y dy ae T T y dy= + −∫ ∫ 	

	
 				                                                  (20)

( )
( )

( )( )
( )

/2
2 2

2
0 /2

4 / 4 / 4 /
T Tby by

T
E a e T y dy e T T y dy= + −∫ ∫

 
 
 

	

 					                                   (21)
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Integration section

In order to calculate the expressions, we need the following 
integral in several places:

                                              
byye dy∫ 	                                       (22)

From the Leibniz product rule, we know that:

                     

( )( ) ( )
( ) ( )

d u y v y du dv
v y u y

dy dy dy
= + 	            (23)

We may integrate the left hand and the right hand sides of the 
equality.

              

( )( ) ( )
( ) ( )

d u y v y du dv
dy v y dy u y dy

dy dy dy
= +∫ ∫ ∫

              
(24)

                   
( ) ( ) ( ) ( )

du dv
u y v y v y dy u y dy

dy dy
= +∫ ∫ 	              (25)

                          
1( ) , ( ) byLet u y y v y b e−= = 	             (26)

                                    
1 bydu dv

e
dy dy

= ∧ = 		           (27)

Then, we get:

                           
1 1by by byyb e b e dy ye dy− −= +∫ ∫ 	              (28)

                            
1 1by by byb ye b e dy ye dy− −= +∫ ∫ 	              (29)

This may be expressed as:

                            
( )1by by byye dy b ye e dy−= −∫ ∫ 	            (30)

Then we have the solution:

                                  
( )1 2by byye dy b y b e− −= −∫ 	              (31)

Test:

( )( ) ( )
1 2

1 1 2 . . .by by

byd b y b e byb e b y b be ye Q E D
dy

− −

− − −
−

= + − = 		
					                                      (32)

Explicit solution

In equation (33), we utilize the solution (31).

( ) ( )1 2 1 1 2
2 2 2

4 4 42
0 2 2

by by by
T TTa a a

E b y b e b e b y b eT T
T T T

− − − − −
 
 
     

   
   

= − + − −
    
            

	
			     
                                                                                                            (33)

This is developed to (34).

2 2 2 2 2

2 2 2 2 2 2 2

4 1 4 4

2 2

T T T T T
b b b b bbT bT bTa Te e a e e a Te e Te e

E
T b b b T b b T b b b b

= − + + − − − − +

     
     
          
     

	
			    
                                                                                                            (34)

Then, we get equation (35).

    

     

2 2 2
2 2 2 2 2

2 2
2 2 2 2

2 4 4 4 4

4 4 2 4

T T T
b b bbT

T T
b bbT bT

a a a a a
E e e e e

bT b T b T bT bT

a a a a
e e e e

bT b T bT b T

= − + + −

− + + −

       (35)

After some elimination, we obtain equation (36), which is then 
simplified to (37).

                         

2
2 2 2

4
2 1

T
bbTa

E e e
b T

= − +
 
 
 

			 
						                   (36)

                  

                               

2

2

2 2 2

4 1
T

b
a e

E
b T

−

=

 
 
  				  

						                  (37)

We may also express the expected cost as a function of x and s, 
which is found in (38).

                

2

2 2

2 2 2

4 1
x

b
sas e

x
T E

s b x

−

= ⇒ =

 
 

   
 
 

			 
						                   (38)

The new variable introduced in equation (39) represents a way to 
simplify the following expressions. This way, we get (40). 

                                            2

bT
ϕ = 	                             (39)

                                  

2

2

1e
E a

ϕ

ϕ

−
=

 
 
 

				  
					                                  (40)

In order to solve the optimization problem, we need the first order 
derivative found in (41). 

                  

2
2

1 1
2

dE e e e
a

d

ϕ ϕ ϕϕ

ϕ ϕ ϕ

− − +
=

  
  
  

			 
						                (41)

Since we are interested in the sign of (41), we simplify the analysis 
further. We introduce a new function (43), also found in (42). 

