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Introduction
The coagulation of colloidal particles plays an essential role during 

various processes, including the production of materials for structural 
and functional purposes, water purification by reagent methods, 
and the implementation of nanotechnology processes. The sol-gel 
process is used in the production of inorganic sorbents, catalysts 
and catalyst carriers, synthetic zeolites, inorganic binders, ceramics 
with select physical, optical, magnetic, and electrical properties, 
glass, glass ceramics, fibers, etc.The sol-gel process is one aspect 
of nanotechnology. It describes the preparation of nanoscale objects 
like e.g., particles and their processing of nanostructured materials. 
One process step, thereby, includes the solidification of a liquid 
nanoparticle dispersion (sol) by inter particulate forces to a gel. The 
creation of models of this process will make it possible to fine-tune the 
properties of the resulting materials.

An aggregate is a collection of particles with strong interparticle 
bonds. These bonds can be covalent or even necked between individual 
particles. In this case, the resulting surface area of the formed 
aggregates can be significantly less than the sum of the surface areas of 
the particles that formed it. The purpose of this work is to obtain results 
that allow a direct approach to the physical and mathematical modeling 
of colloidal processes associated with coagulation and aggregation of 
nanoparticles. Let us consider the possible mechanisms that promote 
or prevent the coagulation of particles in solution. It should be borne 
in mind that they often proceed together.One of the main processes 
leading to the interaction of colloidal particles with each other is 
Brownian coagulation. Colloidal particles react to random molecular 
fluctuations in the density and average velocity of solvent molecules; 
therefore, they remain in irregular (Brownian) motion all the time. 
Brownian wandering leads to their mutual collision; therefore, it is 
one of the main consistently acting mechanisms that contribute to the 
coagulation of colloidal particles.

Brownian diffusion is another process that determines the 
interaction of colloidal particles. The Brownian walk of particles leads 
to the so-called Brownian diffusion and the interaction of particles 

with each other. It also promotes their deposition on the surface of 
various materials. However, large particles and their aggregates are 
flown around by the solvent due to sedimentation. Consequently, 
simultaneously with the convective transfer of small particles and 
Brownian diffusion, convective Brownian diffusion can be observed.
During the sedimentation of large aggregates of colloidal particles, 
the “engagement” effect can be observed. The particles have a finite 
size; therefore, at a distance of the order of the particle radius from 
the surface of the aggregate, the standard component of the solvent 
velocity is finite; during convective transfer, additional “engagement” 
of the particle with a large aggregate is possible. The engagement 
effect plays a significant role in the formation of precipitation, 
especially under the additional action of gravitational and centrifugal 
forces, when convective Brownian diffusion is no longer sufficient.
All the processes discussed above act together in the gravitational 
coagulation of particles of comparable sizes. Gravitational coagulation 
is one of the main microphysical mechanisms of sediment formation. 
Convective transport of particles by the solvent always results in less 
deposition because it is directed against gravity. Sol-gel transition 
and sedimentation are mutually different processes. Therefore, a 
sol-gel change is observed only when the growth rate of aggregates 
significantly exceeds the rate of their deposition, and the formation of 
an infinite aggregate stops the sedimentation process altogether.

Phenomenological approach to coagulation 
kinetics

The sol-gel transition is observed in the processes of colloidal 
particle association. It is accompanied by the formation of the so-
called “endless aggregate”, i.e., unit comparable to the size of the 
entire system. There are several approaches to the modeling of 
kinetics and structure formation at sol-gel transition the construction 
of mathematical models of the aggregation process and the computer 
simulation. Nonlinear equations for aggregates growth rate, like 
the nonlinear Boltzmann equation, are usually used to construct 
mathematical models of the aggregation process. The equations of 
chain growth rate were first obtained by Smoluchowski1 in a discrete 

Int J Petrochem Sci Eng. 2020;5(1):49‒54. 49
©2020 Kudryavtsev. This is an open access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and build upon your work non-commercially.

