i{{® MedCrave

Step into the Wonld of Research

Journal of Petrochemical science & Engineering

Research Article

8 Open Access ‘@

Application of gated recurrent units for time series
prediction of gas production rates

Abstract

Accurate forecasting of gas production rates is essential for effective reservoir management
and early detection of flow assurance issues such as liquid loading. This study explores the
application of a Gated Recurrent Unit (GRU)-based deep learning model to predict daily gas
production rates in a gas condensate well using a univariate time series approach. To improve
prediction accuracy and minimize the impact on the results, a dataset spanning 1,500 days
was utilized. The dataset was divided into training and testing subsets, comprising 1,200
days and 300 days, respectively. Gas rate data were normalized prior to model training. The
GRU model was trained using a sliding window of 10-day sequences and evaluated based
on standard regression metrics. The model achieved a Mean Squared Error (MSE) of 78.58,
a Mean Absolute Error (MAE) of 3.35, and a Mean Absolute Percentage Error (MAPE) of
3.98%, indicating strong predictive accuracy and generalization capability.

In addition to accurately tracking stable production behavior, the model successfully
captured sudden changes in gas rate trends with a short one-day delay. This characteristic
is particularly valuable for the early identification of production anomalies, including the
onset of liquid loading, a condition that typically develops over a period of several days.
The findings highlight the potential of GRU-based models not only for high-resolution
production forecasting but also as intelligent monitoring tools for real-time anomaly
detection. The study concludes by recommending the integration of additional operational
parameters such as wellhead pressure and temperature to further enhance predictive
performance and extend applicability in reservoir surveillance.
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Introduction

Petroleum production forecasting has evolved into a central
discipline within reservoir engineering, bridging operational
planning, development optimization, and investment decision-
making. Historically, forecasting relied on deterministic and empirical
approaches such as Decline Curve Analysis (DCA), material balance
models, and numerical simulation. Experimental investigations and
process modeling under laboratory conditions are developing in
parallel, as the tolerances and assumptions introduced by theoretical
models require calibration and correction to improve model accuracy
and reliability.'? At the same time, it should be noted that although
theoretical, laboratory, and hybrid modeling approaches are effective
for conventional reservoirs, they often prove insufficient when
applied to hydrocarbon fields, particularly gas-condensate systems,
due to inherent nonlinearity, uncertainty, and complex multiphase
flow dynamics. These challenges were highlighted by Fataliyev and
Hamidov?® during the design of experimental investigations of gas
injection into reservoirs. These limitations have accelerated the shift
toward machine learning and neural networks, which offer flexibility,
data-driven modeling, and the ability to capture patterns beyond
explicit physical laws.

Early applications of neural networks in petroleum engineering
date back to Ali,* who emphasized their potential in handling complex
process modeling tasks. Subsequent developments included multi-
neural network forecasting frameworks such as those by Nguyen et
al.’ and higher-order neural networks (HONNS) presented by Chakra
et al.® which aimed to model cumulative production while filtering
noisy datasets. Further innovation came with the use of complex-

valued Multi-Valued Neurons (MLMVN) by Aizenberg et al.’
enhancing network flexibility in capturing time series dependencies.

A significant advancement came with deep learning architectures,
especially Long Short-Term Memory (LSTM) networks, which
proved adept at handling sequence data and long-range temporal
dependencies. Liang et al.® concluded that modeling multivariate
hydrocarbon production time-series data using deep neural networks
with functionality similar to LSTM architectures may yield more
accurate and computationally efficient production forecasts. Sagheer
and Kotb,’ applied LSTMs to forecast petroleum production, showing
marked improvement over both classical models and traditional
ANNS . Building on this, Al-Shabandar et al.!’ proposed a deep Gated
Recurrent Neural Network (GRNN), which selectively filters relevant
temporal features to improve predictive robustness in fluctuating
production systems. Gouda et al,'' implemented an artificial neural
network as an intelligent modeling tool due to its high capability and
flexibility in capturing complex data patterns. The study provides a
detailed comparison between widely used empirical correlations,
the Peng—Robinson Equation of State, the Soave—Redlich-Kwong
Equation of State, and the proposed ANN model. Statistical and
graphical analyses demonstrated the superior performance of the
ANN-based model in predicting the target properties.

