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Introduction
Petroleum production forecasting has evolved into a central 

discipline within reservoir engineering, bridging operational 
planning, development optimization, and investment decision-
making. Historically, forecasting relied on deterministic and empirical 
approaches such as Decline Curve Analysis (DCA), material balance 
models, and numerical simulation. Experimental investigations and 
process modeling under laboratory conditions are developing in 
parallel, as the tolerances and assumptions introduced by theoretical 
models require calibration and correction to improve model accuracy 
and reliability.1,2 At the same time, it should be noted that although 
theoretical, laboratory, and hybrid modeling approaches are effective 
for conventional reservoirs, they often prove insufficient when 
applied to hydrocarbon fields, particularly gas-condensate systems, 
due to inherent nonlinearity, uncertainty, and complex multiphase 
flow dynamics. These challenges were highlighted by Fataliyev and 
Hamidov3 during the design of experimental investigations of gas 
injection into reservoirs. These limitations have accelerated the shift 
toward machine learning and neural networks, which offer flexibility, 
data-driven modeling, and the ability to capture patterns beyond 
explicit physical laws.

Early applications of neural networks in petroleum engineering 
date back to Ali,4 who emphasized their potential in handling complex 
process modeling tasks. Subsequent developments included multi-
neural network forecasting frameworks such as those by Nguyen et 
al.5 and higher-order neural networks (HONNs) presented by Chakra 
et al.6 which aimed to model cumulative production while filtering 
noisy datasets. Further innovation came with the use of complex-

valued Multi-Valued Neurons (MLMVN) by Aizenberg et al.7 
enhancing network flexibility in capturing time series dependencies.

A significant advancement came with deep learning architectures, 
especially Long Short-Term Memory (LSTM) networks, which 
proved adept at handling sequence data and long-range temporal 
dependencies. Liang et al.8 concluded that modeling multivariate 
hydrocarbon production time-series data using deep neural networks 
with functionality similar to LSTM architectures may yield more 
accurate and computationally efficient production forecasts. Sagheer 
and Kotb,9 applied LSTMs to forecast petroleum production, showing 
marked improvement over both classical models and traditional 
ANNs. Building on this, Al-Shabandar et al.10 proposed a deep Gated 
Recurrent Neural Network (GRNN), which selectively filters relevant 
temporal features to improve predictive robustness in fluctuating 
production systems. Gouda et al,11 implemented an artificial neural 
network as an intelligent modeling tool due to its high capability and 
flexibility in capturing complex data patterns. The study provides a 
detailed comparison between widely used empirical correlations, 
the Peng–Robinson Equation of State, the Soave–Redlich–Kwong 
Equation of State, and the proposed ANN model. Statistical and 
graphical analyses demonstrated the superior performance of the 
ANN-based model in predicting the target properties.

These advancements are particularly relevant to gas condensate 
reservoirs, which exhibit complex thermodynamic behavior as 
pressure falls below the dew point. This results in retrograde 
condensation, where heavier hydrocarbons accumulate near the 
wellbore, forming condensate banking and ultimately leading to 
liquid loading. Liquid loading, a key flow assurance issue, disrupts 
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Abstract

Accurate forecasting of gas production rates is essential for effective reservoir management 
and early detection of flow assurance issues such as liquid loading. This study explores the 
application of a Gated Recurrent Unit (GRU)-based deep learning model to predict daily gas 
production rates in a gas condensate well using a univariate time series approach. To improve 
prediction accuracy and minimize the impact on the results, a dataset spanning 1,500 days 
was utilized. The dataset was divided into training and testing subsets, comprising 1,200 
days and 300 days, respectively. Gas rate data were normalized prior to model training. The 
GRU model was trained using a sliding window of 10-day sequences and evaluated based 
on standard regression metrics. The model achieved a Mean Squared Error (MSE) of 78.58, 
a Mean Absolute Error (MAE) of 3.35, and a Mean Absolute Percentage Error (MAPE) of 
3.98%, indicating strong predictive accuracy and generalization capability.

In addition to accurately tracking stable production behavior, the model successfully 
captured sudden changes in gas rate trends with a short one-day delay. This characteristic 
is particularly valuable for the early identification of production anomalies, including the 
onset of liquid loading, a condition that typically develops over a period of several days. 
The findings highlight the potential of GRU-based models not only for high-resolution 
production forecasting but also as intelligent monitoring tools for real-time anomaly 
detection. The study concludes by recommending the integration of additional operational 
parameters such as wellhead pressure and temperature to further enhance predictive 
performance and extend applicability in reservoir surveillance.