                          

( )2
2

1
2

dE e
a

d

ϕ β ϕ

ϕ ϕ ϕ

−
=

  
  

  
			 

						                (42)

                              ( ) 1e eϕ ϕβ ϕ ϕ= − + 		              (43)

                                          ( )0 0β =                                            (44)

                                       

d
e

d
ϕβ
ϕ

ϕ
= 	                            (45)

                             
( )0 0

d
e

d
ϕβ

ϕ ϕ
ϕ

> ⇒ = >
  
	             (46)

As we see in (47), the sign of the function is strictly positive.

https://doi.org/10.15406/iratj.2021.07.00235


Optimization of distance between fire stations: effects of fire ignition probabilities, fire engine speed and 
road limitations, property values and weather conditions

116
Copyright:

©2021 Lohmander 

Citation: Lohmander P. Optimization of distance between fire stations: effects of fire ignition probabilities, fire engine speed and road limitations, property 
values and weather conditions. Int Rob Auto J. 2021;7(3):112‒120. DOI: 10.15406/iratj.2021.07.00235

                                 
                                ( ) ( )0 0ϕ β ϕ> ⇒ > 	                             (47)

Thanks to the observation (47), we can determine the sign of the 
derivative (48).

                              
( ) 20 0

dE
a

d
ϕ

ϕ
> ∧ > ⇒ > 	           (48)

In (49), (50) and (51), more results follow.

   
              

( ) 220 0 0
dE dE

a
dT db

ϕ> ∧ > ⇒ > ∧ >
 
 
 

	             (49)

                        

11 2 2 0
dE dE dEdT

s
dx dT dx dT

−= = >                              (50)

                 
( )21 2 2 0

dE dE dEdT
xs

ds dT ds dT
−= = − < 	           (51)

Now we know that the expected fire cost is a strictly increasing 
function of the total travel time between neighbor fire stations, the 
two exponents in the fire cost function and the distance between fire 
stations. The expected fire cost is a strictly decreasing function of the 
speed of the fire engines. 

Investigation of the second order derivative

We want to make sure that a solution to the first order optimum 
condition (8) really is a minimum. If possible, we also want to know if 
a solution is a global minimum. This investigation is made in several 
steps, with new partial functions, as illustrated in equations (53) to 
(68).

             

2
2

1 1
2

dE e e e
a

d

ϕ ϕ ϕϕ

ϕ ϕ ϕ

− − +
=

  
  
  

                          (52)

( ) ( )( )
2

4 2 2 22
2 2 2 4 3 2 4 6 6

d E
a e e

d
ϕ ϕϕ ϕ ϕ ϕ ϕ

ϕ

−= − + − − + +   (53)

                                  
( )

2
42

2

d E
a

d
ϕ γ ϕ

ϕ

−= 	                              (54)

( ) ( ) ( )2 2 22 2 4 3 2 4 6 6e eϕ ϕγ ϕ ϕ ϕ ϕ ϕ= − + − − + +              (55)

                                          ( )0 0γ = 	                               (56)

     

( ) ( ) ( )( )2 24 2 2 1 2 2 2
d

e e
d

ϕ ϕγ ϕ
ϕ ϕ ϕ ϕ

ϕ
= − + − − +

        
(57)

                                         

( )0
0

d

d

γ

ϕ
= 	                              (58)

                                   

( ) ( )d
e

d
ϕγ ϕ
θ ϕ

ϕ
= 	                                (59)
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Now, we know that the expected fire cost really is a strictly convex 
function of the distance between fire stations.

Comparative statics analysis

Now, we want to know how the optimal decisions are affected by 
possible parameter changes. We start with the first order optimum 
condition (69).

                               

32 0x

dL dM
c x p

dx dx
−= − + = 	                 (69)

We differentiate the first order optimum condition with respect to 
the optimal value of x and the probability p. 
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Hence, as expected, we see that the optimal distance x is a strictly 
decreasing function of the probability p. It is obviously more important 
to have shorter distances to go to reach the fires if the probability of 
fires increases.

With the corresponding procedure, it can also be proved that:

               

* * * *

0 0 0 0
dx dx dx dx

da db dc dsx
< ∧ < ∧ > ∧ > 	           (78)

We may now summarize the general results: If the probability 
that a fire starts, p, increases, then the optimal distance between fire 

stations decreases. The optimal distance also decreases in case the fire 
cost function, C(y), increases, via one or two of the parameters a and 
b. The optimal distance between fire stations increases if the cost per 
fire station increases. If the speed of fire engines increases, because of 
improved fire engines and/or because of better roads, then the optimal 
distance between fire stations increases. 

