Efficacy of rigid-pole exercise training for spinal mobility

Keywords: rigid-pole exercise training, range of motion, spinal mouse, mobility, spiral motion

Commentary

Physical medicine has been recently more important in the actual clinical practice. Various athletes and patients with diseases have been treated with medical agents. Furthermore, application of adequate rehabilitation can improve nervous system stimulation, muscle power training, muscle stretching, and muscle flexibility. Then, continuing these practices will be sure to bring better physical condition such as standing posture, smooth walking, relaxed movements, and increased range of motion (ROM).

The purpose of this article includes some topics of spinal stability/mobility, Spinal Mouse, pole exercise and the usefulness of the rigid pole. It is the stability of the spine that plays a central role in the functioning of the human body. This involves three important elements. They are nervous system (control), muscle (active) and bone (passive). The muscles can always adjust for the maintenance and movements for human body. From global point of view, some muscles are involved in the regulation, such as the rectus abdominis (RA), lateral oblique (EO) and medial oblique (IO). In contrast, local regulating muscles include the transversus abdominis (TrA), multifidus (MF) and interspinalis situated in deeper trunk.

For the actual practice and research, spinal stability/mobility have been crucial factors. In order to evaluate them, SpinalMouse® can be used. It has been known as a useful non-invasive device, and can measure the detail shape and mobility of the spine. It can check the data of the spinal curvature in the sagittal and frontal planes. Furthermore, we can evaluate spine function associated with trunk posture and gait characteristics.

As a study of Spinal Mouse, the importance of lumbar multifidus (LM) muscle has been reported. LM shows a stronger function than lumbar extension. In addition, LM action for lumbar facet joint adaptation and lumbar flexion are also important, which is involved in lumbar stability and low back pain (LBP).

From the study of Spinal Mouse on LBP, the stiffness degree of the LM was recognized to be crucial and significant factor. Further, Spinal Mouse clarified the difference between characteristic craniofacial morphology and thoracic-lumbar-sacral spine inclination.

Authors have continued research on Spinal Mouse so far. Dysfunction of LM in asymmetry/muscle thickness reduction was observed associated with LBP and thoracic flexibility/stability. Consequently, effect of exercise for lower thorax was found on the LM and spinal flexion mobility. Recently we investigated the range of motion (ROM) of thoracic cage after the intervention of pole exercise. The pole exercise was performed and compared between on the shoulder and at the armpit. As the result, the former showed larger ROM tendency.

Concerning pole exercise, the authors have conducted rigid-pole exercise training. The author Murakami has taken care of Tokyo Paralympic athletes and continues to give guidance at workshops for Masters athletes how to run safe and fast. Furthermore, rigid-pole training using bamboo has been introduced and more prevalent. The author Moriyasu continues to teach professional baseball and soccer players as well as medical rehabilitation for patients with various diseases. Further, Moriyasu pole exercise training has been advocated and spread until now.

The detail methods of the pole exercise training are shown as follows. As the device, everyone can use bamboo pole, Moriyasu pole or other rigid-pole. Moriyasu pole has been useful for a variety of movements. The reason is that the pole consists of 4 parts (Figure 1). Anyone can connect them easily, where the pole become from 80 cm to 160 cm. Thus, any movement can be performed using the pole.

Figure 1 Moriyasu Pole.
The length of the pole can be 80, 100, 140, 160cm by the connection.

Standard pole exercise training has its fundamental six main movements in our protocol. They are i) lateral bending, ii) axis rotation, iii) wave motion, iv) backward spiral, v) forward spiral and vi) warp & rounding. Among them, two movements were shown in Figure 2. The movement i) can be performed using 60 cm (Figure 2A), and the movements iv) and v) can be performed using 160 cm (Figure 2B). The person in charge of the exercise in Figure 2B is second author Moriyasu, where we have informed consent concerning this situation.
Efficacy of rigid-pole exercise training for spinal mobility

14,17