Keywords: gas condensate wells, liquid loading, production rate prediction, gated 
recurrent unit (gru), time series forecasting 
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continuous gas production, introduces backpressure, and causes 
nonlinear, often abrupt, production declines that challenge traditional 
forecasting models. Fataliyev et al.12 extensively reviewed this 
phenomenon, highlighting that condensate precipitation can occur 
due to pressure reduction, leading to liquid accumulation, reduced gas 
flow rates in the bottomhole zone, and unstable well operation. The 
transition from annular to slug flow regimes typically marks the onset 
of liquid loading in a production well, posing risks to well integrity 
and potentially resulting in production failure. This paper reviews 
the conventional understanding of well liquid loading and examines 
various techniques used to mitigate its impact. Based on detailed 
analysis, it proposes a novel pipe element and an automated control 
system designed to maintain stable production in gas-condensate 
wells; however, the automated control system still requires integration 
with reliable gas flow rate forecasting.

Several studies have attempted to incorporate these complexities 
into neural network-based predictions. Zendehboudi et al.13 used ANN 
optimized with particle swarm techniques to predict the condensate-to-
gas ratio (CGR) in retrograde systems. Khamis and Fattah,14 developed 
models to estimate oil–gas ratios in gas condensate and volatile oil 
samples. Ashinze et al,15 expanded this direction by simulating gas 
condensate production using ANNs that reflect both production 
decline and flow anomalies caused by condensate accumulation. On 
the system dynamics front, Ali and Guo,16 integrated neuro-adaptive 
models to simulate transient flow performance and pressure drop, key 
indicators of liquid loading onset. Fataliyev and Aliyev,17 investigated 
the application of deep learning neural networks to predict the liquid 
loading status of wells, which is critical for cost mitigation and 
production efficiency. Four distinct models were developed and trained 
using experimental datasets compiled from multiple sources, with key 
input parameters including wellhead pressure, gas rate, and tubing 
inside diameter. The models achieved prediction accuracy ranging 
from 57% to 80%, demonstrating the potential of deep learning for 
liquid loading prediction in gas-condensate wells. Model performance 
improved by approximately 17% when both gas rate and wellhead 
pressure were used simultaneously as input features, suggesting 
that further optimization is possible by incorporating additional 
parameters such as fluid properties, well geometry, temperature, and 
condensate production rate. However, increasing model complexity 
may complicate implementation and reduce practicality. Al-Fattah 
and Startzman,18 highlighted this aspect and demonstrated that 
dimensionality reduction techniques and sensitivity analysis of input 
variables can be employed to eliminate redundant and insignificant 
parameters, thereby simplifying the neural network architecture.

This brief summary highlights that, despite these efforts, many 
existing models are neither explicitly designed to identify or predict 
liquid loading events nor optimized to capture systems exhibiting 
abrupt dynamic transitions driven by condensate banking. This 
gap motivates the present study, which proposes the application of 
Gated Recurrent Units (GRUs) for simultaneous forecasting of gas 
condensate production and early prediction of liquid loading events. 
GRUs offer a computationally efficient alternative to LSTMs while 
maintaining the capacity to capture long-term dependencies. Their 
simpler gating structure reduces overfitting and training complexity, 
making them suitable for deployment in real-time and constrained-
data environments common in field operations.

The novelty of this study lies in demonstrating the effectiveness 
of a univariate GRU-based deep learning model not only for accurate 
short-term forecasting of gas production in condensate wells but also 
for capturing abrupt changes in production behavior with minimal 
delay. Additionally, the study introduces the novel application of 

GRU models as a potential diagnostic tool for early detection of liquid 
loading onset an area that remains underexplored in existing research.

This contribution is particularly important as the petroleum 
industry increasingly relies on data-driven, automated solutions for 
production optimization. Accurate prediction of both production and 
liquid loading onset can reduce the frequency of unplanned shut-ins, 
minimize deferred production, and support proactive lift and drainage 
strategies. The proposed GRU-based approach thus represents a step 
forward in intelligent reservoir management, particularly under the 
challenging conditions of gas condensate systems.