These advancements are particularly relevant to gas condensate
reservoirs, which exhibit complex thermodynamic behavior as
pressure falls below the dew point. This results in retrograde
condensation, where heavier hydrocarbons accumulate near the
wellbore, forming condensate banking and ultimately leading to
liquid loading. Liquid loading, a key flow assurance issue, disrupts
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continuous gas production, introduces backpressure, and causes
nonlinear, often abrupt, production declines that challenge traditional
forecasting models. Fataliyev et al.'> extensively reviewed this
phenomenon, highlighting that condensate precipitation can occur
due to pressure reduction, leading to liquid accumulation, reduced gas
flow rates in the bottomhole zone, and unstable well operation. The
transition from annular to slug flow regimes typically marks the onset
of liquid loading in a production well, posing risks to well integrity
and potentially resulting in production failure. This paper reviews
the conventional understanding of well liquid loading and examines
various techniques used to mitigate its impact. Based on detailed
analysis, it proposes a novel pipe element and an automated control
system designed to maintain stable production in gas-condensate
wells; however, the automated control system still requires integration
with reliable gas flow rate forecasting.

Several studies have attempted to incorporate these complexities
into neural network-based predictions. Zendehboudi et al.”* used ANN
optimized with particle swarm techniques to predict the condensate-to-
gasratio (CGR) in retrograde systems. Khamis and Fattah,'* developed
models to estimate oil-gas ratios in gas condensate and volatile oil
samples. Ashinze et al,' expanded this direction by simulating gas
condensate production using ANNs that reflect both production
decline and flow anomalies caused by condensate accumulation. On
the system dynamics front, Ali and Guo,' integrated neuro-adaptive
models to simulate transient flow performance and pressure drop, key
indicators of liquid loading onset. Fataliyev and Aliyev,!” investigated
the application of deep learning neural networks to predict the liquid
loading status of wells, which is critical for cost mitigation and
production efficiency. Four distinct models were developed and trained
using experimental datasets compiled from multiple sources, with key
input parameters including wellhead pressure, gas rate, and tubing
inside diameter. The models achieved prediction accuracy ranging
from 57% to 80%, demonstrating the potential of deep learning for
liquid loading prediction in gas-condensate wells. Model performance
improved by approximately 17% when both gas rate and wellhead
pressure were used simultaneously as input features, suggesting
that further optimization is possible by incorporating additional
parameters such as fluid properties, well geometry, temperature, and
condensate production rate. However, increasing model complexity
may complicate implementation and reduce practicality. Al-Fattah
and Startzman,'® highlighted this aspect and demonstrated that
dimensionality reduction techniques and sensitivity analysis of input
variables can be employed to eliminate redundant and insignificant
parameters, thereby simplifying the neural network architecture.

This brief summary highlights that, despite these efforts, many
existing models are neither explicitly designed to identify or predict
liquid loading events nor optimized to capture systems exhibiting
abrupt dynamic transitions driven by condensate banking. This
gap motivates the present study, which proposes the application of
Gated Recurrent Units (GRUs) for simultaneous forecasting of gas
condensate production and early prediction of liquid loading events.
GRUs offer a computationally efficient alternative to LSTMs while
maintaining the capacity to capture long-term dependencies. Their
simpler gating structure reduces overfitting and training complexity,
making them suitable for deployment in real-time and constrained-
data environments common in field operations.

The novelty of this study lies in demonstrating the effectiveness
of a univariate GRU-based deep learning model not only for accurate
short-term forecasting of gas production in condensate wells but also
for capturing abrupt changes in production behavior with minimal
delay. Additionally, the study introduces the novel application of
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GRU models as a potential diagnostic tool for early detection of liquid
loading onset an area that remains underexplored in existing research.

This contribution is particularly important as the petroleum
industry increasingly relies on data-driven, automated solutions for
production optimization. Accurate prediction of both production and
liquid loading onset can reduce the frequency of unplanned shut-ins,
minimize deferred production, and support proactive lift and drainage
strategies. The proposed GRU-based approach thus represents a step
forward in intelligent reservoir management, particularly under the
challenging conditions of gas condensate systems.