Modelling of kinetics and structure formation at sol-
gel transition

Volume 5 Issue 1 - 2020

P Kudryavtsev
Deputy Director for Research and Development, Israel 
Technology Research Center, Israel

Correspondence: P Kudryavtsev, Deputy Director for 
Research and Development, KUD Industries P.N. Ltd - Israel 
Technology Research Center, Israel, Email 

Received: August 19, 2020 | Published: September 14, 2020

Abstract

Sol-gel is a modern technological process that is widely used in production of inorganic 
sorbents, catalysts and catalyst carriers, synthetic zeolites, inorganic binders, ceramics with 
select physical, optical, magnetic, and electrical properties, glass, glass ceramics, fibers, 
etc. The creation of models of this process will make it possible to fine-tune the properties 
of the resulting materials. The sol-gel transition is a process of sol particle association 
accompanied by the formation of “an infinite aggregate”. Two ways of constructing 
mathematical models are suggested. The first approach is based on the methods of statistical 
thermodynamics, and the second one is hydrodynamical. Both methods make it possible to 
obtain the inter- consistent equations describing the relationship between the gelation time 
and the macroscopic parameters.

Keywords: sol-gel transition, aggregation, coagulation, fractals, fractal dimension, 
modeling

International Journal of Petrochemical Science & Engineering

Review Article Open Access

https://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.15406/ipcse.2020.05.00121&domain=pdf


Modelling of kinetics and structure formation at sol-gel transition 50
Copyright:

©2020 Kudryavtsev.

Citation: Kudryavtsev P. Modelling of kinetics and structure formation at sol-gel transition. Int J Petrochem Sci Eng. 2020;5(1):49‒54. 
DOI: 10.15406/ipcse.2020.05.00121

form and by Schuman2 in a continuous way. The essential difference 
between the Boltzmann equation and the equation for the rate of 
fragmentation and growth of aggregates lies in the difference in 
the conservation laws that are embedded in these equations. In the 
equations for the rate of fragmentation and growth of aggregates, 
the total mass of aggregates is constant, and their total number is 
not conserved. This difference also provokes a significant difference 
in the behavior of their decisions. For example, some solutions are 

used to describe the kinetics of the gelation process. Such an equation 
corresponds to the conditions under which the total mass of aggregates 
of finite size and colloidal particles is retained until a certain critical 
point in time (gelation point). After reaching the gel point, the total 
mass of such particles begins to decrease. This behavior of the system 
corresponds to the emergence of mass flow from aggregates of limited 
size to an “infinite aggregate” - a gel.3 The equation of aggregates 
growth and fragmentation rate is expressed in a continuous form:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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x x
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When a variable characterizing the mass or sizes of an aggregate 
takes the discrete values, the equation of the rate of aggregates 
formation reaction in a unit volume may be written as follows:
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For the analysis of the solutions of equations (1) and (2), the 
corresponding moments of distribution functions are the most 
interesting:
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Here: ( )0M t  is the overall number of aggregates, ( )1M t  is the 
total mass of aggregates, and ( )2M t  - is the second moment of the 
distribution; its value is proportional to the degree of aggregation.All 
these quantities are referred to as the unit volume. For some models 
of growth and fragmentation of aggregates with specially chosen 
functions K  and F , the closed equations may be obtained directly 
from the functions ( )kM t . These equations are called the equations 
of macroscopic rates. In general, their consequence is the conservation 
equation of the total mass ( )1M t .

The described equations are used for modeling the processes of 
the polycondensation polymerization and in the meteorology, and for 
the calculation of the process of atmospheric precipitation formation.4 

Let us construct a model of aggregation rate in terms of statistical 
thermodynamics. For colloidal particles having a two-hole potential 
and a certain energy barrier, the expression for the rate constant may 
be written:

( )( )
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Where η is the viscosity of the medium. If .j m i= , for rather 
large aggregates, we will obtain from eq. (4) a ratio of the interaction 
processes rate constants for aggregate-aggregate and aggregate-
particle:
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The parameter m shows the magnitude of the difference between 
the reacting aggregates. The value 1m =  corresponds to the case of 
the interaction of identical aggregates. If 1m > , then this means that 
j i> , that is, the primary aggregate i  interacts with a large aggregate 
j . For 1m < , the opposite situation arises. Figure 1 shows the 

behavior of function5depending on the parameter m and the number 
of particles in the primary aggregate. It can be assumed that there 
should be some symmetry in the behavior of the function ( , )U m i  
for the value 1m = . However, from Figure 1, this symmetry is not 
explicitly observed. For a more detailed understanding of the current 
situation, let us analyze the behavior of the partial derivative of the 
function ( , )U m i  concerning m :
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Figure 2 shows a graph of the equation (6) behavior depending 
on the parameter m and the number of particles in the primary 