Numerical results

In the earlier section, it was proved that the optimal distance 
between fire brigade unit positions, x, which minimizes the total 
expected cost, is unique. x is a continuous variable and optimal 
solutions are usually not integers. The optimal solution can however 
not be expressed via an explicit function. Here, we will investigate the 
optimal integer solutions. The method enumeration in combination 
with the fact that the continuous objective function is proved to be 
strictly convex, makes sure that the optimal integer solutions are 
found. In this process, also the optimal expected total costs, are 
derived. With comparative statics analysis, it was proved that x is a 
strictly decreasing function of the expected number of fires per area 
unit, a strictly increasing function of the speed of the fire engines, a 
strictly decreasing function of the parameters of the exponential fire 
cost function, and a strictly increasing function of the cost per fire 
station. These effects of parameter changes are also illustrated via 
graphs in this numerical section. Compare the Figures 1 – 8.

Figure 1 The optimal fire station distance, Xopt=x*, (km), as a function of p, the fire probability per square km and day, and s, the average speed of a fire engine 
(km/min). Default assumptions: a=10000 (USD), b=0.1, cx=1000 (USD/Day).

Figure 2 The minimal expected total cost function value, Lopt = L*, (USD), per day and square km, as a function of p, the fire probability per square km and day, 
and s, the average speed of a fire engine (km/min). Default assumptions: a=10000 (USD), b=0.1, cx=1000 (USD/Day). 
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Figure 3 The optimal fire station distance, Xopt=x*(km), as a function of p, the fire probability per square km and day, and a, the expected cost per fire in case 
the travel time of the fire engines would be zero. Default assumptions: b=0.1, s=1 (km/min), cx=1000 (USD/Day).

Figure 4 The minimal expected total cost function value, Lopt = L*, (USD), per day and square km, as a function of p, the fire probability per square km and 
day, and a, the expected cost per fire in case the travel time of the fire engines would be zero. Default assumptions: b=0.1, s=1 (km/min), cx=1000 (USD/Day). 

Figure 5 The optimal fire station distance, Xopt=x*, (km), as a function of p, the fire probability per square km and day, and b, the coefficient of exponential 
growth in the cost function. Default assumptions: a=10000 (USD), s=1 (km/min), cx=1000 (USD/Day). 

Figure 6 The minimal expected total cost function value, Lopt = L*, (USD), per day and square km, as a function of p, the fire probability per square km and day, 
and b, the coefficient of exponential growth in the cost function. Default assumptions: a=10000 (USD), s=1 (km/min), cx=1000 (USD/Day).
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Figure 7 The optimal fire station distance, Xopt=x*, (km), as a function of p, the fire probability per square km and day, and cx, the cost per fire station (USD/
day). Default assumptions: a=10000 (USD), b=0.1, s=1 (km/min).

Figure 8 The minimal expected total cost function value, Lopt = L*, (USD), per day and square km, as a function of p, the fire probability per square km and day, 
and cx, the cost per fire station (USD/day). Default assumptions: a=10000 (USD), b=0.1, s=1 (km/min). 

Discussion
Most countries and periods are different with respect to many 

things that influence optimal fire management. For this reason, it is 
important to rapidly adapt fire management, in particular the locations 
of fire engine companies and the density of the fire defense, to 
relevant and frequently changing conditions. Purnomo et al.,11 study 
the forest fire management and conditions in Indonesia. They describe 
severe problems with large bureaucratic systems and slow decision 
processes. The authors ask for faster and more efficient fire response. 
In this paper, we have seen how the optimal density of fire engine 
companies is affected by changing conditions of different types. 
Clearly, since temperature, humidity and wind conditions can change 
considerably and rapidly over time, it is necessary, as Purnomo et al.,11 
write, to be able to respond efficiently, with as little delay as possible. 
The new results and functions have been presented in rather general 
form. When the approach is applied, however, it is important to 
explicitly include the relevant facts. For instance, the fire cost function 
may include costs of firefighting, costs of destroyed forest areas or 
other property and also costs of emitted CO2 from the fire. Perhaps, 
also, in the case of burning forests, one part of the cost may be that 
the destroyed forest, in the future, will absorb less CO2 than a forest 
that did not burn. It is important also to be aware of the differences 
between fire management strategies in forest regions and in cities. In 
New York City, for instance, fires can be expected to start and to spread 
during most times of the year. Even if we have winter conditions, fires 
can start and grow in buildings. In a forest region, on the other hand, 