Methodology
Overview of gated recurrent unit (GRU)

The Gated Recurrent Unit (GRU) is a recurrent neural network 
(RNN) architecture designed to capture temporal dependencies 
in sequential data while mitigating the vanishing gradient problem 
commonly encountered in traditional RNNs. Originally introduced as 
a simplified alternative to the LSTM unit, the GRU employs gating 
mechanisms to regulate information flow without the use of separate 
memory cells. For example, Zainuddin et al.19 proposed an RNN-
GRU–based deep learning approach to forecast the operational states 
of equipment generating time-series data in the oil and gas sector. The 
following sections outline the computational mechanics of the GRU 
and describe its implementation within the experimental framework.

GRU Architecture

Unlike standard RNNs, GRUs incorporate gating mechanisms that 
regulate information flow through the network, thereby enhancing the 
model’s ability to capture long-term dependencies. Each GRU cell 
maintains a hidden state th  at time step t, which is updated based 
on the current input tx  and the previous hidden state 1th − . Figure 1 
presents the structural configuration of the GRU cell, illustrating the 
general architecture of the unit. The cell utilizes two primary gates: 
the update gate tz  and the reset gate  tr . As demonstrated by Tan et 
al,20 who proposed a novel end-to-end Dual-Attention Time-Aware 
Gated Recurrent Unit (DATA-GRU) for irregular multivariate time 
series to predict patient mortality risk, these gates play distinct yet 
complementary roles in regulating memory retention and temporal 
dynamics.

Figure 1 Structure of the sample GRU cell.

Update Gate ( )tz

The update gate determines the extent to which the hidden state 
from the previous time step ( )1th −  should be carried forward to 
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the current hidden state ( )th . It effectively decides how much past 
information needs to be retained. Mathematically, it is defined as:

	 ( )1  t z t Z t zz W x U h bσ −= + + 	                        (1)			 
	

Where:

  
n

tx R∈  is the input vector at time step t ,

1 m
th R− ∈  is the previous hidden state,

zW  and zU  are the input and recurrent weight matrices respectively,

zb  is the bias vector,

σ  is the sigmoid activation function.

The value of [ ] 0,  1 m
tz ∈  acts as a gate, with values close to 1 

indicating strong retention of the previous state. 

Reset gate ( )tr

The reset gate controls how much of the previous hidden state 
should be forgotten or reset before computing the candidate hidden 
state. This mechanism allows the GRU to discard irrelevant past 
information, especially useful for modeling short-term dependencies:

( )1  t r t r t rr W x U h bσ −= + +                           
(2)			 

		

A smaller value of rt encourages the unit to ignore previous hidden 
activations, focusing more on the current input. 

Candidate hidden state ( th )

The candidate activation th , representing the potential new state, 
is computed using the reset gate:

( )( )1  t h t h t t hh tanh W x U r h b−= + +

 	  (3)			 
	

Here,   denotes the Hadamard (elementwise) product, and tanh is 
the hyperbolic tangent activation function. By incorporating  1t tr h −

, the reset gate selectively forgets components of the previous state 
that are not relevant for the current computation. 

Final hidden state update

The final output of the GRU cell, the updated hidden state is then 
derived by interpolating between the previous between the previous 
hidden state and the candidate activation, weighted by the update gate:

( ) 11  )t t t t th z h z h−= − + 

  	     (4)			 
	

This equation enables the unit to either preserve historical context 
 ( ) 0tif z ≈ or adopt new information  ( ) 1tif z ≈ This formulation 

allows the model to dynamically retain or update information across 
time steps, enabling efficient modelling of long-range dependencies 
with fewer parameters compared to LSTM units.21 

Training procedure of the Gated Recurrent 
Unit (GRU) network

The GRU model is trained using sequential input data to predict 
future values based on past observations. The training process 
comprises the following steps:

Input preparation

Sequential data are organized into fixed-length overlapping 
windows, where each input sequence consists of T consecutive time 
steps (e.g., 10 days of gas rates). Each sequence is paired with the 
corresponding target output, which is the value immediately following 
the sequence (e.g., the 11th day’s gas rate).

Initialization of hidden states

The GRU model was implemented in a stateless configuration, 
which is well suited for short-horizon sliding-window forecasting of 
gas production rates. Using a fixed input window of 10 consecutive 
days, the hidden state was reset at the beginning of each sequence, 
enabling the model to focus on localized temporal dynamics relevant 
to short-term production behavior while mitigating the accumulation 
of long-term noise and non-stationary effects commonly observed 
in field data. This design ensures independent processing of training 
samples, prevents information leakage between windows, and 
improves model generalization.

