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Abstract

Sol-gel is a modern technological process that is widely used in production of inorganic
sorbents, catalysts and catalyst carriers, synthetic zeolites, inorganic binders, ceramics with
select physical, optical, magnetic, and electrical properties, glass, glass ceramics, fibers,
etc. The creation of models of this process will make it possible to fine-tune the properties
of the resulting materials. The sol-gel transition is a process of sol particle association
accompanied by the formation of “an infinite aggregate”. Two ways of constructing
mathematical models are suggested. The first approach is based on the methods of statistical
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thermodynamics, and the second one is hydrodynamical. Both methods make it possible to
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Introduction

The coagulation of colloidal particles plays an essential role during
various processes, including the production of materials for structural
and functional purposes, water purification by reagent methods,
and the implementation of nanotechnology processes. The sol-gel
process is used in the production of inorganic sorbents, catalysts
and catalyst carriers, synthetic zeolites, inorganic binders, ceramics
with select physical, optical, magnetic, and electrical properties,
glass, glass ceramics, fibers, etc.The sol-gel process is one aspect
of nanotechnology. It describes the preparation of nanoscale objects
like e.g., particles and their processing of nanostructured materials.
One process step, thereby, includes the solidification of a liquid
nanoparticle dispersion (sol) by inter particulate forces to a gel. The
creation of models of this process will make it possible to fine-tune the
properties of the resulting materials.

An aggregate is a collection of particles with strong interparticle
bonds. These bonds can be covalent or even necked between individual
particles. In this case, the resulting surface area of the formed
aggregates can be significantly less than the sum of the surface areas of
the particles that formed it. The purpose of this work is to obtain results
that allow a direct approach to the physical and mathematical modeling
of colloidal processes associated with coagulation and aggregation of
nanoparticles. Let us consider the possible mechanisms that promote
or prevent the coagulation of particles in solution. It should be borne
in mind that they often proceed together.One of the main processes
leading to the interaction of colloidal particles with each other is
Brownian coagulation. Colloidal particles react to random molecular
fluctuations in the density and average velocity of solvent molecules;
therefore, they remain in irregular (Brownian) motion all the time.
Brownian wandering leads to their mutual collision; therefore, it is
one of the main consistently acting mechanisms that contribute to the
coagulation of colloidal particles.

Brownian diffusion is another process that determines the
interaction of colloidal particles. The Brownian walk of particles leads
to the so-called Brownian diffusion and the interaction of particles

with each other. It also promotes their deposition on the surface of
various materials. However, large particles and their aggregates are
flown around by the solvent due to sedimentation. Consequently,
simultaneously with the convective transfer of small particles and
Brownian diffusion, convective Brownian diffusion can be observed.
During the sedimentation of large aggregates of colloidal particles,
the “engagement” effect can be observed. The particles have a finite
size; therefore, at a distance of the order of the particle radius from
the surface of the aggregate, the standard component of the solvent
velocity is finite; during convective transfer, additional “engagement”
of the particle with a large aggregate is possible. The engagement
effect plays a significant role in the formation of precipitation,
especially under the additional action of gravitational and centrifugal
forces, when convective Brownian diffusion is no longer sufficient.
All the processes discussed above act together in the gravitational
coagulation of particles of comparable sizes. Gravitational coagulation
is one of the main microphysical mechanisms of sediment formation.
Convective transport of particles by the solvent always results in less
deposition because it is directed against gravity. Sol-gel transition
and sedimentation are mutually different processes. Therefore, a
sol-gel change is observed only when the growth rate of aggregates
significantly exceeds the rate of their deposition, and the formation of
an infinite aggregate stops the sedimentation process altogether.

