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One of the prime reasons for the latter is thought to be reductions in 
atherogenesis.11,25,36

Notch signaling pathways and cardiovascular 
disease and homeostasis: interactions with Mg and 
transcription factors

Over the past few years, a pathway originally discovered in 
Drosophilain 1913 (The Notch pathway, due to a change in the wings), 
has now become important in mammalian cardiovascular homeostasis 
and disease.82–87 It has now become apparent that the Notch gene 
regulatory pathway plays an important role in vascular smooth muscle 
cell phenotypes, vascular remodeling and repair after cell injury. 
Notch ligand binding leads to an intracellular domain (i.e., NICD) 
which is released from the endothelial cell membrane by a gamma-
secretase-dependent proteolytic cleavage of the Notch receptor. Notch 
signaling from tumor cells has been shown to activate the endothelial 
cells and thus initiate angiogenesis. Over thepast 15 years, a great 
deal of attention has been brought to bear on development of gamma-

secretase inhibitors.82–87 Due to the Notch pathway’s interaction with 
the tumor suppressor gene, p53, and other transcription factors, we 
have speculated that Mg deficient states may act as genotoxins to 
activate one or more of the four Notch pathways.88 Using rats exposed 
to dietary deficiency of Mg for 21 days, we have indeed found that 
ventricular, atrial and vascular SMCtypes, derived from these Mg 
deficient animals, demonstrate 3-8x up-regulation of at least three of 
the Notch gene pathways, viz, 1,2, and 3.88 In addition, we have noted 
a strong correlation (P<0.001), in the Mg-deficient tissues and cells 
between activation of several enzymes in the sphingolipid pathway 
(which generate ceramides and other phospholipids; see below), 
p53, DNA oxidation and fragmentation, and down-regulation of 
telomerase, all important factors in atherogenesis.88

Reduced daily dietary intake of Mg, cardiovascular 
disease, and coronary arterial vasospasm

At present, the average daily dietary intake of Mg is from 135-238 
mg Mg, while at the turn of last century the intake of Mg was between 
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Introduction
Disturbances in diet are known to promote lipid deposition and 

accelerate the growth and transformation of smooth muscle cells 
(SMCs) in the vascular walls.1,2 Over the past, approximate five 
decades, a considerable number of reports have appeared to indicate 
that a reduction in dietary intake of magnesium (Mg), as well as 
low Mg content in drinking waters, are important risk factors for 
myocardial infarctions, coronary arterial disease, ischemic heart 
disease (IHD), sudden cardiac death, sudden-death ischemic heart 
disease (SDIHD), hypertension, widening of pulse pressure, type 
1 and 2 diabetes mellitus, polycystic ovarian syndrome in women 
(PCOS), preeclampsia-eclampsia in pregnancy, gestational diabetes, 
blood pressure alterations with dialysis, vaso-occlusive diseases 
(i.e., sickle cell disease; bowel ischemia; deep vein thromboses), 
cardiovascular-linked inflammatory disorders, cardiovascular 
dysfunction in audiogenic stress, and strokes ( including those seen in 
substance abuse), among other cardiovascular diseases worldwide.3–81 
Exactly what mechanisms Mg deficiency is responsible for causing 
high risks for these diseases is not totally clear. However, it is known 
that hypermagnesemic diets and/or Mg supplementation does, in 
many cases, either prevent or ameliorate the dangerous symptoms and 
downhill courses of events, thus attenuating morbidity/mortality.26,67 
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450-550 mg/day in North America.37,58,67 Interestingly, the myocardial 
level of Mg has consistently been observed to be significantly lower 
in subjects dying from IHD and sudden death ischemic heart disease 
(SDIHD) in soft water areas than in subjects living in hard-water 
areas.5,7,19,20 Using animal and human isolated coronary arteries, our 
laboratories were the first to demonstrate that reductions in [Mg2+]
o resulted in intense vasospasm; the lower the Mg2+ and the smaller 
the coronary artery, the greater and stronger the vasospasm;9,10,12 
circulating constrictor hormones (i.e., catecholamines, peptides, 
serotonin, etc) were vastly potentiated in strength.10,89 Many of these 
results were confirmed by other investigators in humans in-vivo.90–94

Reduced blood and cellular levels of ionized Mg 
in cardiovascular diseases, and pregnant women: 
vascular remodeling and Notch