For testing and continuous forecasting, a rolling-window prediction 
strategy was adopted. At each time step, the model was provided with 
the most recent 10-day production history to generate a one-step-
ahead forecast. Within each window, hidden states were updated 
sequentially to capture intra-window temporal dependencies but were 
not propagated across consecutive windows. Temporal continuity was 
implicitly maintained through the overlapping nature of the sliding 
windows, allowing the model to learn consistent production trends 
while preserving robustness and stability in the presence of abrupt 
production rate changes. 

Forward propagation

The input sequence is fed into the GRU cell one time step at a time. 
At each time step t, the hidden state th  is updated based on the current 
input tx  and the previous hidden state 1th − ​, effectively capturing 
temporal dependencies within the sequence. After processing all time 
steps, the final hidden state Th  encapsulates the learned representation 
of the sequence.

Prediction

The final hidden state Th  is passed through an output layer to 
generate the predicted value ŷ , representing the forecast for the next 
time step.

Loss computation

The prediction ŷ  is compared against the true target value-y 
using a suitable loss function, such as Mean Squared Error (MSE), to 
quantify the prediction error.

Backpropagation through time (BPTT)

The computed loss gradients are propagated backward through 
the GRU’s time steps to update the model’s parameters (weights and 
biases). This gradient calculation accounts for temporal dependencies 
and parameter sharing across time steps.

Parameter update

An optimization algorithm (e.g., Adam or SGD) uses the gradients 
to adjust the GRU’s parameters, aiming to minimize the loss over the 
training data.
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Epoch iteration

Steps 2–7 are repeated for multiple epochs, each epoch involving 
a complete pass over the training dataset. At the beginning of each 
epoch and for each input sequence, the hidden states are reinitialized 
to zero to ensure independent processing. Over successive epochs, 
the model parameters converge to values that improve prediction 
accuracy.

Remarks:

i.	 The hidden state is reset at the start of each input sequence and 
epoch, preventing carryover of information across sequences 
during training unless explicitly modeled (e.g., stateful RNNs).

ii.	 Parameter sharing across time steps allows the GRU to 
generalize temporal patterns efficiently.

Results
In this study, the gas production rate data of the well X was first 

normalized using the Minimax Scaler technique to ensure that all input 
values fell within the [0, 1] range, thereby facilitating more efficient 
convergence during model training. The time series dataset consists 
of daily gas production rates spanning approximately 1,500 days. For 
the purpose of model development and evaluation, the dataset was 
divided chronologically into two subsets: the first 1,200 days were 
allocated for training, while the remaining 300 days were reserved for 
testing. This split was chosen to preserve the temporal continuity of 
the data, which is crucial for recurrent neural network (RNN)-based 
architectures such as the Gated Recurrent Unit (GRU).

Figure 2 illustrates the normalized gas rate profile over time. A 
distinct vertical dashed line at day 1,200 separates the training and 
testing intervals. As shown, the time series exhibits non-stationary 
behavior with intermittent fluctuations, underlining the need for 
models capable of capturing temporal dependencies. 

Figure 2 Time series of normalized gas production rate with the training and 
testing data split indicated.

To prepare the data for time-series forecasting, a sliding-window 
approach was employed, whereby input sequences of 10 consecutive 
days were constructed to predict the production rate of the subsequent 
day. This strategy enables the model to learn temporal patterns by 
analyzing historical trends over a fixed prediction horizon.

The prediction model was developed using a GRU-based deep 
neural network. The choice of a deep GRU architecture comprising 
four stacked layers with 50, 30, 30, and 20 units was motivated by the 
need to capture complex temporal dependencies and non-stationary 

fluctuations in daily gas production data, while maintaining higher 
computational efficiency compared with traditional LSTM-based 
models. A larger number of units in the initial layers allows the network 
to learn a diverse set of short- and medium-term temporal features, 
whereas the progressive reduction in the number of units in deeper 
layers facilitates feature compression and helps mitigate overfitting. 
This hierarchical structure aligns with established practices in deep 
recurrent network design and is well suited for modeling the nonlinear 
dynamics and transient flow behavior characteristic of gas-condensate 
reservoirs.