Phenomenological approach to coagulation
kinetics

The sol-gel transition is observed in the processes of colloidal
particle association. It is accompanied by the formation of the so-
called “endless aggregate”, i.e., unit comparable to the size of the
entire system. There are several approaches to the modeling of
kinetics and structure formation at sol-gel transition the construction
of mathematical models of the aggregation process and the computer
simulation. Nonlinear equations for aggregates growth rate, like
the nonlinear Boltzmann equation, are usually used to construct
mathematical models of the aggregation process. The equations of
chain growth rate were first obtained by Smoluchowski' in a discrete
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form and by Schuman?in a continuous way. The essential difference
between the Boltzmann equation and the equation for the rate of
fragmentation and growth of aggregates lies in the difference in
the conservation laws that are embedded in these equations. In the
equations for the rate of fragmentation and growth of aggregates,
the total mass of aggregates is constant, and their total number is
not conserved. This difference also provokes a significant difference
in the behavior of their decisions. For example, some solutions are
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used to describe the kinetics of the gelation process. Such an equation
corresponds to the conditions under which the total mass of aggregates
of finite size and colloidal particles is retained until a certain critical
point in time (gelation point). After reaching the gel point, the total
mass of such particles begins to decrease. This behavior of the system
corresponds to the emergence of mass flow from aggregates of limited
size to an “infinite aggregate” - a gel.’ The equation of aggregates
growth and fragmentation rate is expressed in a continuous form:

6tc(x) =%jfk(x—y,y)c(x—y)c(y)dy—c(x)Tk(x,y)c(y)dy+TF(x,y—x)c(y)dy—%c(x)j'F(y,x—y)dy )

When a variable characterizing the mass or sizes of an aggregate
takes the discrete values, the equation of the rate of aggregates
formation reaction in a unit volume may be written as follows:

1 k=jk=i k—jk-i
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For the analysis of the solutions of equations (1) and (2), the
corresponding moments of distribution functions are the most
interesting:

M, (t)= Txgc(x,t)dx = ixgck ®) 3)

0

Here: Mo (t) is the overall number of aggregates, M, (t ) is the
total mass of aggregates, and M, (t ) - is the second moment of the
distribution; its value is proportional to the degree of aggregation.All
these quantities are referred to as the unit volume. For some models
of growth and fragmentation of aggregates with specially chosen
functions K and F', the closed equations may be obtained directly
from the functions M, (t) . These equations are called the equations
of macroscopic rates. In general, their consequence is the conservation
equation of the total mass M, (r).

The described equations are used for modeling the processes of
the polycondensation polymerization and in the meteorology, and for
the calculation of the process of atmospheric precipitation formation.*
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Figure 2 shows a graph of the equation (6) behavior depending

on the parameter m and the number of particles in the primary
. . iU (m,i)

aggregate. Analysis of this dependence shows that gy > has
some symmetry concerning m =1, although it is not ideal. Hence, we
can conclude that the aggregation process has a greater tendency to
collect individual colloidal particles and small aggregates by a large
aggregate than vice versa, although both processes take place.As is
known from the laws of chemical kinetics, the speed of a complex
multistage process is determined by the limiting stage rate, that is,
the stage with the minimum rate. From equation (4) and Figures 1&2,
such a stage is the interaction of primary particles, that is when the
value of ; is minimal. Thus, to estimate the rate of aggregation, one
can use the equality condition ; =1. In the case when i =1, equation

+(m +1)(mi+;i;]]m

Let us construct a model of aggregation rate in terms of statistical
thermodynamics. For colloidal particles having a two-hole potential
and a certain energy barrier, the expression for the rate constant may
be written:

T ‘(kgirj 4
(r+ )(i7 /e @

Where 1 is the viscosity of the medium. If /=™ for rather
large aggregates, we will obtain from eq. (4) a ratio of the interaction
processes rate constants for aggregate-aggregate and aggregate-
particle:

1 m.i-l1

E
U(m,i)= 23’7Ke["BT] =i(m+ 1)(i2.m)ﬁ (m.i)m+D (5)