aggregate. Analysis of this dependence shows that ( , )U m i
m
∂
∂  has 

some symmetry concerning 1m = , although it is not ideal. Hence, we 
can conclude that the aggregation process has a greater tendency to 
collect individual colloidal particles and small aggregates by a large 
aggregate than vice versa, although both processes take place.As is 
known from the laws of chemical kinetics, the speed of a complex 
multistage process is determined by the limiting stage rate, that is, 
the stage with the minimum rate. From equation (4) and Figures 1&2, 
such a stage is the interaction of primary particles, that is when the 
value of i  is minimal. Thus, to estimate the rate of aggregation, one 
can use the equality condition 1i = . In the case when 1i = , equation 

(5) describes the case of aggregate-particle interaction. In this case, 
the m value indicates the number of particles in the aggregate:

( ) 1
1( ) 1

m
m

iU m m m +
= = + (7)

The analysis of the equation (7) shows that when the differences in 
aggregates sizes are small in a system, the aggregation rate is a weakly 
dependent on . The aggregates differing much in sizes exhibit a 
drastic growth of aggregation rate, which is proportional to 

2m : 

( ) 2
1lim lim im m

U m m=
→∞ →∞

= (5.2)

Thus, the occurrence of particles with many different sizes will lead 
to a sharp increase in aggregation rate, i.e., the aggregates “pick up” 
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on themselves the separate particles into the small aggregates. Figures 
1&2 clearly show that in the case of aggregate-aggregate interaction, 
the speed of their interaction grows especially rapidly with an increase 
in the size of the aggregates participating in the process. However, 
the total rate of this process is determined by the rate of interaction 
between primary particles and small aggregates.

Figure 1 Graph of the behavior of equation (5) of the function ( ),U m i
depending on the parameter m and i - the number of particles in the primary 
aggregate.

Figure 2 The graph of the behavior of the equation (6) of the partial derivative 

( ),U m i
m
∂
∂

 depending on the parameter m and i - the number of particles in 

the primary unit.

Method of moments in determining the rate 
of coagulation

The gelation time will be determined by the size distribution 
functions of the primary aggregates. Therefore, to determine the 
gelation time, it is most convenient to use the functions corresponding 
to the moments of the aggregate size distribution. The most suitable 
of these moments is the moment corresponding to the variance of the 
distribution ( )2M t , which is the value proportional to the aggregation 
degrees. To determine the time of infinite cluster formation, let 
us study the asymptotic properties of size distribution functions of 
aggregates for a model with the nucleus .K i j= . For this purpose, we 

write a set of equations for the moment 2M , which simply follows 
from equations (1) and (3):

22
22dM M

dt
= (8)

In this model, at a time moment ct t=  a super particle - “infinite 
aggregate” is formed. The quantity ct  is determined from the 
condition of tending to ∞ of moment ( )2M t . Moment ( )2M t  is the 
second moment of the distribution; its value is proportional to the 
degree of aggregation. Solving equation (8), we get: 

2
2

2

(0)( )
1 2 (0).

MM t
M t

=
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Fromequation (9) wefind:

2

1
2 (0)ct M

= (10)

Further examination will be made for the model of monodispersed 
particles of the unit size ( 1g = ) since the limiting stage of the 
aggregation process is the stage of attachment of primary particles to 
the forming aggregate. The particle size distribution for this case can 
be represented as the Dirac δ-function:

( ) 0( )c g g gδ= − (11)

Following the filtering property of the δ-function, the moment 
( )2 0M  will be equal to:

( ) 2 2
2 0 0

0

0 ( )M g g g dg gδ
∞

= − =∫ (12)

From here for 0 1g = , we have 
1

2ct =
. For the transition from 

dimensionless to real-time, we introduce the aggregation time agrτ
. 

This parameter represents the time interval between individual events 
in the aggregation process:

1
agr kN
τ = (13)

Where: N is the number of particles in a unit volume. 