Methodology
Overview of gated recurrent unit (GRU)

The Gated Recurrent Unit (GRU) is a recurrent neural network
(RNN) architecture designed to capture temporal dependencies
in sequential data while mitigating the vanishing gradient problem
commonly encountered in traditional RNNs. Originally introduced as
a simplified alternative to the LSTM unit, the GRU employs gating
mechanisms to regulate information flow without the use of separate
memory cells. For example, Zainuddin et al." proposed an RNN-
GRU-based deep learning approach to forecast the operational states
of equipment generating time-series data in the oil and gas sector. The
following sections outline the computational mechanics of the GRU
and describe its implementation within the experimental framework.

GRU Architecture

Unlike standard RNNs, GRUs incorporate gating mechanisms that
regulate information flow through the network, thereby enhancing the
model’s ability to capture long-term dependencies. Each GRU cell
maintains a hidden state %, at time step t, which is updated based
on the current input x, and the previous hidden state #,_, . Figure 1
presents the structural configuration of the GRU cell, illustrating the
general architecture of the unit. The cell utilizes two primary gates:
the update gate z, and the reset gate 7, . As demonstrated by Tan et
al,® who proposed a novel end-to-end Dual-Attention Time-Aware
Gated Recurrent Unit (DATA-GRU) for irregular multivariate time
series to predict patient mortality risk, these gates play distinct yet
complementary roles in regulating memory retention and temporal
dynamics.
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Figure | Structure of the sample GRU cell.

Update Gate (z,)

The update gate determines the extent to which the hidden state
from the previous time step (4,_,) should be carried forward to
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the current hidden state (,) . It effectively decides how much past
information needs to be retained. Mathematically, it is defined as:

z, =0 (W.x,+U,h,_ +b.) (@)

Where:

x, € R" is the input vector at time step ¢,

h,_, e R™ is the previous hidden state,

W, and U, arethe inputand recurrent weight matrices respectively,

b, is the bias vector,

z

o 1is the sigmoid activation function.

The value of z, e[O, l]m acts as a gate, with values close to 1
indicating strong retention of the previous state.

Reset gate (7;)

The reset gate controls how much of the previous hidden state
should be forgotten or reset before computing the candidate hidden
state. This mechanism allows the GRU to discard irrelevant past
information, especially useful for modeling short-term dependencies:

I’; :G(Verl +Urht—1 +br) (2)

A smaller value of r, encourages the unit to ignore previous hidden
activations, focusing more on the current input.

Candidate hidden state (#,)

The candidate activation 4, , representing the potential new state,
is computed using the reset gate:

h, :tanh(th,+Uh(i; @h,_l)+bh) 3)

Here, ® denotes the Hadamard (elementwise) product, and tanh is
the hyperbolic tangent activation function. By incorporating 7, © 4,_,
, the reset gate selectively forgets components of the previous state
that are not relevant for the current computation.

Final hidden state update

The final output of the GRU cell, the updated hidden state is then
derived by interpolating between the previous between the previous
hidden state and the candidate activation, weighted by the update gate:

]:;z :(l_zt)th—l"'Zz@i’;z) “4)

This equation enables the unit to either preserve historical context
(if z, =0)or adopt new information (if z, ~1) This formulation
allows the model to dynamically retain or update information across
time steps, enabling efficient modelling of long-range dependencies
with fewer parameters compared to LSTM units.?!

Training procedure of the Gated Recurrent
Unit (GRU) network
The GRU model is trained using sequential input data to predict

future values based on past observations. The training process
comprises the following steps:
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Input preparation

Sequential data are organized into fixed-length overlapping
windows, where each input sequence consists of 7' consecutive time
steps (e.g., 10 days of gas rates). Each sequence is paired with the
corresponding target output, which is the value immediately following
the sequence (e.g., the 11th day’s gas rate).

Initialization of hidden states

The GRU model was implemented in a stateless configuration,
which is well suited for short-horizon sliding-window forecasting of
gas production rates. Using a fixed input window of 10 consecutive
days, the hidden state was reset at the beginning of each sequence,
enabling the model to focus on localized temporal dynamics relevant
to short-term production behavior while mitigating the accumulation
of long-term noise and non-stationary effects commonly observed
in field data. This design ensures independent processing of training
samples, prevents information leakage between windows, and
improves model generalization.