To further enhance generalization performance, dropout layers 
were interspersed between the GRU layers, promoting robust feature 
learning by reducing sensitivity to noise and data-specific fluctuations. 
The Adam optimizer was employed due to its stable and efficient 
convergence properties in deep recurrent architectures, and an early 
stopping criterion was applied to automatically terminate training 
after 10 consecutive epochs without improvement in validation loss. 
The effectiveness of these architectural and hyperparameter choices 
is supported by the learning curves, which exhibit a stable validation 
loss plateau, indicating strong generalization capability and reliable 
predictive performance on unseen production data.

The GRU model learning curve shown in the Figure 3 provides 
insights into the model’s training process by displaying both training 
loss and validation loss over epochs. 

Figure 3 GRU model learning curve showing training and validation loss over 
epochs.

Initially, both losses start high but decrease rapidly as the model 
begins to learn the underlying patterns in the data. The training loss 
(blue line) consistently decreases with each epoch, reflecting the 
model’s improved ability to predict the training set. On the other hand, 
the validation loss (red line) decreases at a similar rate but begins 
to plateau after around the 10th epoch, indicating that the model’s 
performance on unseen data has stabilized. This plateau in validation 
loss suggests that the model has successfully learned the general 
trends in the dataset without overfitting, as the validation loss remains 
low while the training loss continues to decrease. During training, the 
model’s mean squared error (MSE) loss stabilized at approximately 
0.15 for the training set and 0.10 for the validation set. These values, 
obtained from standardized inputs, indicate successful learning and 
good generalization. The slightly lower validation loss suggests the 
model benefitted from regularization and did not overfit the training 
data.

The fact that the model’s validation loss does not show significant 
overfitting behavior (e.g., increasing validation loss as the training 
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loss decreases) further supports the model’s generalization ability. 
The use of early stopping (based on validation loss) is evident in 
this learning curve, as the model’s performance on the test data stops 
improving after a certain point, preventing unnecessary computation 
and potential overfitting. This learning curve indicates that the GRU 
model is effective at learning from the data and exhibits strong 
generalization capabilities for time-series forecasting.

After training, predictions on the test dataset were inverse-
transformed to the original scale for performance evaluation. The 
GRU model achieved a Mean Squared Error (MSE) of 78.58, a Mean 
Absolute Error (MAE) of 3.35, and a Mean Absolute Percentage Error 
(MAPE) of 3.98%, indicating strong predictive accuracy. The MSE 
reflects the average magnitude of squared prediction errors, the MAE 
provides an interpretable measure of the average absolute deviation 
in daily gas production rates, and the MAPE expresses the error as 
a percentage of the actual values, facilitating scale-independent 
comparison. A MAPE below 5% is generally considered highly 
accurate in forecasting applications, confirming the suitability of the 
proposed GRU model for short-term gas production prediction. Since 
all evaluation metrics were computed over the entire test interval, they 
represent the model’s average performance across the full prediction 
horizon. As illustrated in Figure 5, the gas production rate during the 
test period varies approximately between 60 and 120 Mcf/day, placing 
the observed prediction errors in a relatively small range compared 
to the overall magnitude of production. Specifically, an MAE of 3.35 
indicates that the predicted daily gas production rates deviate from 
measured values by approximately 3.35 Mcf/day on average. It is 
important to note that prediction errors are not uniformly distributed 
over time and are strongly influenced by production dynamics. During 
periods of stable production, the model closely follows the measured 
rates with minimal error, whereas during abrupt production changes 
the error temporarily increases and may reach approximately 6–7 
Mcf/day. These deviations are primarily attributable to the model’s 
short response delay to rapid transitions rather than systematic bias, 
and they do not significantly impact the overall predictive accuracy 
when averaged over the full test period.

Figure 4 presents a scatter plot comparing the GRU model’s 
predicted gas production rates against the actual values for both the 
training and test sets. Ideally, points lying close to the 45° reference 
line indicate highly accurate predictions. As shown, the majority of 
points for both training (blue) and test (red) sets cluster closely around 
the reference line, confirming the model’s strong predictive capability 
across both seen and unseen data. 

Figure 4 Actual vs. GRU-predicted gas production rates for training and test 
sets.

While a few outliers exist, particularly at lower and higher 
production values, the overall alignment indicates that the model 
successfully captures the underlying production trends (figure 4). The 
test set predictions show a slightly wider spread, which is expected 
due to the absence of direct exposure during training, yet the deviation 
remains within acceptable bounds. This plot further validates the GRU 
model’s effectiveness in learning temporal patterns and generalizing 
well to future production behavior.