From equation (4), we can get the apparent aggregation time under 
the condition 1i j= = :

3
8

E
k TB

c c agg
B

t e
k TN
ητ τ= = (14)

The analysis of equation (14) shows that the gelling time is 
directly proportional to the viscosity of the medium and inversely 
proportional to the temperature and the concentration of particles. The 
increase in potential barriers during the interaction of particles leads 
to a rise in gelling time. To elucidate the effects of hydrodynamic 
flows, let us consider the case where the aggregate grows by the 
conservative attachment of separate particles. Two mechanisms drive 
the aggregation process. One of the mechanisms of this process is the 
diffusion motion of the reacting particles. The second mechanism is 
due to the movement of aggregates under the influence of existing 
hydrodynamic flows. In the latter case, the aggregate rate is little 
compared to the heat rate of particles, so that the attachment of 
particles ultimately occurs due to their diffusion.
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Balance equation for the coagulation process
The balance equation has the following form for the total number 

of particles  in the aggregate, considering the flow of both processes:

d m
dn v v
dt

= + (15)

Where  is the rate of adherence of colloidal particles to the 
aggregate in the diffusive motion of particles, and  is the rate of 
adherence of particles to the aggregate due to the occurrence in the 
aggregate motion band when it moves along by linear path.Usually, 
the aggregate is rather large ( 0R r>> ) and base a fractal geometry 
(Figure 3), i.e., the number of particles in it is equal to:

0

d
Rn
r

 
=  
 

(16)

Figure 3 Correlation of the number of particles N in a fractal and its size R 
(obtained by the method of simulation modeling). The dotted and dashed lines 
correspond to the confidence intervals σ  and 3 ,σ respectively. (Note to the 
equation: y N= and x R= , 2R  - coefficient of determination).

Where: d  - is the fractal dimension. 

From equation (15), we have:

1 2
d d

D G
dn n n
dt

ϑ ϑ= + (17)

Where: 04D Dr Nϑ π=  aggregation rate coefficient for diffusion 
transfer of reacting particles; 2

0G r vNϑ π=  - aggregation rate 
coefficient for hydrodynamic transfer of reacting particles; D - is 
the diffusion coefficient of particles; N  - is the concentration of 
particles, and v  - is the speed of aggregates motion under the action 
of the hydrodynamic flow.For the convenience of analyzing the 
behavior of solutions to the differential equation (17), we bring it to a 
dimensionless form:

1 2 1 2

.D d d d d

G

dn n n a n n
d t

ϑ
ϑ

= + = +n (18)

Where: .Gt tϑ=%  – adjusted time;  – the ratio of 
aggregation rate coefficients for diffusion and hydrodynamic transfer 

of reacting particles. In the case when 1a > , the diffusion transfer of 
particles due to Brownian motion prevails. In the case when 1a <
, the hydrodynamic transfer of particles predominates due to the 
movement of a liquid medium to which these particles are dispersed. 
The behavior of solutions to equation (18) is shown in Figure 4.

Figure 4 The total number of particles in the resulting aggregate by equation 
(18). 1-3 - Influence of fractal dimension .d  4-6 - Influence of the ratio of the 
aggregation rate coefficients during diffusion and hydrodynamic transfer of 

reacting particles .D

G
a ϑ

ϑ
= The image numbers correspond to the following 

values of the initial parameters used in the numerical solution of equation (18): 
1 - 4.0a = . 1 - 0.72a = . 1 - 0.01a = . 4 - 1.3d = . 5 - 1.7d = . 6 - 2.1d = .

The analysis of the numerical solutions of equation (18) presented 
in Figure 4 showed that a decrease in the fractal dimension of the 
forming aggregate sharply increases the rate of its growth and, 
accordingly, the rate of formation of an infinite aggregate, that is, 
reduces the time of gel formation during the sol-gel transition. If 
, that is, the hydrodynamic transfer of particles due to the movement 
of a liquid medium prevails, then there is a simple process of particle 
aggregation followed by the formation of a gel, which is elegantly 
seen from Figure 4. In this case, with the formation of aggregates 
with a high value of the fractal dimension approaching , the 
aggregate growth process simply slows down. The value  is 
a critical value, above which there is a change in the mechanisms of 
the behavior of aggregates with small and large fractal dimensions. 
With a sizeable fractal dimension, the aggregates stop forming and 
are removed from the system due to sedimentation. This phenomenon 
is visible in Figures1–4. In this case, with an increase in the fraction 
of the diffusion component in the growth rate of aggregates, the 
critical value of the fractal dimension shifts towards lower values. At 
the same time, the growth rate of aggregates is overgrowing. Such a 
breakdown of the aggregation rate for a sizeable fractal dimension 
of aggregates is visible from Figures 4–6. In this case, the critical 
value of the fractal dimension is approximately 2.1d ≈ . These 
calculations were carried out by the method of numerical solution of 
the differential equation (18). To assess the influence of other factors 
on the aggregation process, we carried out a qualitative assessment of 
the gelation time, which was estimated as the time required to collect 
all particles into a single endless aggregate. Determine now the time 
when all sol particles combine into a single aggregate, which is equal 
by sizes to the entire system:

2
0

1 2 1
11

d

c d
d d

D G

Bdn

n n

ϑτ
ϑ

ϑ ϑ

∞ −

−= ∝

+
∫ (19)
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Where  is a composite quantity that weakly depends on the fractal 
dimension .As compared to equation (14), the equation (19) gives 
overstated results of gelling times, because it does not consider the 
coalescence of aggregates. However, the analysis of the asymptotic 
behavior of equation (19) shows that it will give the results that are 
like equation (14). Substituting into equation (19) the values of the 
parameters indicated in equation (17), we obtain:

2 3 2

1 1
.2 d d

c d d d d
p p

B D B
D V N D V N

τ
− −

− −= =
%

(20)

Where 02pD r=  – particle diameter.

So, from equation (20), it follows that the gelation time is inversely 
proportional to the number concentration of particles:

1
c N
τ ∝ (21)

Accordingly, for the speed of movement of the units, there is the 
following proportionality with the gelation time:

1
1

c dV
τ −∝ (22)

The nature of the gelation time dependence on the particle size 
is determined by the influence of other factors on this dependence, 
for example, such as the diffusion coefficient D . The diffusion 
coefficient of particles depends on the average speed of movement 
of particles and their free path.6,7 Considering the mean free path λ  
of a colloidal particle and the mean square velocity v  of motion of 
colloidal particles,7 the equation for the diffusion coefficient will have 
the form:

1
21 1

3 6 p
p

kTD v D
Dm
ρλ

π

−
= = ∝ (23)

Where k – Boltzmann constant; T – absolute temperature;  – 
mass concentration of colloidal solution [kg/m3];  is the density of 
the substance of the colloidal particle [kg/m3].

Considering the above factor, for the size of the first particles, we 
have the following proportionality, if the concentration of the sol is 
constant and expressed in counting units:

31
2

d
c dτ

−
∝ (24)

If a constant mass concentration is maintained in the experiments, 
then this formula will change its form and will look like this:

34
2

D fdτ
−

∝ (25)

The shape of the aggregate and its fractal dimension  can be 
different. It depends on the nature of aggregation, and according to 
the literature, it takes values from 1.75 to 2.5 ÷ 3.0.8,9 A significant 
difference between the two models is that the first version includes 
only the material balance in the system. In contrast, the second model 
considers the structural feature of the forming gel. This feature is due 
to the fractal geometry of gel formation and its relationship with the 
kinetics of aggregation.

Experimental verification of coagulation and 
sol-gel transition models

Experiments were carried out to study the effect of the particle 
size of a colloidal solution of silicon oxide on the time of its gelation 
to check the obtained dependences. In all tests, a constant mass 
concentration of the colloidal solution was maintained. The resulting 
dependencies are shown in Figure 5.

Figure 5 Dependence of gelation timeθ on the size sd of colloidal particles in 
sol at different temperatures. The axes in the picture are plotted in logarithmic 
coordinates. 1 - 80℃ ; 2- 100℃.  (Note to the equation  lgy θ= : and

lg sx d= , 2R  - coefficient of determination).

Figure 5 shows that the obtained dependences fit well into a linear 
correlation. In this case, using relation (25), one can calculate the 
fractal dimension of the resulting gels. So, for a temperature of 80 ℃, 
it is 1.44 0.06d = ± , and for a temperature of 100 ℃ - 1.41 0.09d = ±
. Under the method developed by us earlier [10], from the data on the 
fractal dimension, we calculated the mean value of the coordination 
number for colloidal particles of silicon oxide in the gel formed in these 
experiments. Accordingly, the calculated values of the coordination 
numbers ( CN ) were: for temperature 80 ℃ - 2.88 0.06CN = ± , and 
for a temperature of 100 ℃ - 2.82 0.09CN = ± .