Using sensitive, specific Mg2+ electrodes, it has been shown 
that patients with IHD, coronary arterial diseases, SDIHD, 
strokes, types 1 and 2 diabetes mellitus, preeclampsia-eclampsia, 
polycystic ovarian syndrome (PCOS), vaso-occlusive diseases, 
and atherosclerosis exhibit a significant depletion of serum, whole 
blood, and plasma ionized Mg levels, but not necessarily total Mg 
levels.29,31,33,34,36,37,38,41,43,46,47,39,50,54,58,61,65,68–71,74–78,80,81 Cellular and 
interstitial levels of ionized Mg are also reduced in several of these 
diseases.95,96 We have demonstrated considerable vascular remodeling 
in hypertensive and atherosclerotic animals where cellular ionized Mg 
levels show significant deficits.15,23,25,26,28,36,37,38,41,44,58,61,65,68,76,77,78,81 Our 
preliminary experiments, using primary cell culture of neonatal piglet 
coronary arterial smooth muscle cells, exposed for 48-96 hours to low 
[Mg2+]0 demonstrate activation of Notch 1and 2 concomitant with 
geometrical alterations of cell shapes and apoptosis, thus suggesting 
evidence for epigenetic changes in smooth muscle cell phenotypes [ 
unpublished findings].

Cellular ionized Mg levels modulate membrane 
phospholipids, second messengers, activation of 
multiple intracellular transcription molecules, and 
membrane transport: relation to epigenesis

Approximately 25 years ago, two of us, using cerebral and 
peripheral vascular SMCs (VSMCs) in vitro and in primary cell 
culture, showed that variation in free Mg2+ caused sustained changes 
in membrane phospholipids and second messengers as well as the 
activation of intracellular transcription molecules ( i.e., NF-kB; c-fos, 
c-jun, MAPK, MAPKK, PKC isozymes, tyrosine kinases, and platelet-
activation factor-PAF).97–106 Such paradigms, using variations in Mg2+ 
also causes membrane oxidation, truncation of membrane fatty acids, 
activation of several cell death pathways, release of mitochondrial 
cytochrome C, regulation of subcellular levels of calcium ions, and 
significant activation of several enzymes in the sphingolipid pathway 
(i.e, Neutral sphingomyelinase-N-SMase; acid-SMase, sphingomyelin 
synthase; ceramide synthase).9,26,28,29,37,44,47,58,88,89,97,98,99,100,105,106,109,110–118 
In addition, we found that Mg2+ modulates transport of K+ and Ca2+ in 
vascular muscle cells , cardiac muscle cells, and capillary endothelial 
cells as well as intracellular release.26,37,44,58,99,100,109,110,111,113,116–123 
Extracellular ionized levels of Mg also control the distribution of 
Ca2+ in subcellular organelles (i.e., mitochondria; lysosomes; nucleus; 
nucleolus).116,118 We believe, taken together, our studies provide 
evidence that alterations in ionized Mg play important roles in 
epigenesis (see more below).

Importance of dietary Mg intake to modulation 
of p53 in cardiovascular tissues: potential role in 
atherogenesis, Notch up-regulation, and epigenesis

The tumor suppressor protein p53 is a key transcription factor 
that can be activated by numerous agents, including DNA damage, 
ionizing radiation, ultraviolet irradiation, ribonucleoside triphosphate 
depletion, metabolic stress, and aging as well as myocardial infarction, 
reperfusion injury, ischemia, atherogenesis, and stroke.124–127 Our 
laboratories have found that cellular depletion and dietary deficiency 
of Mg are powerful up-regulators of p53 and Notch 1,2 and 3 in 
cardiovascular tissues and cells.88,105,106,128

We have also reported that up-regulation of p53 in Mg deficiency 
is tied rather closely to Notch proteins regulation, DNA methylation 
and histone changes in diverse cardiovascular cells.88 Atherosclerotic 
plaques demonstrated increased expression of p53 activation, 
DNA damage, activation of DNA repair pathways in both animal 
and human arterial vessels and apoptosis. Taken together with our 
findings that short-term dietary deficiency of Mg, in intact rats, leads 
to DNA fragmentation, oxidation and diverse forms of cell death in 
ventricular, atrial, and arterial smooth muscle cells,129–133 we believe, 
rather strongly, that Mg deficiency causes epigenesis, which is tied 
to Notch pathways, in the cardiovascular system resulting in diverse 
cardiovascular diseases.134