B

The parameter m shows the magnitude of the difference between
the reacting aggregates. The value ™ =1 corresponds to the case of
the interaction of identical aggregates. If ™ >1 , then this means that
J > 1 that s, the primary aggregate ! interacts with a large aggregate
J . For M<1 the opposite situation arises. Figure 1 shows the
behavior of function’depending on the parameter m and the number
of particles in the primary aggregate. It can be assumed that there
should be some symmetry in the behavior of the function “ /!
for the value ™ =1 However, from Figure 1, this symmetry is not
explicitly observed. For a more detailed understanding of the current
situation, let us analyze the behavior of the partial derivative of the
function U(m,i) concerning m :

mi—1

ii(m+1) (6)

(5) describes the case of aggregate-particle interaction. In this case,
the m value indicates the number of particles in the aggregate:

m

Uizl(m):(m+1)mm (7

The analysis of the equation (7) shows that when the differences in
aggregates sizes are small in a system, the aggregation rate is a weakly
dependent on 71. The aggregates differing much in sizes exhibit a
drastic growth of aggregation rate, which is proportional to ”* :

2

lim lim U,_,(m)=m
Mm—>0 m—>0

(5.2)

Thus, the occurrence of particles with many different sizes will lead
to a sharp increase in aggregation rate, i.e., the aggregates “pick up”
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on themselves the separate particles into the small aggregates. Figures
1&2 clearly show that in the case of aggregate-aggregate interaction,
the speed of their interaction grows especially rapidly with an increase
in the size of the aggregates participating in the process. However,
the total rate of this process is determined by the rate of interaction
between primary particles and small aggregates.

Figure | Graph of the behavior of equation (5) of the function U(m,i)
depending on the parameter m and i - the number of particles in the primary
aggregate.

0.01

Figure 2 The graph of the behavior of the equation (6) of the partial derivative
0

8_U (m,i ) depending on the parameter m and i - the number of particles in
m

the primary unit.

Method of moments in determining the rate
of coagulation

The gelation time will be determined by the size distribution
functions of the primary aggregates. Therefore, to determine the
gelation time, it is most convenient to use the functions corresponding
to the moments of the aggregate size distribution. The most suitable
of these moments is the moment corresponding to the variance of the
distribution M (?) , which is the value proportional to the aggregation
degrees. To determine the time of infinite cluster formation, let
us study the asymptotic properties of size distribution functions of
aggregates for a model with the nucleus X =i.j . For this purpose, we
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write a set of equations for the moment A, , which simply follows
from equations (1) and (3):
dM,
dt

=2M; ®)

In this model, at a time moment =% a super particle - “infinite
aggregate” is formed. The quantity fe is determined from the
condition of tending to oo of moment M, (). Moment M, () is the
second moment of the distribution; its value is proportional to the
degree of aggregation. Solving equation (8), we get:

M,(0)

M. =1~ 2M,(0).1

)
Fromequation (9) wefind:

1

t =0 (10)

Further examination will be made for the model of monodispersed
particles of the unit size (g=1) since the limiting stage of the
aggregation process is the stage of attachment of primary particles to
the forming aggregate. The particle size distribution for this case can
be represented as the Dirac §-function:

c(g)=5(g~g) (11)

Following the filtering property of the &-function, the moment
M, (0) will be equal to:

M, (0)= [g°5(g —20)dg = 2 (12)
0

-1
From here for 80 =1 , we have e = A . For the transition from
dimensionless to real-time, we introduce the aggregation time " .
This parameter represents the time interval between individual events
in the aggregation process:

1

Tagr =W (13)

Where: N is the number of particles in a unit volume.

From equation (4), we can get the apparent aggregation time under
the condition i=j=1:

3 _E
T.=1.7T n e BT

, =1 _ 14
© T 8k, TN (14)

The analysis of equation (14) shows that the gelling time is
directly proportional to the viscosity of the medium and inversely
proportional to the temperature and the concentration of particles. The
increase in potential barriers during the interaction of particles leads
to a rise in gelling time. To elucidate the effects of hydrodynamic
flows, let us consider the case where the aggregate grows by the
conservative attachment of separate particles. Two mechanisms drive
the aggregation process. One of the mechanisms of this process is the
diffusion motion of the reacting particles. The second mechanism is
due to the movement of aggregates under the influence of existing
hydrodynamic flows. In the latter case, the aggregate rate is little
compared to the heat rate of particles, so that the attachment of
particles ultimately occurs due to their diffusion.
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Balance equation for the coagulation process