Considering the measurement error of the fractal dimension, we 
can conclude that the structure of the forming gel practically weakly 
depends on the temperature in the experimental region. Also, it 
can be seen from the data obtained that an increase in the process 
temperature leads to the formation of a more delicate gel structure. 
This phenomenon is associated with an increase in the rate of gelation. 
Accordingly, it is related to a decrease in the possibility of penetration 
of sol particles into the inner part of the unit. During the interaction of 
colloidal particles with each other, the average coordination number 
of colloidal particles in the aggregate decreases. Also, such small 
values of the fractal dimension of the formed gels indicate their very 
delicate structure. The reason for such significant differences in the 
value of the fractal dimension, in comparison with the literature data, 
can only be explained by the fact that the published works studied 
gels that had already been dried and underwent syneresis processes, 
that is, compaction. 

The use of computer simulation techniques makes it possible to 
obtain the results, which describe well both kinetics and geometry of 
forming aggregate — the most widespread and like the real state is 
the model of diffusion-limited aggregation.5 An example of diffusion-
limited aggregation is the modeling of the concentration dependence 
of gelling time given in Figure 6. The results are obtained using 
statistical averaging of gelling time. For comparison, Figure 6 also 
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presents experimental data on the dependence of the gelation time on 
the concentration of a colloidal solution of silicon oxide SiO2. Figure 
6 presents the comparison of experimental and simulation results. The 
equation describes both dependencies:

b
ct ac−= (26)

Figure 6 Dependence of gelling time h on concentration C . 1 - Experimental 
data for silica sol with particle size 2.4 nm and pH = 2.2. 2 - Results of computer 
simulation. (Note to the equation: y h= and x C= ; 2R   - coefficient of 
determination).

The values of parameters b in equation (26) for the experiment 
(e) and simulation (s) model coincide within the statistical error: 

1.70 0.16eb = ± , 1.59 0.08sb = ± . By comparing equation (26) to 
equations (14) and (19), it may be concluded that they coincide by 
the value of the exponent of power dependence of gelling time on the 
concentration.10

Conclusion
The sol-gel transition is a process of sol particle association 

accompanied by the formation of “an infinite aggregate”. Two ways of 
constructing mathematical models are suggested. The first approach is 
based on the methods of statistical thermodynamics, and the second 
one is hydrodynamical. Both methods make it possible to obtain 
the inter- consistent equations describing the relationship between 
the gelation time and the macroscopic parameters. As a result of the 
simulation of the sol-gel process, adequate results were obtained, 
which make it possible to predict the behavior of the colloidal 
dispersion in the process of gelation. The study of the obtained models 
made it possible to reveal the regularities of the gelation process and 
determine the factors that determine the rate of this process and the 
structure of the forming gel.

We also carried out experimental verification of the proposed 
models. We investigated the formation of a primary gel containing all 
the water that was part of the initial colloidal solution - sol. The critical 
point is that at the point of gelation, an endless aggregate is formed, 
but at the same time, only a part of the sol particles participates in 
its formation. The rest of the particles enter their structure after the 
point of gelation. Thus, the fractal dimension of an infinite aggregate 

should increase as its creation is completed, after passing the gelation 
point. The data obtained showed that an increase in the temperature 
of the process leads to the formation of a somewhat more delicate 
structure in the forming gel. Accordingly, an increase in the rate 
of gelation leads to a decrease in the possibility of penetration of 
colloidal particles into the interior of the growing aggregate. These 
restrictions also reduce the average coordination number of particles 
in the forming aggregate.

Of course, one cannot discount the fact that the theoretical 
premises proposed above are based on several approximations and 
assumptions. Therefore, for this reason, specific errors are also 
possible in assessing specific parameters in such complex systems as 
colloidal solutions. Under these results, further research in this area 
should be aimed at finding factors that additionally affect the nature of 
the sol-gel processes, as well as studying the means and methods of 
structure formation in the forming gels. 
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