Key roles of activation of N-SMase, acid-SMase, 
ceramide synthase, and sphingomyelin synthase in 
production of ceramides in cardiovascular tissues and 
cells in Mg deficiency: relevance to Notch activation

The de novo synthesis of sphingomyelin (SM) is brought 
about via the action of serine palmitoyl-CoA transferase 
(SPT), 3-ketosphinganine reductase, ceramide synthase (CS), 
dihydroceramide desaturase, and SM synthase (SMS).135 SMS 
requires phosphatidylcholine (PC) and ceramide as substrates to 
manufacture SM and diacylglycerol (DAG).135 This reaction directly 
affects SM, PC, and ceramide as well as DAG levels. We have shown, 
using primary cell cultures of cerebral, coronary and peripheral 
vascular muscle cells, that a variation of extracellular free Mg ions 
([Mg2+]0) influences the cellular levels of SM, PC, DAG, NF-kB, 
proto-oncogenes, and ceramides.29,37,98,99 Ceramides, either released or 
as a consequence of SMases acting on SM or activation of SPT 1 and 
2, CS, or activation of SMS, is now thought to play important roles in 
fundamental processes such as cell proliferation, membrane receptor 
functions, angiogenesis, microcirculatory functions, immune-
inflammatory responses, cell adhesion, cell motility, atherogenesis, 
senescence, and programmed cell death.58,68,105,106,129–131,136–147 Although 
the activation of neutral- and acid-SMases, SPT 1and 2 (the rate-
limiting enzymes for the biosynthesis) by low [Mg2+]0 results in (and 
ensures) ceramide production in cardiovascular cells and tissues,106,107 
the activation of CS and/or low [Mg2+]0 results in additional levels of 
ceramides.106,147 Since SMS activity exhibits links to cell membrane 
structures and numerous cellular functions,135,148–151 it could have 
far-reaching effects on the cardiovascular system. We have found a 
positive correlation of low Mg-induced activation of Notch 1,2 and 3 
to activation of N-SMase, acid-SMase, SPT 1 and 2, and CS as well 
as increased production of ceramides.88 

We have shown that even short-term Mg deficiency in: 1. Intact 
animals and humans up regulates SMS activities in cardiac and 
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vascular smooth muscle cells; 2. Vascular SMC incubated with 
inhibitors of SMS and low Mg demonstrate reduced cellular levels 
of ceramides.106,128 The other ceramide pathways mentioned, above, 
also result in generation and release of ceramides when cardiac 
and vascular smooth muscle cells are incubated with low levels of 
extracellular free Mg2+.104,106,147 

Importance of release and generation of ceramides 
and platelet-activating factors on cardiac and 
vascular smooth muscle cells: direct actions on 
cardiovascular pathophysiology, functions, Notch 
proteins, atherogenesis, and epigenesis

Approximately 50 years ago, utilizing isolated, diverse 
mammalian blood vessels, and intact in-situ microcirculatory 
arterioles, precapillary sphincters, and muscular venules in intestinal, 
skeletal muscle and cerebral vascular beds of rats, dogs, rabbits and 
guinea-pigs, we reported that diverse ceramides, other sphingolipids, 
and phospholipids such as platelet-activating factors (PAFs), caused 
contraction/vasospasm or vasodilation of the large and microscopic 
blood vessels.9,10,12,14,15,16,26,28,35,36,37,47,58,68,81,89,99,101,102,105,106,109-116,120,139,152 
Similar results have been reported by others, but to a limited 
extent.53,153,154 We found, especially, in the intact brain cerebral and 
medullary microcirculations that even very small concentrations of 
diverse ceramides and PAFs would result in adherence of macrophages 
and monocytes on postcapillary endothelial walls, followed by rupture 
of postcapillary venules and transudation of leukocytes, macrophages, 
monocytes, and red blood cells into the parenchymal tissues.142 The 
latter resembled a small, local hemorrhagic stroke. Histochemical 
examination of arterial blood vessels,in rabbits fed Mg-deficient diets 
with cholesterol for 4-12 weeks, revealed not only heavy plaques, but 
that these plaques contained monocytes, ceramides, PAFs, p53, and 
altered vascular SMC with signs of TNF-alpha.23–25,106 In addition, 
the arterial SMC demonstrated DNA oxidation, telomerase down-
regulation, and DNA methylation.134,155 We believe these findings 
provide presumptive evidence, with the above for the concept that 
Mg deficient diets not only can induce atherogenesis but alterations 
in vascular smooth muscle cells/macrophages which have been 
observed in human tissues undergoing epigenesis. Whether or not the 
Notch family of genes, which we have found to be up regulated in 
Mg deficient animals, are key pathways in atherogenesis-related Mg 
deficiency remains to be investigated.