The balance equation has the following form for the total number
of particles ™ in the aggregate, considering the flow of both processes:

dn
E—vd+vm (15)

Where V4 is the rate of adherence of colloidal particles to the
aggregate in the diffusive motion of particles, and 13y, is the rate of
adherence of particles to the aggregate due to the occurrence in the
aggregate motion band when it moves along by linear path.Usually,
the aggregate is rather large (R >> ;) and base a fractal geometry

(Figure 3), i.e., the number of particles in it is equal to:

(16)

y= 5'5r26x1.7433
R?=10.9872

Figure 3 Correlation of the number of particles N in a fractal and its size R
(obtained by the method of simulation modeling). The dotted and dashed lines
correspond to the confidence intervals O and 3¢, respectively. (Note to the
equation: y=Nandx=R , R? - coefficient of determination).

Where: ¢ - is the fractal dimension.
From equation (15), we have:

1 2

% = Dng + SGn; 17)
Where: Ip =47DrN aggregation rate coefficient for diffusion

transfer of reacting particles; % =argwN - aggregation rate
coefficient for hydrodynamic transfer of reacting particles; D - is
the diffusion coefficient of particles; N - is the concentration of
particles, and ¥ - is the speed of aggregates motion under the action
of the hydrodynamic flow.For the convenience of analyzing the
behavior of solutions to the differential equation (17), we bring it to a
dimensionless form:

dn 2 2
_Y -
—=—"n?+n? =an? +nd (18)
dt 6
e a= L
Where: Po- G5t _ adjusted time; fc — the ratio of

aggregation rate coefficients for diffusion and hydrodynamic transfer
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of reacting particles. In the case when a > 1, the diffusion transfer of
particles due to Brownian motion prevails. In the case when a <1
, the hydrodynamic transfer of particles predominates due to the
movement of a liquid medium to which these particles are dispersed.
The behavior of solutions to equation (18) is shown in Figure 4.

Figure 4 The total number of particles in the resulting aggregate by equation
(18). 1-3 - Influence of fractal dimension d. 4-6 - Influence of the ratio of the
aggregation rate coefficients during diffusion and hydrodynamic transfer of

9
reacting particles @ = —2. The image numbers correspond to the following
G
values of the initial parameters used in the numerical solution of equation (18):

l-a=40.1-a=0.72.1-a=0.01.4-d=13.5-d=1.7.6-d=2.1.

The analysis of the numerical solutions of equation (18) presented
in Figure 4 showed that a decrease in the fractal dimension of the
forming aggregate sharply increases the rate of its growth and,
accordingly, the rate of formation of an infinite aggregate, that is,
reduces the time of gel formation during the sol-gel transition. If & < 1
, that is, the hydrodynamic transfer of particles due to the movement
of a liquid medium prevails, then there is a simple process of particle
aggregation followed by the formation of a gel, which is elegantly
seen from Figure 4. In this case, with the formation of aggregates
with a high value of the fractal dimension approaching & = 3, the
aggregate growth process simply slows down. The value & = 0.72 is
a critical value, above which there is a change in the mechanisms of
the behavior of aggregates with small and large fractal dimensions.
With a sizeable fractal dimension, the aggregates stop forming and
are removed from the system due to sedimentation. This phenomenon
is visible in Figures1-4. In this case, with an increase in the fraction
of the diffusion component in the growth rate of aggregates, the
critical value of the fractal dimension shifts towards lower values. At
the same time, the growth rate of aggregates is overgrowing. Such a
breakdown of the aggregation rate for a sizeable fractal dimension
of aggregates is visible from Figures 4-6. In this case, the critical
value of the fractal dimension is approximately @ ~2.1. These
calculations were carried out by the method of numerical solution of
the differential equation (18). To assess the influence of other factors
on the aggregation process, we carried out a qualitative assessment of
the gelation time, which was estimated as the time required to collect
all particles into a single endless aggregate. Determine now the time
when all sol particles combine into a single aggregate, which is equal
by sizes to the entire system:

T 2 gan
d d 1
Gpnd +9;n

< dn B9 2
T, = I 0 (19)
1
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Where B isa composite quantity that weakly depends on the fractal
dimension d.As compared to equation (14), the equation (19) gives
overstated results of gelling times, because it does not consider the
coalescence of aggregates. However, the analysis of the asymptotic
behavior of equation (19) shows that it will give the results that are
like equation (14). Substituting into equation (19) the values of the
parameters indicated in equation (17), we obtain:

B.22d73 Dd72 ﬁ/o

L Sy (20)
DIVTIN T DIVTIN

Where Pp =27 _ particle diameter.

So, from equation (20), it follows that the gelation time is inversely
proportional to the number concentration of particles:

T 1)

Accordingly, for the speed of movement of the units, there is the
following proportionality with the gelation time:

(22)

The nature of the gelation time dependence on the particle size
is determined by the influence of other factors on this dependence,
for example, such as the diffusion coefficient D | The diffusion
coefficient of particles depends on the average speed of movement
of particles and their free path.*” Considering the mean free path A
of a colloidal particle and the mean square velocity ¥ of motion of
colloidal particles,’ the equation for the diffusion coefficient will have
the form:

1
p=t- 1 kLPOCDp 2
37 emiz\ D,

(23)

Where & — Boltzmann constant; 7" — absolute temperature;’ 1 —
mass concentration of colloidal solution [kg/m’]; P is the density of
the substance of the colloidal particle [kg/m’].

Considering the above factor, for the size of the first particles, we
have the following proportionality, if the concentration of the sol is
constant and expressed in counting units:

1-24

7, 0cd

24

If a constant mass concentration is maintained in the experiments,
then this formula will change its form and will look like this:

3
4-2p
rocd 2 4

(25)

The shape of the aggregate and its fractal dimension @ can be
different. It depends on the nature of aggregation, and according to
the literature, it takes values from 1.75 to 2.5 + 3.0.%° A significant
difference between the two models is that the first version includes
only the material balance in the system. In contrast, the second model
considers the structural feature of the forming gel. This feature is due
to the fractal geometry of gel formation and its relationship with the
kinetics of aggregation.
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Experimental verification of coagulation and
sol-gel transition models

Experiments were carried out to study the effect of the particle
size of a colloidal solution of silicon oxide on the time of its gelation
to check the obtained dependences. In all tests, a constant mass
concentration of the colloidal solution was maintained. The resulting
dependencies are shown in Figure 5.

16

y= 1.839x + 0.0504
b4 TR =0.9937
1.2
8
Er\ 1.0
<
20
0.8
0.6 y= 1.8849x - 0.2179
R? =0.9734
04 —R L L L i ! |
0.3 0.4 0.5 0.6 0.7 0.8 0.9
lg(d,), nm

Figure 5 Dependence of gelation time @ on the size d of colloidal particles in
sol at different temperatures. The axes in the picture are plotted in logarithmic
coordinates. 1 - 80°C ; 2- 100°C. (Note to the equation y =1g8: and
x=1gd,, R? - coefficient of determination).

Figure 5 shows that the obtained dependences fit well into a linear
correlation. In this case, using relation (25), one can calculate the
fractal dimension of the resulting gels. So, for a temperature of 80 °C,
itis d =1.44£0.06 , and for a temperature of 100 °C - d =1.41%0.09
. Under the method developed by us earlier [10], from the data on the
fractal dimension, we calculated the mean value of the coordination
number for colloidal particles of silicon oxide in the gel formed in these
experiments. Accordingly, the calculated values of the coordination
numbers ( CN ) were: for temperature 80 °C - CN =2.88+0.06 , and
for a temperature of 100 °C - CN =2.82+0.09 .