Figure 5 presents the comparison between the GRU model’s 
predicted gas production rates and the actual measured values 
for the test period. The production profile demonstrates a typical 
pattern observed in gas wells, where long periods of stable flow are 
occasionally disrupted by sudden drops or increases in production 
rates. The GRU model exhibits a strong ability to closely replicate 
the actual rates during the stable intervals, maintaining high accuracy 
with minimal deviation. This consistency reinforces the model’s 
effectiveness in learning and predicting steady-state behaviors that 
are commonly encountered in production operations.

Figure 5 GRU model predictions versus actual gas production rates for the 
test period.

More importantly, the model also demonstrates the capability to 
detect abrupt changes in gas rate trends, although with a slight lag 
of approximately one day. This short delay is understandable, given 
that recurrent neural networks rely on sequential input and require 
temporal context to update their internal memory state. The GRU 
model demonstrates a strong ability to closely replicate actual gas 
production rates during stable intervals, maintaining high predictive 
accuracy with minimal deviations on the order of 1–3 Mcf/day, 
despite production rates over the test period varying approximately 
between 60 and 120 Mcf/day. Despite this minor lag, the model is 
able to rapidly adapt its predictions following sudden transitions 
in the production profile, which is a critical strength in real-world 
monitoring systems.

This predictive behavior has important practical implications. One 
such application is the early detection of liquid loading, a common 
flow assurance issue in gas condensate wells where accumulated 
liquids begin to restrict gas flow. Since liquid loading does not occur 
instantaneously but develops over several days (typically one week to 
ten days), a model that can recognize early anomalies in the production 
trend—such as a sudden decline in gas rate—offers significant value. 
The GRU model’s sensitivity to these early shifts, even with a short 
delay, suggests its potential use not only for accurate rate forecasting 
but also as a diagnostic tool for identifying the onset of liquid loading. 
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Conclusion
This study investigated the application of a Gated Recurrent Unit 

(GRU) based deep learning architecture for forecasting daily gas 
production rates in a gas condensate well. The primary objective 
was to assess the model’s ability to accurately predict both steady-
state production behavior and sudden rate fluctuations, which are 
commonly observed in field operations. The proposed GRU model 
demonstrated strong performance, achieving a Mean Squared Error 
(MSE) of 78.58, a Mean Absolute Error (MAE) of 3.35, and a Mean 
Absolute Percentage Error (MAPE) of 3.98% on the test set. These 
results confirm the model’s high predictive accuracy and ability to 
generalize well on unseen data.

It should be noted that using only univariate data may impose 
certain limitations when applying this approach to multivariate 
processes. However, the model is designed to be connected to live 
well data and continuously updated through ongoing real-time history 
matching, which inherently accounts for the influence of other factors. 
Consequently, these effects are reflected in the trend dynamics. For this 
reason, the model has demonstrated effectiveness not only in capturing 
stable production trends with minimal deviation but also in detecting 
abrupt changes in the production profile with only a short, one-day 
delay. This predictive behavior suggests that GRU-based models are 
not only suitable for production forecasting but may also serve as 
valuable tools for early anomaly detection. One important implication 
is the potential use of GRU models for the early identification of 
liquid loading onset, which typically manifests gradually over a one-
to-two-week period. By recognizing the early signs of rate decline, the 
model could assist in proactive flow assurance management.

The novelty of this study lies in demonstrating that a purely 
data-driven GRU model can replicate both gradual and transient 
flow dynamics in gas wells with high reliability, without relying on 
mechanistic models or explicit reservoir parameters. These findings 
provide a strong foundation for integrating GRU-based architectures 
into intelligent well monitoring systems. Future research may further 
enhance model performance by incorporating additional operational 
parameters such as wellhead pressure, bottomhole pressure, and 
temperature. This would enable a more comprehensive understanding 
of well behavior and support the development of more robust and 
interpretable prediction frameworks for use in reservoir surveillance 
and production optimization.

Acknowledgements
None.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References
1.	 Abbasov ZY, Fataliyev VM. The effect of gas–condensate reservoir de-

pletion stages on gas injection and the importance of the aerosol state of 
fluids in this process. J Nat Gas Sci Eng. 2016;31:779–790. 