Over expression of Notch and proto-oncogenes in 
magnesium deficiency: potential relationship to pre-
eclampsia-eclampsia, gestational hypertension and 
growth retardation in pregnant women

Approximately 40 years ago, three of us reported, using human 
umbilical arteries and veins, that low levels of [Mg2+]0 caused these 
vascular SMC to go into contraction; the lower the external Mg, the 
greater the spasms.16,106 At that time, we suggested that low dietary 
intake of magnesium in pregnant women could result in hypertension, 
pre-eclampsia-eclampsia, and growth retardation in fetuses [14]. 
Some years later, using ion-selective electrodes and 31P-NMR 
spectroscopy on sera and red blood cells from women with gestational 
diabetes, hypertension in pregnancy, and pre-eclampsia-eclampsia, 
we reported serum and intracellular levels of free ionized Mg were 
reduced markedly with concomitant elevation in free ionized Ca2+ and 
increased Ca2+/Mg2+ ratios.38 

During the past 10 years, several investigators have reported that 
overexpression of Notch proteins in mice and zebrafish have caused 

several different mutations in bone development, T-cell homeostasis, 
lymphoid development, erythroid differentiation, and cardiac 
development.156–163 Ten years ago, using rats subjected to 21 days of 
dietary Mg deficiency, we found numerous alterations in sphingolipid 
metabolism, PAF, PKC isozymes, PI3 enzymes, MPK, MPKK, 
cytokines, chemokines, and cell signaling in cardiovascular tissues 
and cells.97–108,118,128,129,147 What was striking, we found up-regulation 
of the proto-oncogenes c-fos and c-jun,58,78,99,105,106 important nuclear 
cell growth regulators. We, thus, believe that our finding of over 
expression of Notch 1, 2, and 3, in Mg deficient cardiovascular tissues 
and cells concomitant with up-regulation of proto-oncogenes, may, 
in large measure, be responsible for gestational hypertension, pre-
eclampsia-eclampsia, gestational diabetes, and growth retardation 
of fetuses in some pregnant women. We hope our hypothesis will be 
fully investigated in the near future, particularly as more than five 
million fetuses are lost worldwide annually.

Conclusions and future thoughts
In this presentation, we have attempted to review a considerable 

amount of human and animal studies implicating Mg deficiency in 
the etiology of a number of cardiovascular diseases (CVD) and their 
patho-physiologies. It seems quite clear from a review of the massive 
amount of information accumulated, over the past 50-some -odd years, 
that dietary deficiency of Mg plays multiple roles in atherogenesis, 
CVD and strokes, and pregnancy. Unfortunately, although thousands 
of reports and symposia have been published on different aspects of 
CVD and strokes, Mg deficiency as a genotoxin has not, as yet, been 
taken seriously as it should be. Many CVD patients have, on their 
own, through anecdotal means, been aided considerably by increasing 
dietary intake, supplementation and or water intake of elevated Mg 
levels. Through careful and persistent investigations by ourselves and 
others, we believe dietary Mg deficiency should be carefully taken 
into consideration by all practicing physicians and ER personnel when 
examining patients for CVD.

Since tremendous shortfalls exist in dietary intake of Mg (as 
much as 65%) , with the sizeable loss in Mg via food processing, and 
depletion of Mg in soils by large-scale fertilization with phosphates, 
we suggested more than 15 years ago, that water intake (e.g., from 
tap waters, well waters, bottled waters, and beverages using tap/
well waters) in humans varying between 1 and 2 l/day, with Mg2+ 
intakes varying from <5 to >100 mg/l, may represent an excellent 
way to overcome and control marginal intakes of Mg obtained with 
most Western diets.58,61,88,104,106,107,128,129,147 In addition, in view of our 
previous clinical and animal studies, and those reviewed, herein, it is 
probably propitious to suggest that all desalinated-purified recovered 
waters, and all bottled waters given to humans should be supplemented 
with bio available Mg2+ to ameliorate/prevent the induction of 
cardiovascular risk factors and disease processes worldwide.
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