the probability that a fire starts and spreads can be almost zero during 
rainy periods, and during the long winter season, when everything is 
covered by deep snow. Travel speed, is as we have seen in this paper, 
a key parameter when the optimal distances between fire engine 
companies should be decided. In a city, the travel speed is not severely 
affected by changing seasons. Of course, sometimes, the traffic and 
road conditions may be worse than normal. There may be some snow 
on the roads in the winter, and so on. But mostly, the travel speed is 
almost constant. Then, fire engine travel times calculated by Kolesar6 
and Kolesar et al.,7 can be used. In forest regions, on the other hand, 
some roads cannot be used at all during rainy periods. 

Furthermore, during the winter, all roads may be covered by snow. 
Then, the travel times are quite different from what they are during a 
dry summer period. This dramatically changes the optimal distances 
between fire engine companies. For these reasons, it is usually 
rational to keep the density and locations of fire engine companies 
in cities more or less constant during the year. Then, studies of the 
type Kolesar et al.8 can be useful to guide the permanent positioning 
of these resources. In sparsely populated forest regions, on the other 
hand, periodically changing locations are typically optimal. Then, the 
methods presented in this paper may be useful. Below, some typical 
examples will be illustrated. The parameters in the cost function can 
easily be used to describe several things. 

Example 1: Assume that the volume of wood per hectare is equal 
in different places. In a region close to large markets, the value of 
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timber is usually higher than far away from the markets, since the 
cost of transportation is very different. Hence, the cost of a forest fire 
per cubic meter of timber is usually higher close to the markets. In 
the optimization, this is easily taken care of via the parameter a. As a 
result, the optimal distance between fire stations is larger far from the 
markets than close to the markets.

Example 2: If the wind speed increases, the fire size and the cost of 
the fire, increase more rapidly. This can be taken care of via parameter 
b in the exponential fire cost function. If the wind speed increases, 
then b increases. As a result, the distance between fire stations should 
decrease.

Example 3: Assume that it becomes more important than before, to 
reduce the CO2 emissions. Then, the cost of fires increases. If you 
increase parameter a, you will capture this effect. As a result, the 
optimal distance between fire stations decreases.

Example 4: You may also optimize the properties of the fire engines 
and the quality of the roads. These factors influence s, the speed of the 
fire engines, which is a parameter in the optimization problem in this 
paper. In such an analysis, you would have to expand the optimization 
model in this article with new decision variables and associated cost 
functions, representing investments in fire engine capacity and road 
quality. 

The reader is encouraged to define new and expanded decision 
problems where the present analysis tool is integrated as one 
component. The list of possible studies is almost unlimited.

Conclusions
It is proved that the optimal distance between fire brigade unit 

positions, OFD, which minimizes the total expected cost, is unique. (In 
the analysis, OFD was denoted by x* in order to make the exposition 
easier to follow.) OFD is a continuous variable and optimal solutions 
are usually not integers. The optimal solution can however not be 
expressed via an explicit function. Then, the OFDs were replaced by 
integers, OFDIs, for different parameter assumptions. The method 
enumeration in combination with the fact that the continuous objective 
function is proved to be strictly convex, makes sure that the optimal 
integer solutions are found. In this process, also the optimal expected 
total costs, were derived. With comparative statics analysis, it was 
proved that the OFD is a strictly decreasing function of the expected 
number of fires per area unit, a strictly increasing function of the speed 
of the fire engines, a strictly decreasing function of the parameters of 
the exponential fire cost function, and a strictly increasing function of 
the cost per fire station. These effects of parameter changes were also 
illustrated via graphs in the numerical section. They show how the 
OFDIs are affected by changes of the different parameters. 
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