Considering the measurement error of the fractal dimension, we
can conclude that the structure of the forming gel practically weakly
depends on the temperature in the experimental region. Also, it
can be seen from the data obtained that an increase in the process
temperature leads to the formation of a more delicate gel structure.
This phenomenon is associated with an increase in the rate of gelation.
Accordingly, it is related to a decrease in the possibility of penetration
of sol particles into the inner part of the unit. During the interaction of
colloidal particles with each other, the average coordination number
of colloidal particles in the aggregate decreases. Also, such small
values of the fractal dimension of the formed gels indicate their very
delicate structure. The reason for such significant differences in the
value of the fractal dimension, in comparison with the literature data,
can only be explained by the fact that the published works studied
gels that had already been dried and underwent syneresis processes,
that is, compaction.

The use of computer simulation techniques makes it possible to
obtain the results, which describe well both kinetics and geometry of
forming aggregate — the most widespread and like the real state is
the model of diffusion-limited aggregation.’ An example of diffusion-
limited aggregation is the modeling of the concentration dependence
of gelling time given in Figure 6. The results are obtained using
statistical averaging of gelling time. For comparison, Figure 6 also
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presents experimental data on the dependence of the gelation time on
the concentration of a colloidal solution of silicon oxide SiO,. Figure
6 presents the comparison of experimental and simulation results. The
equation describes both dependencies:

t,=ac” (26)
600

u y = 133266x147
500 R?
\Q\

0.9867
y = 1219606x15%
200
N "
100
%____._
0

R?*=10.9956
0 50 100 150 200 250
C gl

Time, h
lH
=3
=

Figure 6 Dependence of gelling time /2 on concentration C . | - Experimental
data for silica sol with particle size 2.4 nm and pH = 2.2.2 - Results of computer
simulation. (Note to the equation: y=handx=C;p2 - coefficient of
determination).

The values of parameters b in equation (26) for the experiment
(e) and simulation (s) model coincide within the statistical error:
b,=1.70£0.16, b, =1.59%£0.08. By comparing equation (26) to
equations (14) and (19), it may be concluded that they coincide by
the value of the exponent of power dependence of gelling time on the
concentration. !

Conclusion

The sol-gel transition is a process of sol particle association
accompanied by the formation of “an infinite aggregate”. Two ways of
constructing mathematical models are suggested. The first approach is
based on the methods of statistical thermodynamics, and the second
one is hydrodynamical. Both methods make it possible to obtain
the inter- consistent equations describing the relationship between
the gelation time and the macroscopic parameters. As a result of the
simulation of the sol-gel process, adequate results were obtained,
which make it possible to predict the behavior of the colloidal
dispersion in the process of gelation. The study of the obtained models
made it possible to reveal the regularities of the gelation process and
determine the factors that determine the rate of this process and the
structure of the forming gel.

We also carried out experimental verification of the proposed
models. We investigated the formation of a primary gel containing all
the water that was part of the initial colloidal solution - sol. The critical
point is that at the point of gelation, an endless aggregate is formed,
but at the same time, only a part of the sol particles participates in
its formation. The rest of the particles enter their structure after the
point of gelation. Thus, the fractal dimension of an infinite aggregate

Copyright:
©2020 Kudryavtsev. 54

should increase as its creation is completed, after passing the gelation
point. The data obtained showed that an increase in the temperature
of the process leads to the formation of a somewhat more delicate
structure in the forming gel. Accordingly, an increase in the rate
of gelation leads to a decrease in the possibility of penetration of
colloidal particles into the interior of the growing aggregate. These
restrictions also reduce the average coordination number of particles
in the forming aggregate.

Of course, one cannot discount the fact that the theoretical
premises proposed above are based on several approximations and
assumptions. Therefore, for this reason, specific errors are also
possible in assessing specific parameters in such complex systems as
colloidal solutions. Under these results, further research in this area
should be aimed at finding factors that additionally affect the nature of
the sol-gel processes, as well as studying the means and methods of
structure formation in the forming gels.
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