For testing and continuous forecasting, a rolling-window prediction
strategy was adopted. At each time step, the model was provided with
the most recent 10-day production history to generate a one-step-
ahead forecast. Within each window, hidden states were updated
sequentially to capture intra-window temporal dependencies but were
not propagated across consecutive windows. Temporal continuity was
implicitly maintained through the overlapping nature of the sliding
windows, allowing the model to learn consistent production trends
while preserving robustness and stability in the presence of abrupt
production rate changes.

Forward propagation

The input sequence is fed into the GRU cell one time step at a time.
At each time step t, the hidden state 4, is updated based on the current
input x, and the previous hidden state #,_,, effectively capturing
temporal dependencies within the sequence. After processing all time
steps, the final hidden state %, encapsulates the learned representation
of the sequence.

Prediction

The final hidden state /4, is passed through an output layer to
generate the predicted value p, representing the forecast for the next
time step.

Loss computation

The prediction y is compared against the true target value-y
using a suitable loss function, such as Mean Squared Error (MSE), to
quantify the prediction error.

Backpropagation through time (BPTT)

The computed loss gradients are propagated backward through
the GRU’s time steps to update the model’s parameters (weights and
biases). This gradient calculation accounts for temporal dependencies
and parameter sharing across time steps.

Parameter update

An optimization algorithm (e.g., Adam or SGD) uses the gradients
to adjust the GRU’s parameters, aiming to minimize the loss over the
training data.
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Epoch iteration

Steps 2—7 are repeated for multiple epochs, each epoch involving
a complete pass over the training dataset. At the beginning of each
epoch and for each input sequence, the hidden states are reinitialized
to zero to ensure independent processing. Over successive epochs,
the model parameters converge to values that improve prediction
accuracy.

Remarks:

i. The hidden state is reset at the start of each input sequence and
epoch, preventing carryover of information across sequences
during training unless explicitly modeled (e.g., stateful RNNs).

ii. Parameter sharing across time steps allows the GRU to
generalize temporal patterns efficiently.

Results

In this study, the gas production rate data of the well X was first
normalized using the Minimax Scaler technique to ensure that all input
values fell within the [0, 1] range, thereby facilitating more efficient
convergence during model training. The time series dataset consists
of daily gas production rates spanning approximately 1,500 days. For
the purpose of model development and evaluation, the dataset was
divided chronologically into two subsets: the first 1,200 days were
allocated for training, while the remaining 300 days were reserved for
testing. This split was chosen to preserve the temporal continuity of
the data, which is crucial for recurrent neural network (RNN)-based
architectures such as the Gated Recurrent Unit (GRU).

Figure 2 illustrates the normalized gas rate profile over time. A
distinct vertical dashed line at day 1,200 separates the training and
testing intervals. As shown, the time series exhibits non-stationary
behavior with intermittent fluctuations, underlining the need for
models capable of capturing temporal dependencies.

— Gas Production Rate

Normalized Gas Rate

Training Set Test Set

e Uy

0 200 400 600 800 1000 1200 1400

Days

Figure 2 Time series of normalized gas production rate with the training and
testing data split indicated.

To prepare the data for time-series forecasting, a sliding-window
approach was employed, whereby input sequences of 10 consecutive
days were constructed to predict the production rate of the subsequent
day. This strategy enables the model to learn temporal patterns by
analyzing historical trends over a fixed prediction horizon.

The prediction model was developed using a GRU-based deep
neural network. The choice of a deep GRU architecture comprising
four stacked layers with 50, 30, 30, and 20 units was motivated by the
need to capture complex temporal dependencies and non-stationary
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fluctuations in daily gas production data, while maintaining higher
computational efficiency compared with traditional LSTM-based
models. A larger number of units in the initial layers allows the network
to learn a diverse set of short- and medium-term temporal features,
whereas the progressive reduction in the number of units in deeper
layers facilitates feature compression and helps mitigate overfitting.
This hierarchical structure aligns with established practices in deep
recurrent network design and is well suited for modeling the nonlinear
dynamics and transient flow behavior characteristic of gas-condensate
reServoirs.

