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Introduction
Multiple physical, chemical, biological, technical, communication, 

robotic and automation and other systems (devices) demonstrate the 
typical complex chaotic behaviour. In many important situations 
typical dynamics of these systems is the world of strong nonlinearity. In 
principle, the most conventional direct approach to dynamics treating 
problem consists in building an explanatory model using an initial 
data and parameterizing sources and interactions between process 
properties. Unfortunately, such that kind of approach is realized 
with difficulties and its outcomes are insufficiently correct. In the 
past few decades different chaos and dynamical system theories and 
topology models have given many useful insights to understand the 
output data generated by the complex nonlinear systems1–12 especially 
when traditional linear models are incorrect. We are developing a new 
approach to modeling nonlinear processes of chaotic systems based 
on the known CGA concept, chaos theory methods plus implemented 
NNW algorithms. Using information on the phase space evolution 
of the nonlinear process in time and the NNW simulation techniques 
can be considered as one of the fundamentally new approaches in 
the construction of global nonlinear models of the most effective and 
accurate description of the structure of the corresponding attractor for 
studied complex system. 

Generalized chaos-geometric approach to 
complex system dynamics

The basic idea of the construction of our approach to prediction of 
chaotic properties of complex systems is in the use of the traditional 
concept of a CGA in which evolves the measurement data, plus 
the NNW algorithm implementation. Let us consider some scalar 
measurements ( ) ( ) ( )0s n s t n t s n= + ∆ = , where 0t is the start time,

t∆ is the time step, and n is the number of the measurements. The 
main task is to reconstruct phase space using as well as possible 
information contained in ( )s n . To do it, the method of using time-
delay coordinates by Packard et al.3 can be used, the direct using 

lagged variables ( )s n τ+  (here τ is some integer to be defined) 
results in a coordinate system where a structure of orbits in phase 
space can be captured. A set of time lags is used to create a vector 
in d dimensions, ( ) ( ) ( ) ( ) ( )( ), , 2 ,..., 1y n s n s n s n s n dτ τ τ = + + + −  , 
the required coordinates are provided. Here the dimension d is the 
embedding dimension, Ed . To determine the proper time lag at the 
beginning one should use the known method of the linear ( )LACFC δ

 and look for that time lag where ( )LC δ  first passes through 0.4 The 
alternative additional approach is provided by the AMI method as 
an approach with so called nonlinear concept of independence. The 
further next step is to determine the embedding dimension, Ed and 
correspondingly to reconstruct a Euclidean space dR large enough 
so that the set of points Ad can be unfolded without ambiguity. The 
dimension Ed must be greater, or at least equal, than a dimension of 
attractor, Ad , i.e. E Ad d> . To reconstruct the attractor dimension and 
to study the signatures of chaos in a time series, one could use such 
methods as the CIA by Grassberger and Procaccia5 or the FNN one 
by Kennel et al.6 The principal question of studying any complex 
chaotic system is to build the corresponding prediction model and 
define how predictable is a chaotic system. The new element of 
our approach is using the NNW algorithm in forecasting nonlinear 
dynamics of chaotic systems.9,10 In terms of the neuro-informatics and 
neural networks theory the process of modelling the evolution of the 
system can be generalized to describe some evolutionary dynamic 
neuro-equations. Imitating the further evolution of a system within 
NNW simulation with the corresponding elements of the self-study, 
self- adaptation, etc., it becomes possible to significantly improve the 
prediction of its evolutionary dynamics. The fundamental parameters 
to be computed are the Kolmogorov entropy (and correspondingly 
the predictability measure as it can be estimated by the Kolmogorov 
entropy), the LE, the KYD etc. The LE is usually defined as 
asymptotic average rates and they are related to the Eigen values of 
the linearized dynamics across the attractor. Naturally, the knowledge 
of the whole LE allows determining other important invariants 
such as the Kolmogorov entropy and the attractor’s dimension. The 
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Abstract

We present a new generalized approach to modeling nonlinear processes of chaotic 
systems based on the known concept of compact geometric attractors, chaos theory 
methods in effective realization plus implemented neural networks simulation 
algorithm. Using information on the phase space evolution of the nonlinear process 
in time and the neural networks simulation techniques can be considered as one of 
the fundamentally new approaches in the construction of global nonlinear prediction 
models for evolutionary dynamics of the complex chaotic systems and accurate 
description of the structure of the corresponding strange attractors.
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Kolmogorov entropy is determined by the sum of the positive LE. The 
estimate of the dimension of the attractor is provided by the Kaplan 
and Yorke conjecture
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<∑ and the LE are taken in descending order. In Figure 1 we 

present the flowchart of the combined chaos-geometric and neural 
networks computational approach to nonlinear analysis and prediction 
of dynamics of any complex system.8–17 

Figure 1 Flowchart of the combined chaos-geometric approach and NNW to nonlinear analysis and prediction of chaotic dynamics of the complex systems 
(structures, devices).
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