2.	 Hamidov NN, Fataliyev VM. Experimental study into the effectiveness of 
the partial gas cycling process in the gas–condensate reservoir develop-
ment. J Pet Sci Technol. 2016;34(7):677–684. 

3.	 Fataliyev VM, Hamidov NN. Effective “vaporizer” for recovering ret-
rograde hydrocarbon condensate from a gas–condensate reservoir. Int J 
Petrochem Sci Eng. 2017;2(6):302–308. 

4.	 Ali JK. Neural networks: a new tool for the petroleum industry? Proceed-
ings of the SPE European Petroleum Computer Conference. 1994.

5.	 Nguyen HH, Chan CW, Wilson M. Prediction of oil well production: a 
multiple–neural–network approach. Intell Data Anal. 2004;8(2):151–169. 

6.	 Chakra NC, Song KY, Gupta MM, et al. An innovative neural forecast of 
cumulative oil production from a petroleum reservoir employing higher–
order neural networks. J Pet Sci Eng. 2013;106:18–33. 

7.	 Aizenberg I, Sheremetov L, Villa Vargas L. Multilayer neural network 
with multi–valued neurons in time series forecasting of oil production. 
Neurocomputing. 2016;175:980–989. 

8.	 Liang B, Liu J, You J, et al. Hydrocarbon production dynamics fore-
casting using machine learning: a state–of–the–art review. Fuel. 
2023;337:127067. 

9.	 Sagheer A, Kotb M. Time series forecasting of petroleum production us-
ing deep LSTM recurrent networks. Neurocomputing. 2019;323:203–213. 

10.	 Al–Shabandar R, Jaddoa A, Hussain AJ, et al. A deep gated recurrent 
neural network for petroleum production forecasting. Mach Learn Appl. 
2021;3:100013.

11.	 Gouda A, Gomaa S, Attia A, et al. Development of an artificial neural 
network model for predicting the dew point pressure of retrograde gas 
condensate. J Pet Sci Eng. 2022;208:109390. 

12.	 Fataliyev VM, Hamidov NN, Aliyev KF. Advances in understanding and 
controlling liquid loading in gas–condensate production well. SOCAR 
Proc. 2025;(2):92–103. 

13.	 Zendehboudi S, Ahmadi MA, James L, et al. Prediction of conden-
sate–to–gas ratio for retrograde gas condensate reservoirs using arti-
ficial neural network with particle swarm optimization. Energy Fuels. 
2012;26(6):3432–3445. 

14.	 Khamis MA, Fattah KA. Estimating oil–gas ratio for volatile oil and 
gas condensate reservoirs: artificial neural network, support vector ma-
chines and functional network approach. J Pet Explor Prod Technol. 
2019;9:573–582. 

15.	 Ashinze AS, Adeniyi AT, Giwa A. Modelling and simulation of natural 
gas condensate production using artificial neural network. Proceedings of 
the SPE Nigeria Annual International Conference and Exhibition Society 
of Petroleum Engineers. 2023.

16.	 Ali A, Guo L. Neuro–adaptive learning approach for predicting produc-
tion performance and pressure dynamics of gas condensation reservoir. 
IFAC–PapersOnLine. 2019;52(29):122–127. 

17.	 Fataliyev VM, Aliyev KF. Predictive modeling of liquid loading in gas 
condensate wells using deep neural networks. Azerb Oil Ind. 2025;(9):13–
19. 

18.	 Al–Fattah SM, Startzman RA. Predicting natural gas production using ar-
tificial neural network. Proceedings of the SPE Hydrocarbon Economics 
and Evaluation Symposium. Society of Petroleum Engineers. 2001.

19.	 Zainuddin Z, Hasan MH. Predicting machine failure using recurrent neu-
ral network–gated recurrent unit (RNN–GRU) through time series data. 
Bull Electr Eng Inform. 2021;10(2):1011–1019. 

20.	 Tan Q, Ye M, Yang B, et al. Data–GRU: dual–attention time–aware gated 
recurrent unit for irregular multivariate time series. Proceedings of the 
AAAI Conference on Artificial Intelligence. 2020;34(1):5956–5963. 