To further enhance generalization performance, dropout layers
were interspersed between the GRU layers, promoting robust feature
learning by reducing sensitivity to noise and data-specific fluctuations.
The Adam optimizer was employed due to its stable and efficient
convergence properties in deep recurrent architectures, and an early
stopping criterion was applied to automatically terminate training
after 10 consecutive epochs without improvement in validation loss.
The effectiveness of these architectural and hyperparameter choices
is supported by the learning curves, which exhibit a stable validation
loss plateau, indicating strong generalization capability and reliable
predictive performance on unseen production data.

The GRU model learning curve shown in the Figure 3 provides
insights into the model’s training process by displaying both training
loss and validation loss over epochs.

0.3

== Train Loss
—=— Validation Loss

MSE Loss

01

Epochs

Figure 3 GRU model learning curve showing training and validation loss over
epochs.

Initially, both losses start high but decrease rapidly as the model
begins to learn the underlying patterns in the data. The training loss
(blue line) consistently decreases with each epoch, reflecting the
model’s improved ability to predict the training set. On the other hand,
the validation loss (red line) decreases at a similar rate but begins
to plateau after around the 10th epoch, indicating that the model’s
performance on unseen data has stabilized. This plateau in validation
loss suggests that the model has successfully learned the general
trends in the dataset without overfitting, as the validation loss remains
low while the training loss continues to decrease. During training, the
model’s mean squared error (MSE) loss stabilized at approximately
0.15 for the training set and 0.10 for the validation set. These values,
obtained from standardized inputs, indicate successful learning and
good generalization. The slightly lower validation loss suggests the
model benefitted from regularization and did not overfit the training
data.

The fact that the model’s validation loss does not show significant
overfitting behavior (e.g., increasing validation loss as the training
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loss decreases) further supports the model’s generalization ability.
The use of early stopping (based on validation loss) is evident in
this learning curve, as the model’s performance on the test data stops
improving after a certain point, preventing unnecessary computation
and potential overfitting. This learning curve indicates that the GRU
model is effective at learning from the data and exhibits strong
generalization capabilities for time-series forecasting.

After training, predictions on the test dataset were inverse-
transformed to the original scale for performance evaluation. The
GRU model achieved a Mean Squared Error (MSE) of 78.58, a Mean
Absolute Error (MAE) of 3.35, and a Mean Absolute Percentage Error
(MAPE) of 3.98%, indicating strong predictive accuracy. The MSE
reflects the average magnitude of squared prediction errors, the MAE
provides an interpretable measure of the average absolute deviation
in daily gas production rates, and the MAPE expresses the error as
a percentage of the actual values, facilitating scale-independent
comparison. A MAPE below 5% is generally considered highly
accurate in forecasting applications, confirming the suitability of the
proposed GRU model for short-term gas production prediction. Since
all evaluation metrics were computed over the entire test interval, they
represent the model’s average performance across the full prediction
horizon. As illustrated in Figure 5, the gas production rate during the
test period varies approximately between 60 and 120 Mcf/day, placing
the observed prediction errors in a relatively small range compared
to the overall magnitude of production. Specifically, an MAE of 3.35
indicates that the predicted daily gas production rates deviate from
measured values by approximately 3.35 Mcf/day on average. It is
important to note that prediction errors are not uniformly distributed
over time and are strongly influenced by production dynamics. During
periods of stable production, the model closely follows the measured
rates with minimal error, whereas during abrupt production changes
the error temporarily increases and may reach approximately 6—7
Mcf/day. These deviations are primarily attributable to the model’s
short response delay to rapid transitions rather than systematic bias,
and they do not significantly impact the overall predictive accuracy
when averaged over the full test period.

Figure 4 presents a scatter plot comparing the GRU model’s
predicted gas production rates against the actual values for both the
training and test sets. Ideally, points lying close to the 45° reference
line indicate highly accurate predictions. As shown, the majority of
points for both training (blue) and test (red) sets cluster closely around
the reference line, confirming the model’s strong predictive capability
across both seen and unseen data.