21.	 Wang Y, Feng S, Wang B, et al. Deep transition network with gat-
ing mechanism for multivariate time series forecasting. Appl Intell. 
2023;53:24346–24359.

https://doi.org/10.15406/ipcse.2026.08.00144
https://www.sciencedirect.com/science/article/abs/pii/S1875510016301883
https://www.sciencedirect.com/science/article/abs/pii/S1875510016301883
https://www.sciencedirect.com/science/article/abs/pii/S1875510016301883
https://www.tandfonline.com/doi/full/10.1080/10916466.2016.1160112
https://www.tandfonline.com/doi/full/10.1080/10916466.2016.1160112
https://www.tandfonline.com/doi/full/10.1080/10916466.2016.1160112
https://medcraveonline.com/IPCSE/IPCSE-02-00056.pdf
https://medcraveonline.com/IPCSE/IPCSE-02-00056.pdf
https://medcraveonline.com/IPCSE/IPCSE-02-00056.pdf
https://onepetro.org/SPEEPCC/proceedings-abstract/94EPCC/94EPCC/SPE-27561-MS/57024
https://onepetro.org/SPEEPCC/proceedings-abstract/94EPCC/94EPCC/SPE-27561-MS/57024
https://journals.sagepub.com/doi/10.3233/IDA-2004-8206
https://journals.sagepub.com/doi/10.3233/IDA-2004-8206
https://www.sciencedirect.com/science/article/pii/S0920410513000582
https://www.sciencedirect.com/science/article/pii/S0920410513000582
https://www.sciencedirect.com/science/article/pii/S0920410513000582
https://www.sciencedirect.com/science/article/abs/pii/S0925231215016008
https://www.sciencedirect.com/science/article/abs/pii/S0925231215016008
https://www.sciencedirect.com/science/article/abs/pii/S0925231215016008
https://www.sciencedirect.com/science/article/abs/pii/S0016236122038911
https://www.sciencedirect.com/science/article/abs/pii/S0016236122038911
https://www.sciencedirect.com/science/article/abs/pii/S0016236122038911
https://www.sciencedirect.com/science/article/abs/pii/S0925231218311639
https://www.sciencedirect.com/science/article/abs/pii/S0925231218311639
https://www.sciencedirect.com/science/article/pii/S266682702030013X
https://www.sciencedirect.com/science/article/pii/S266682702030013X
https://www.sciencedirect.com/science/article/pii/S266682702030013X
https://www.sciencedirect.com/science/article/abs/pii/S0920410521009372
https://www.sciencedirect.com/science/article/abs/pii/S0920410521009372
https://www.sciencedirect.com/science/article/abs/pii/S0920410521009372
https://pubs.acs.org/doi/10.1021/ef300443j
https://pubs.acs.org/doi/10.1021/ef300443j
https://pubs.acs.org/doi/10.1021/ef300443j
https://pubs.acs.org/doi/10.1021/ef300443j
https://link.springer.com/article/10.1007/s13202-018-0501-0
https://link.springer.com/article/10.1007/s13202-018-0501-0
https://link.springer.com/article/10.1007/s13202-018-0501-0
https://link.springer.com/article/10.1007/s13202-018-0501-0
https://ouci.dntb.gov.ua/en/works/9QRO6Dn7/
https://ouci.dntb.gov.ua/en/works/9QRO6Dn7/
https://ouci.dntb.gov.ua/en/works/9QRO6Dn7/
https://ouci.dntb.gov.ua/en/works/9QRO6Dn7/
https://www.sciencedirect.com/science/article/pii/S2405896319325765
https://www.sciencedirect.com/science/article/pii/S2405896319325765
https://www.sciencedirect.com/science/article/pii/S2405896319325765
https://beei.org/index.php/EEI/article/view/2036
https://beei.org/index.php/EEI/article/view/2036
https://beei.org/index.php/EEI/article/view/2036
https://ojs.aaai.org/index.php/AAAI/article/view/5440
https://ojs.aaai.org/index.php/AAAI/article/view/5440
https://ojs.aaai.org/index.php/AAAI/article/view/5440
https://link.springer.com/article/10.1007/s10489-023-04503-w
https://link.springer.com/article/10.1007/s10489-023-04503-w
https://link.springer.com/article/10.1007/s10489-023-04503-w

	Title
	Abstract 
	Keywords
	Introduction 
	Methodology 
	Overview of gated recurrent unit (GRU) 
	GRU Architecture 

	Training procedure of the Gated Recurrent Unit (GRU) network 
	Results 
	Conclusion 
	Acknowledgements 
	Conflicts of interest 
	References 
	Figure 1 
	Figure 2 
	Figure 3 
	Figure 4 
	Figure 5 