140

120F

100

L d

Predicted Values

w0t

20 - ®  Testset
L g ®  Training set
- — — 45° Reference Line
P
0 20 40 60 80 100 120 140

Actual Values

Figure 4 Actual vs. GRU-predicted gas production rates for training and test
sets.
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While a few outliers exist, particularly at lower and higher
production values, the overall alignment indicates that the model
successfully captures the underlying production trends (figure 4). The
test set predictions show a slightly wider spread, which is expected
due to the absence of direct exposure during training, yet the deviation
remains within acceptable bounds. This plot further validates the GRU
model’s effectiveness in learning temporal patterns and generalizing
well to future production behavior.

Figure 5 presents the comparison between the GRU model’s
predicted gas production rates and the actual measured values
for the test period. The production profile demonstrates a typical
pattern observed in gas wells, where long periods of stable flow are
occasionally disrupted by sudden drops or increases in production
rates. The GRU model exhibits a strong ability to closely replicate
the actual rates during the stable intervals, maintaining high accuracy
with minimal deviation. This consistency reinforces the model’s
effectiveness in learning and predicting steady-state behaviors that
are commonly encountered in production operations.

B 1 T T T T .

Gas Production Rate (Mcf/day)

0 50 100 150 200 250 300

Days

Figure 5 GRU model predictions versus actual gas production rates for the
test period.

More importantly, the model also demonstrates the capability to
detect abrupt changes in gas rate trends, although with a slight lag
of approximately one day. This short delay is understandable, given
that recurrent neural networks rely on sequential input and require
temporal context to update their internal memory state. The GRU
model demonstrates a strong ability to closely replicate actual gas
production rates during stable intervals, maintaining high predictive
accuracy with minimal deviations on the order of 1-3 Mcf/day,
despite production rates over the test period varying approximately
between 60 and 120 Mct/day. Despite this minor lag, the model is
able to rapidly adapt its predictions following sudden transitions
in the production profile, which is a critical strength in real-world
monitoring systems.

This predictive behavior has important practical implications. One
such application is the early detection of liquid loading, a common
flow assurance issue in gas condensate wells where accumulated
liquids begin to restrict gas flow. Since liquid loading does not occur
instantaneously but develops over several days (typically one week to
ten days), a model that can recognize early anomalies in the production
trend—such as a sudden decline in gas rate—offers significant value.
The GRU model’s sensitivity to these early shifts, even with a short
delay, suggests its potential use not only for accurate rate forecasting
but also as a diagnostic tool for identifying the onset of liquid loading.
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Conclusion

This study investigated the application of a Gated Recurrent Unit
(GRU) based deep learning architecture for forecasting daily gas
production rates in a gas condensate well. The primary objective
was to assess the model’s ability to accurately predict both steady-
state production behavior and sudden rate fluctuations, which are
commonly observed in field operations. The proposed GRU model
demonstrated strong performance, achieving a Mean Squared Error
(MSE) of 78.58, a Mean Absolute Error (MAE) of 3.35, and a Mean
Absolute Percentage Error (MAPE) of 3.98% on the test set. These
results confirm the model’s high predictive accuracy and ability to
generalize well on unseen data.

It should be noted that using only univariate data may impose
certain limitations when applying this approach to multivariate
processes. However, the model is designed to be connected to live
well data and continuously updated through ongoing real-time history
matching, which inherently accounts for the influence of other factors.
Consequently, these effects are reflected in the trend dynamics. For this
reason, the model has demonstrated effectiveness not only in capturing
stable production trends with minimal deviation but also in detecting
abrupt changes in the production profile with only a short, one-day
delay. This predictive behavior suggests that GRU-based models are
not only suitable for production forecasting but may also serve as
valuable tools for early anomaly detection. One important implication
is the potential use of GRU models for the early identification of
liquid loading onset, which typically manifests gradually over a one-
to-two-week period. By recognizing the early signs of rate decline, the
model could assist in proactive flow assurance management.

The novelty of this study lies in demonstrating that a purely
data-driven GRU model can replicate both gradual and transient
flow dynamics in gas wells with high reliability, without relying on
mechanistic models or explicit reservoir parameters. These findings
provide a strong foundation for integrating GRU-based architectures
into intelligent well monitoring systems. Future research may further
enhance model performance by incorporating additional operational
parameters such as wellhead pressure, bottomhole pressure, and
temperature. This would enable a more comprehensive understanding
of well behavior and support the development of more robust and
interpretable prediction frameworks for use in reservoir surveillance
and production optimization.
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